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Abstract  

 

Objective: Survival analysis is widely utilized in healthcare to predict the timing of disease 

onset. Traditional methods of survival analysis are usually based on Cox Proportional Hazards 

model and assume proportional risk for all subjects. However, this assumption is rarely true for 

most diseases, as the underlying factors have complex, non-linear, and time-varying 

relationships. This concern is especially relevant for pregnancy, where the risk for pregnancy-

related complications, such as preeclampsia, varies across gestation. Recently, deep learning 

survival models have shown promise in addressing the limitations of classical models, as the 

novel models allow for non-proportional risk handling, capturing nonlinear relationships, and 

navigating complex temporal dynamics. 

 

Methods: We present a methodology to model the temporal risk of preeclampsia during 

pregnancy and investigate the associated clinical risk factors. We utilized a retrospective dataset 

including 66,425 pregnant individuals who delivered in two tertiary care centers from 2015-

2023. We modeled the preeclampsia risk by modifying DeepHit, a deep survival model, which 

leverages neural network architecture to capture time-varying relationships between covariates in 

pregnancy. We applied time series k-means clustering to DeepHit’s normalized output and 

investigated interpretability using Shapley values. 

 

Results: We demonstrate that DeepHit can effectively handle high-dimensional data and evolving 

risk hazards over time with performance similar to the Cox Proportional Hazards model, 

achieving an area under the curve (AUC) of 0.78 for both models. The deep survival model 

outperformed traditional methodology by identifying time-varied risk trajectories for 

preeclampsia, providing insights for early and individualized intervention. K-means clustering 

resulted in patients delineating into low-risk, early-onset, and late-onset preeclampsia groups—

notably, each of those has distinct risk factors. 

 

Conclusion: This work demonstrates a novel application of deep survival analysis in time-

varying prediction of preeclampsia risk. Our results highlight the advantage of deep survival 

models compared to Cox Proportional Hazards models in providing personalized risk trajectory 
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and demonstrating the potential of deep survival models to generate interpretable and meaningful 

clinical applications in medicine. 

 

1. Introduction 

 

Precise modeling of disease risk is critical in healthcare and serves diverse purposes, such as 

enabling improved clinical decision-making, predicting time-to-event outcomes, advancing 

precision medicine, and refining disease classification strategies[1–3]. Time-to-event or survival 

analysis can provide meaningful insights for understanding temporal disease dynamics. While 

traditional parametric and semiparametric models, such as the Cox Proportional Hazards model 

[4], have been effective in analyzing disease outcomes, their assumption of constant hazard ratios 

over time may be poorly suited for diseases limited to specific life periods, such as pregnancy-

related conditions. Furthermore, the Cox model’s sensitivity to censored data and assumption of 

covariate linearity can introduce bias and potentially oversimplify the temporal dynamics of 

disease relationships. 

 

In recent years, deep learning techniques have transformed survival analysis in healthcare, 

yielding improvements across various categories of models. Time-dependent models, such as 

Cox-Time[5], exemplify this advancement, with an enhanced capacity to handle dynamic 

predictors, addressing a limitation of traditional methods by accommodating features that change 

over time. High-dimensional models, including DeepConvSurv[6] and CapSurv[7], showcase the 

newfound ability to integrate and interpret information from diverse data modalities, such as 

images, using convolutional neural networks. Furthermore, the incorporation of deep learning in 

parametric models, as observed in DeepPAMM[8] and DPWTE[9], advances survival analysis 

frameworks that leverage probabilistic models for more accurate predictions. DeepHit[10] 

introduces an innovative discrete-time approach to manage time-to-event data through 

classification techniques. This model excels in adapting to time-varying effects without making 

assumptions about the underlying hazard risk distribution within a high-dimensional space. This 

provides additional flexibility in scenarios where traditional models encounter challenges and 

enhances the model’s inherent ability to capture nonlinear relationships. These advancements 

collectively highlight the impact of deep learning, resulting in models with heightened predictive 
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power, augmented interpretability, increased flexibility, and broader applicability in healthcare 

settings. 

 

Preeclampsia, a hypertensive disorder specific to pregnancy, is a major cause of severe maternal 

and neonatal morbidity and mortality with an incidence of 2-8%[11][12]. Preeclampsia is 

defined by new-onset high blood pressure and proteinuria after 20 weeks of gestation and can 

lead to end-organ damage, including seizures, renal failure, and even death if left untreated[13]. 

In the United States, preeclampsia rates increased by 25% between 1987 and 2004[14]. The 

disease may have a distinct biochemical signature and clinical course depending on the specific 

patient and the time in pregnancy during which the symptoms develop[15]. Early-onset 

preeclampsia starts before 34 gestational weeks and commonly follows a severe course. As there 

is no definitive cure other than delivery, preeclampsia that develops early in pregnancy is one of 

the most common causes of severe maternal morbidity, iatrogenic preterm birth, and associated 

neonatal complications[16].  Late-onset preeclampsia, characterized by disease onset after 34 

gestational weeks or in the postpartum period, tends to have a milder progression and more 

favorable outcomes. The current clinical practice focuses on identifying at-risk individuals based 

on clinical criteria, increased surveillance, and early diagnosis and may fail to identify up to 50% 

of those at risk. In those at high risk, aspirin administration prior to 16 gestational weeks is 

associated with more favorable outcomes[17]. Earlier identification of at-risk patients, especially 

those with a high risk of early-onset preeclampsia, would allow for timely prophylaxis and 

increased surveillance. 

 

Current methods approach preeclampsia risk prediction by reducing the task to a classification 

problem[18]. Despite their overall accurate performance, most models are limited in predicting 

disease timing, providing long-term forecasts, or differentiating among antepartum, intrapartum, 

and postpartum risk[19,20]. More recent methods incorporate competing risk models[21], which 

allow a probabilistic prediction over time. These models are based on the underlying assumption 

of Gaussian distribution for risk and do not consider the non-exclusive relationship between birth 

and preeclampsia, as the disease develops postpartum in up to 27.5% of all pregnancies [22]. 

Prior studies have used the Cox proportional hazards model in pregnancy to identify hazard 
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ratios in a limited number of features by using gestational age as the outcome and relied on the 

assumptions of homogenous risk and linear covariate relationships[15].  

 

Our novel approach to addressing preeclampsia onset risk involves a departure from prevailing 

models, with a fundamental shift of applying survival analysis techniques. While typical survival 

analysis applications account for right-censored patients, the finite nature of pregnancy ensures 

the participation of all at-risk patients for the duration of the study. This contrasts with models 

for other medical conditions, such as heart failure or cancer [1–3], where patient attrition may 

skew results. Our application in pregnancy-related conditions has several substantial advantages. 

The temporal influences inherent to conditions, such as preeclampsia, including the critical 

factors of gestational age and delivery timing, integrate well with the methodology of deep 

survival models. The varied risk factors and clinical consequences linked to the antepartum, 

intrapartum, and postpartum manifestations of preeclampsia[23] emphasize the need for a model 

adept at discerning these time-varying disease onsets. This yields a profile that significantly 

deviates from conventional parametric distributions. 

 

To address the challenges posed by the temporal relationship of pregnancy and preeclampsia, we 

implement DeepHit, a specialized deep learning model for survival analysis in healthcare, 

tailored to predict time-to-event outcomes[10]. Our modification of the competing-risk DeepHit 

architecture conforms the model to predict a single event –preeclampsia diagnosis. Importantly, 

it allows the model to handle hazard functions nonparametrically to reflect the nonproportional 

risk across different stages of pregnancy. This enhanced flexibility allows DeepHit to predict 

disease risk and discriminate between distinct temporal disease risk trajectories. Through these 

advancements, our model seeks to provide a more accurate understanding of time-varied 

preeclampsia risk, enhancing the precision and depth of predictive capabilities in the complex 

landscape of maternal health. 

 

To comprehensively evaluate the performance of our approach, we conducted a comparative 

analysis between DeepHit and a traditional semiparametric Cox proportional hazards model[4], 

which served as a baseline model. This comparative study underscores the distinctive features 

and advantages offered by our personalized deep learning approach. Although the Cox 
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proportional hazards model has been a reliable tool for accurately portraying disease prognosis, 

its inherent dependence on proportional hazards limits its ability to adjust to the time-varying 

disease risk profiles frequently encountered in real-world clinical scenarios, such as 

preeclampsia[24]. This inherent limitation of the Cox model guarantees that the risk for each 

patient maintains a consistent proportionality to a baseline risk function throughout the entire 

observational period.  

 

We present the overall predictive accuracy of DeepHit to facilitate a comparative evaluation with 

other classification models within the same category. Additionally, we leverage time series 

clustering to unveil distinct patient trajectories, providing a nuanced understanding of 

preeclampsia progression. Employing explainability techniques emphasizes the model's clinical 

relevance: facilitating clinician trust, integration into decision-making, and offering avenues for 

future research. The outline of our deep survival analysis pipeline is summarized in Fig. 1. Our 

approach aims to extend conventional models by offering a comprehensive perspective on time-

Preeclampsia Patterns in Pregnancy
>20 weeks of 

gestation Delivery
<6 weeks after 

birth

Antepartum

•n=1,409 (2.1%)
•Risk increased 
with personal 
history of 
hypertension

Intrapartum

•n=2,132 (3.2%)
•Most common 
presentation with 
varied clinical 
elements

Postpartum

•n=655 (1.0%)
•Increased 
headaches, 
seizures and 
blood pressures

Model Architecture

EHR DATA

Blood Pressures

Lab Values

Medical History

Demographics

Vitals

Fu
lly

 C
o

n
ne

c
te

d
 L

a
ye

r

Fu
lly

 C
o

n
ne

c
te

d
 L

a
ye

r

So
ft

m
a

x

Personalized Patient 
Risk Trajectories

Performance
Ctd AUCtd IBS AUCfinal

CPH 0.840 0.821 0.023 0.782

DeepHit 0.839 0.824 0.028 0.778

InterpretationClustering

DEEP SURVIVAL ANALYSIS

Fig 1. Outline of the deep survival pipeline. This novel approach allows for personalized and 
interpretable risk prediction of disease onset. 
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to-event predictions in disease risk, particularly in capturing complex temporal dynamics, non-

linear relationships, and time-varying risk trajectories in the context of preeclampsia. 

 

2. Material and methods 

 

2.1 Dataset 

This study was approved by the Mass General Brigham Institutional Review Board, protocol # 

2020P002859, with a waiver of patient consent. Selection criteria for pregnant patients were 

documented pregnancy beyond 20 weeks of gestation and associated billing codes for cesarean 

or vaginal delivery. We included all available patients from May 2015 to May 2023 and analyzed 

each pregnancy independently. These dates were chosen as May 2015 is when our institution 

implemented electronic health records across all outpatient offices and inpatient sites. All data 

(including sociodemographic, clinical diagnoses, laboratory, and vital signs) were obtained and 

analyzed using our machine learning platform, which extracts, transforms, and harmonizes data 

from multiple sources[25]. Several features, including blood pressure, heart rate, weight, and 

laboratory values, often contained multiple readings. We engineered multiple features to capture 

how these values change over time, such as minimal, maximal, and range over defined periods of 

time. As many of these features were highly collinear, only the most clinically relevant were used 

in the Cox model as assessed using the variance inflation factor[26], such as maximum blood 

pressure and minimum platelet value. The available features and those included in the models are 

reported in Supplementary Tables 1 and 2, respectively.  

 

We included only patient data obtained up to 20 gestational weeks to minimize data leakage risk 

and generate meaningful clinical insights. By definition, the outcome is unavailable before 20 

gestational weeks[12], and the disease is rarely diagnosed before 24 gestational weeks. This 

cutoff was also selected to ensure the clinical relevance of the predictions since aspirin, a 

prophylactic medication that can decrease disease severity, especially for early-onset 

preeclampsia, exerts optimal prophylactic effects if started before 20 weeks [17]. We defined the 

outcome, preeclampsia, as the presence of hypertension and proteinuria after 20 gestational 

weeks in a previously normotensive individual, based on the established guidelines[12]. The time 

stamp associated with the diagnosis was the first instance when the diagnostic criteria were met. 
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The study involved a cohort of 52,298 patients and 66,425 deliveries; each pregnancy was 

considered an independent event. Within this cohort, there were 4,196 pregnancies with a 

diagnosis of preeclampsia, representing 6.3% of all deliveries. Within the preeclampsia group, 

1,409 cases were diagnosed antepartum, 2,132 intrapartum, and 655 postpartum, accounting for 

33.6%, 50.8%, and 15.6% of the cases, respectively (Supplementary Fig. 1). The cohort was 

diverse, with 63% of the patients had self-reported White race; 19% of individuals identified as 

Hispanic. The prevalence of preeclampsia diagnoses differed significantly between births before 

37 weeks of gestation (32%) and full-term births (7%) (��� � ����	
� test, p < 0.01). 

Additional cohort characteristics are detailed in Table 1. 

 

Table 1. Cohort characteristics    

 Preeclampsia 

(n=4196) 

No preeclampsia 

(n=62,229) 

Self-Reported Race 

White 

 

2380 (57 %) 

 

40002 (64 %) 

Black 815 (19 %) 6652 (11 %) 

Other 1029 (25 %) 15903 (26 %) 

Hispanic 855 (20 %) 10510 (17 %) 

Non-Hispanic 3341 (80 %) 51719 (83 %) 

Brigham and Women’s Hospital 2573 (61 %) 39512 (63 %) 

Mass General Hospital 1623 (39 %) 22717 (37 %) 

Nulliparous 820 (20%) 9378 (15%) 

Gestational age at delivery, weeks 37.3 (35.9 - 39.0) 39.3 (38.4 - 40.1) 

Last BMI before pregnancy, kg/m2 28.2 (24.0 – 33.8) 24.8 (22.0 – 29.0) 

Maximal SBP during pregnancy, mmHg 175 (163 – 185) 140 (131 – 149) 

Maximal DBP during pregnancy, mmHg 104 (98 – 111) 86 (81 – 93) 

Family history of hypertension 3205 (76 %) 42654 (69 %) 

Abbreviations: BMI, body mass index, SBP, systolic blood pressure, DBP, diastolic blood 

pressure 

 

 

2.2. Survival analysis 
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Typical survival data provide three parts for each observation: 1) covariate features, 2) time 

elapsed since the start of observation, and 3) a label indicating the occurrence or non-occurrence 

of the event. We consider survival time discrete intervals with a predetermined maximum time 

horizon ���� resulting in a time set of  = �0, … , ����� where ���� = 50 weeks. While most 

survival analysis includes right-censored data due to patients being lost to follow-up, this 

exclusively occurs outside our window of observation because preeclampsia is a condition that 

can only be diagnosed during pregnancy and up to six weeks postpartum. We consider K=1 

events, specifically the diagnosis of preeclampsia within the time horizon. All patients either 

have a diagnosis recorded or reach the maximum time denoted by Ø, thus the set of events is � = 

{Ø, 1}. Each patient is represented by a triple �x, �, �� were x � � is a D-dimensional vector of 

covariate features, t�  is either time of diagnosis or ����, and � � � is reflects whether the 

patient received a diagnosis or not within the time of observation. We are subsequently given a 

dataset � � ��x���, ����, ���� !
���

	
 that describes a set of observed patients. Our task is to find "#, 

the estimate of the true probability that a patient with covariate features x
 will be diagnosed at 

time �
  given by "�� � �
, � � �
|x � x
�. 

 

2.2.1. Cox proportional hazards model for survival analysis  

 

In the Cox proportional hazards model, the hazard function ���, X�  expresses the probability that 

a subject who is normotensive at time � will be diagnosed at time � ' ∆�. It is defined as the 

product of a baseline hazard function ����� and an exponential function exp�+X� involving 

covariates X and coefficients β, where � denotes time as shown in the formula below. 

 

 ���, X� � ����� · exp�+�X�' +�X� ' … '  +X   

 

To estimate the regression coefficients +�, +� … + in the Cox proportional hazards model, the 

method of partial likelihood is employed. The partial likelihood is defined as: 

 

 L�β� �  / exp�+�X��∑ exp�β�X� ����

	

���
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The partial likelihood function, denoted as L�+��, encapsulates the information regarding the 

ordering of event times while circumventing the necessity of specifying the baseline hazard 

function �����. Here, 1 denotes the total number of patients with preeclampsia, 2� is the risk set 

for the �-th event or in other words the set of individuals for whom is without previous diagnosis 

and is still relevant, and +�X� represents the linear predictor for individual �. Model fitting 

involves the maximization of the partial likelihood, often achieved through iterative optimization 

algorithms. The log-partial likelihood, denoted as ℓ�+� is utilized for numerical stability and 

computational efficiency: 

 

 ℓ�+� �  4 5+�X� � log 54 exp�β�X� 
����

99�

���

 
 

 

Minimizing the negative log-partial likelihood is equivalent to maximizing the partial likelihood 

and yields the maximum partial likelihood estimates for the regression coefficients. This process 

ensures optimal fitting of the Cox proportional hazards model to the observed time-to-event data, 

enabling robust inference regarding the impact of covariates on the hazard function. The model 

assumes that hazard ratios remain constant over time, mathematically expressed as: 

 ���, X������ � exp�+�X�' +�X� ' … ' +X  

 

This assumption ensures the proportional impact of covariates on the hazard function. 

 

2.2.2 DeepHit model architecture 

 

The DeepHit model[10] employs an architecture that learns the joint distribution of survival 

times and competing events by utilizing a shared sub-network and event-specific sub-networks 

for each event. We modified our network to capture the marginal distribution of preeclampsia 

risk to address the independent nature of delivery and diagnosis as nonexclusive events. Our 

implementation takes advantage of shared subnets to pass information freely between all 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.18.24301456doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.18.24301456


predictions without the competing risks of multiple subnetworks. We minimize a single event 

loss function of the sum of two terms. The first expression encapsulates the data contributed by 

diagnosed patients, while the second term leverages the presence of patients who remain 

undiagnosed at the end of observation. :�������������� is the negative log-likelihood of the 

marginal distribution of the first hitting time and event, as shown below.  

 

 :�������������� �  � 4 ;<�� = Ø� · log >?
����

��� @ '  <�� � Ø� · log >1 � B#�����|x��� @C	

���

 
 

   

Where ?� is the probability that the patient will develop preeclampsia at time �. The indicator 

function <�·� and � indicates if the patient was diagnosed (1) or remained healthy(Ø) at the end 

of observation. We use the estimate cumulative incidence function (CIF) B#�����|x���  to illustrate 

the risk of an event occurring where B#�����|x���   = ∑ ?�

��

��� .  

 :��� incorporates the estimated cumulative incidence function that diagnosis will occur on or 

before time t, conditional on covariates x calculated at each time. :��� utilizes a ranking loss 

function which adapts the idea of concordance[27]: a patient who develops the disease at time s 

should have a higher risk at time t than a patient who was disease-free longer than t. We adjust :��� for single event risk defined as 

 

 :��� �  4 D�,� · E
�!�

>B#�����Fx��� , B#�����Fx��� @  

Where E�G, ?� is a convex loss function and D�,� H <�� = Ø, ���� I �����. Adjusted for single-

event risk, :��� penalizes incorrect ordering of pairs for each patient with a preeclampsia 

diagnosis. Incorporating this loss into the total loss function expresses the probability that the 

preeclampsia diagnosis occurs on or before time t. 

2.3 Model training 

For evaluation purposes, we split the data into training set (60%), testing set (20%) and 

validation set (20%). We used Optuna[28], an open-source hyperparameter optimization 
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framework that automates the search for optimal parameters in machine learning models, to 

search the parameter space and compared discriminative performance on the testing set to select 

optimal hyperparameters. The final model included 12 layers, each with 128 nodes, combined 

with ReLu activation functions over 16 distinct time intervals. We trained the network using the 

Adam optimizer with a batch size of 350 and a learning rate of 0.01. To mitigate overfitting, 

early stopping was performed based on the loss on the testing data after 8 non-improving 

iterations. To address class imbalance and enhance the model’s generalizability, oversampling the 

minority class was implemented resulting in each positive case being represented twice in the 

training data. 

 

2.4 Model Evaluation 

In addition to metrics to examine the predictive performance of DeepHit, we employ clustering 

and explainability methods. These techniques provide insight into the model’s ability to 

temporally discriminate and uncover underlying patterns within the data, augmenting our 

understanding of the model's predictive dynamics.  

 

2.4.1 Predictive Metrics 

In this study, the primary metric employed is the time-dependent Concordance Index (Ctd), 

serving as a key measure to assess the agreement between the ordering of predicted risk and 

actual survival times. We define Ctd as the proportion of patients that are correctly identified as 

not having been diagnosed with preeclampsia summed over each time interval: J�� � "�B#�����|x��� K B#�����|x��� |���� I ����  

L ∑ D�,� · < >B#�����|x��� K B#�����|x��� @�!� ∑ D�,��!�

 

 

The Integrated Brier Score (IBS) is another performance metric chosen to evaluate the overall 

accuracy of predicted survival probabilities throughout a specified time interval. By considering 

the entire survival curve, the Integrated Brier Score quantifies the average squared difference 

between predicted probabilities and observed outcomes. This metric offers a comprehensive 

assessment of the model's performance in estimating survival probabilities over time. 
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Mathematically, the Integrated Brier Score is the sum of the estimated CIF minus the observed 

CIF squared: 

 

MNO �  11 4 >B#�����|x��� �  B�����|x��� @�
	

���

 

 

Time-dependent Area Under the Receiver Operating Characteristic Curve (AUCtd)[29] is 

incorporated to gauge the discriminatory power of the model across each time point in the 

survival process. This dynamic metric provides a time-varying measure of classification 

accuracy, capturing changes in predictive performance over the course of the study.  AUCtd is 

the average AUC calculated for each time interval. 
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Moreover, we assess the model's overall prediction of preeclampsia risk across the pregnancy 

window by computing the Area Under the Receiver Operating Characteristic Curve (AUC) for 

the final survival probability. This metric, referred to as AUCfinal, allows for a comparison with 

conventional classification models, providing a comprehensive evaluation of the model's 

predictive capacity. Using AUCfinal, we enhance our ability to understand the model's 

performance in predicting the overall preeclampsia risk. 

 

DPJQ�R�S �  DPJ T1 � 4 ����	

���

U 

 

2.4.2 Time Series Clustering 

The K-means clustering, a well-established unsupervised learning algorithm, has been adapted 

and extended to accommodate time series, allowing for the identification of meaningful patterns 

and trends over time. This method involves representing time series as vectors, with subsequent 

application of K-means clustering techniques to effectively group similar temporal patterns[30].  
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Prior to clustering, a normalization procedure is implemented to ensure a comprehensive analysis 

that captures diverse risk profiles, as opposed to a singular focus on overall risk. Specifically, the 

hazards of each patient are normalized within the range of 0 to 1 prior to the clustering process. 

This normalization addresses variations in overall patient risk, allowing for a grouping based on 

temporal patterns independently of global risk measures.  

 

During clustering, the distance between a patient's hazard function G��� and cluster centroid 

cluster ���� is quantified through a normalized Euclidean distance metric. This metric, is 

minimized during the clustering process, thereby optimizing the segregation of temporal patterns 

within the dataset. 

V�G���, ���� � W4 T G�

��� � min�G����max�G���� �  min�G���� � ��
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���

 

 

The incorporation of normalization and time series clustering enhances the capacity to discern 

groups of patients with diverse risk evolutions over time. These trajectories may offer valuable 

insights into disease presentation, timing, and associated risk. This nuanced approach allows for 

a more granular understanding of temporal patterns within the data, contributing to personalized 

interpretation of patient outcomes. 

 

2.4.3 Interpretability 

 

SHAP values, often denoted as SHAP (SHapley Additive exPlanations) values elucidate a 

model's output by attributing contributions to each feature in a given prediction. Grounded in 

cooperative game theory, SHAP values represent the average marginal contribution of each 

feature across all possible combinations, ensuring an equitable distribution of credit for the 

model's output among individual features. In selecting feature importance methods, we opted for 

SHAP over alternatives like LIME and other methods due to its demonstrated superiority in 

unsupervised environments and enhanced discriminative power[31]. We calculated SHAP values 

for the integrated DeepHit and time series clustering model, thus ensuring that the SHAP values 

represent the differences among clusters generated by DeepHit rather than the cumulative effect 
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on risk prediction. The incorporation of SHAP value analysis is instrumental in showcasing the 

diverse applications of DeepHit within the context of risk trajectories. By leveraging SHAP 

values, we demonstrate how each feature influences a particular prediction, contributing to a 

more comprehensive interpretation of DeepHit's predictive capabilities and fostering 

transparency in its risk assessment. 

3. Results  

 

3.1 Model Evaluation Metrics 

Evaluation metrics for models on the validation dataset are shown in Table 2. Notably, both Cox 

proportional hazards and DeepHit models exhibit comparable and effective predictive 

capabilities, as evidenced by their Ctd, AUCtd, and IBS scores. The close alignment of these 

metrics underscores the robustness of both models in capturing the temporal dynamics of 

preeclampsia risk, providing a solid foundation for their reliability in predicting individualized 

risk trajectories. Moreover, the AUCfinal indicates accurate overall risk prediction and 

comparable performance between DeepHit and Cox proportional hazards models in a way that 

allows for meaningful comparisons with classification models. 

 

Table 2. Evaluation metrics on the validation cohort  

 Ctd AUCtd IBS AUCfinal 

Cox proportional hazards model 0.840 0.821 0.023 0.782 

DeepHit model 0.839 0.824 0.028 0.778 

Abbreviations: Ctd, Concordance Index; AUCtd, Time-dependent Area Under the Receiver 

Operating Characteristic Curve; IBS, Integrated Brier Score; AUC final, Area Under the 

Receiver Operating Characteristic (ROC) Curve (AUC) for the final survival probability. 

 

 

 

3.2 Clustering by Patient Trajectory 

The time series clustering on DeepHit outputs, depicted in Fig. 1 A, highlights the advantages of 

employing nonparametric models. This method segregates patients into three distinct clusters: 
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low-risk, early preeclampsia, and late preeclampsia. Such clustering adeptly captures variations 

in risk trajectories, emphasizing the superiority of nonparametric models in discerning nuanced 

shifts in risk dynamics over time. Notably, the survival outcomes for preeclampsia within these 

clusters exhibit significant differences, as evident from the log-rank test (p < 0.001 for all 

comparisons) on Kaplan-Meier estimates shown in Fig. 1C and the mean risk distributions in 

Fig. 1D. Due to the proportional hazards’ assumption, Cox proportional hazards models’ 

clustering tends to reflect overall risk rather than individual time-varying risk (Fig. 1B). This 

occurs because the hazard ratio remains constant over time; thus, every patient’s projected 

trajectory differs only by a scalar factor determined by the model. 

 

 

 

  

A

C

B

D

Figure 1. Results from the deep survival analysis.  A) Time series k-means clustering with 
DeepHit B) Time series k-means clustering with Cox Proportional Hazards model C) Kaplan 
Meier survival by DeepHit clusters D) Average preeclampsia risk function by DeepHit 
clusters. Abbreviations, CPH: Cox Proportional Hazards model  
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3.3 Feature Importance 

Leveraging the outcomes of our clustering analysis, we employed SHAP to determine the 

highest-ranking features that influence the allocation of patients to distinct clusters. Fig 2 shows 

that top features are predominantly associated with blood pressure, demographic, and medical 

history variables across all clusters.  

  

 

Individual clusters mirror the overall trends, demonstrating consistency in the importance of 

blood pressure and relevant demographic and medical history across all clusters. Certain 

individual features attain heightened importance within specific clusters, exemplified by 

instances such as the pronounced impact of the medical history of chronic hypertension and race, 

as shown in Fig 3. A, B, and C.  

Figure 2. Mean SHAP values by feature for DeepHit clusters. 

Figure 2. Mean SHAP values by feature for DeepHit clusters 
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A

B

C

Figure 3. Interpretability analysis. A) SHAP values for low risk DeepHit cluster B) SHAP values 
for early preeclampsia DeepHit cluster C) SHAP values for late preeclampsia DeepHit cluster.  
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Figure 4 involves a systematic grouping of features based on the type of information they 

represent. This analysis sheds light on the relative contributions of each group of variables 

(medical history, demographics, vital signs, and laboratory results) within each cluster. Most 

notably, risk factors from medical history are more predictive of early-onset preeclampsia, while 

vital signs have increased relative significance in predicting late-onset preeclampsia and the low-

risk groups. 

 

  

 

 

 

 

Fig. 4 Average SHAP contribution of clinical feature groups 
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4. Discussion 

 

In this study, we utilized nonparametric survival analysis, specifically the DeepHit model, to 

unravel the time-varying characteristics of a common pregnancy-associated condition, 

preeclampsia. DeepHit is particularly well-suited to this situation compared to traditional Cox 

regressions given the substantial variation in the risks associated with this condition over time.  

We found that DeepHit demonstrates comparable survival analysis metrics to the baseline Cox 

regression, achieving a concordance index (Ctd) of 0.84 and an AUCfinal of 0.78, facilitating 

meaningful comparisons with traditional classification methods. In contrast with traditional 

methods, DeepHit can capture evolving temporal shifts, underscoring its effectiveness in 

predicting personalized risk trajectories. Through temporal clustering, the study identifies three 

distinct risk patterns: low-risk, early-onset preeclampsia, and late-onset preeclampsia. The 

incorporation of SHAP values provides insights into the features, including blood pressures and 

medical comorbidities, that influence the formation of these clusters, offering a comprehensive 

understanding of the factors shaping patient risk evolution. The time-varying complication risk is 

a phenomenon found in many domains of medicine. 

 

By framing the problem as a survival analysis, we capitalize on several advantages, specifically 

in navigating the intricate temporal complexities associated with preeclampsia. In contrast to 

models reliant on restrictive parametric assumptions, our methodology captures the relationships 

among gestational age, delivery, and disease risk. This is particularly crucial given the clinical 

variations observed across antepartum, intrapartum, and postpartum presentations. This research 

both emphasizes the limitations inherent in proportional hazards’ assumptions and accentuates 

the clinical relevance of employing nonparametric approaches to enhance the precision of risk 

assessment. 

 

The DeepHit model's ability to handle high dimensionality and navigate complex relationships 

among covariates is paramount in addressing preeclampsia risk. This becomes especially crucial 

given the multifaceted nature of the condition and the myriad clinical factors influencing risk 

across different stages. Our findings substantiate DeepHit's competent performance in modeling 
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intricate relationships between covariates and risk, particularly within complex temporal 

patterns, as exemplified in preeclampsia. 

 

4.1 Advantages of this Approach  

The nonparametric approach, exemplified by the DeepHit model, introduces several advantages 

in modeling preeclampsia risk dynamics. 

 

4.1.1 Individual Trajectories 

One key advantage lies in the model's ability to model separate risk trajectories for individual 

patients. Unlike traditional methods such as the Cox proportional hazards model, DeepHit does 

not assume proportional hazards, allowing it to capture unique risk evolutions. This feature is 

particularly advantageous in understanding the distinct patterns within patient groups over time, 

as demonstrated in the study's temporal clustering analysis, which provides insights into evolving 

risk profiles. Other approaches have attempted to differentiate these groups using separate 

models with an artificial division of patients into early and late groups[15]. However, this 

approach necessitates the selection of a timepoint for data partitioning, thereby imposing an 

artificial decision boundary. In contrast, DeepHit exhibits flexibility in modeling diverse risk 

profiles through an intrinsic and data-driven approach. It optimizes its diagnostic capability and 

the accurate ordering of patients based on the cumulative incidence function and log-likelihood 

losses. Unlike previous approaches that explicitly designate patient categories, DeepHit allows 

the model to discover insights within the data, enhancing its ability to discern patterns without 

predefined constraints. 

 

4.1.2 Predictive Capability  

DeepHit has a strong performance in predicting preeclampsia risk, as demonstrated by metrics 

such as Ctd, AUCtd, and Brier scores that are comparable to the baseline Cox regression. In 

addition to DeepHit’s primary strengths in properties such as capturing nuanced temporal shifts 

and individualized risk trajectories, it exhibits robust predictive capabilities for overall risk using 

AUCfinal, showcasing comparable performance to both Cox proportional hazards model and 

leading classification models at 20 weeks of gestation[32]. 
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4.1.3 Features Responsible for Risk Timing 

DeepHit also facilitates a granular understanding of the features responsible for the timing of 

preeclampsia risk. Based on feature importance analysis by SHAP values, the study identifies 

critical determinants that define risk categories. The overarching trends underscore the pivotal 

impact of these features in forming the patient clusters, reaffirming the essential role of blood 

pressure dynamics[33] and pertinent patient background information[34] in determining disease 

timing. This detailed insight into feature contributions enables clinicians to pinpoint the factors 

steering patient clusters, enhancing interpretability, and guiding targeted interventions. The 

associations of early-onset preeclampsia with chronic hypertension and nulliparity and late-onset 

preeclampsia with obesity and chronic hypertension have been well documented in multiple 

studies [15].  The relationship between Hispanic ethnicity and late-onset preeclampsia is novel 

and thus warrants further investigation. This highlights the potential of our approach to discover 

novel factors associated with time-varying risk. The adaptability of the nonparametric approach 

proves instrumental in discerning subtle variations in risk trajectories, ultimately improving the 

clinical utility of risk assessments for preeclampsia.  

 

4.2 Clinical Applications 

Using a nonparametric framework, this study provides an individualized risk assessment, 

enabling clinicians to tailor interventions based on the predicted onset of disease. The model's 

ability to delineate risk trajectories unconstrained by proportional hazard assumptions allows for 

a more accurate representation of each patient's journey. The resulting individualized perspective 

enhances precision in risk predictions, empowering proactive and targeted management 

strategies, such as increased surveillance and aspirin prophylaxis, especially in patients at high 

risk for early-onset preeclampsia. By addressing the specific profile of prolonged risk, clinicians 

can tailor interventions to individual patient needs, ultimately improving both maternal and fetal 

outcomes in the challenging context of preeclampsia. 

 

The study's temporal clustering analysis further reveals distinct risk patterns within patient 

groups over time. Clinicians can leverage this information for risk stratification, developing care 

plans adapted to specific temporal dynamics. Understanding critical features influencing the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.18.24301456doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.18.24301456


timing of preeclampsia risk, as identified through feature importance analysis, empowers 

clinicians to develop targeted intervention strategies.  

 

This study also offers insight for future research in obstetric conditions. Exploring specific 

features influencing risk timing and developing targeted interventions based on these features 

can advance prenatal care practices, marking a significant step forward in maternal-fetal care. 

Embracing nonparametric models ensures a more accurate representation of risk evolution, 

contributing to improved decision-making. The adaptability and precision of the nonparametric 

approach have the potential to facilitate enhanced risk communication with patients, fostering a 

better understanding and active engagement in healthcare decisions. 

 

4.3 Limitations 

A limitation of deep survival models is their complexity and black-box nature. We overcome this 

limitation by applying clustering and interpretability approaches. The reliance of deep survival 

models on discrete time intervals is another consideration. Nonparametric models often require 

the event of interest to be discretized into intervals. This discretization introduces a trade-off 

between temporal granularity and computational feasibility. Binning events into discrete time 

intervals may oversimplify the temporal nuances of preeclampsia progression, potentially 

leading to the loss of fine-grained information. Consequently, the model's ability to precisely 

capture rapid changes or subtle shifts in risk within intervals may be constrained. 

 

The generalizability of our model to diverse populations and healthcare contexts warrants careful 

consideration. While our study demonstrates robust performance within the specific dataset used 

for training and validation, external validation on independent datasets representing varied 

patient demographics and healthcare settings is essential to ensure the model's reliability and 

applicability across different populations. In addition, deep survival models are computationally 

intensive, and hold promise with large, multi-dimensional datasets. 

 

Despite these limitations, our study demonstrates the great potential of enhanced models and 

provides clinically meaningful insights. The innovative application of nonparametric models to 

unravel the temporal dynamics of preeclampsia risk represents a novel approach to preeclampsia 
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risk prediction. The nuanced insights gained into the evolving nature of the disorder, coupled 

with the transparent interpretability provided by SHAP values, offer valuable contributions to 

both clinicians and researchers. 

 

5. Conclusions 

 

We evaluated deep survival analysis for predicting the time-varying risk of preeclampsia during 

pregnancy and postpartum. This technique demonstrates significant advantages over traditional 

models. Our results demonstrate the superiority of DeepHit over Cox models in capturing 

intricate temporal patterns and dynamic relationships between covariates, particularly in 

handling high-dimensional data and evolving risk hazards over time. The analysis reveals that 

the risk for preeclampsia is time-varied, leading to the identification of distinct risk trajectories, 

low-risk, early-onset preeclampsia, and late-onset preeclampsia groups, each associated with 

distinct risk factors. The time series k-means clustering further illustrates the improved ability of 

DeepHit to delineate diverse disease risk trajectories, providing valuable insights for early and 

individualized intervention. We highlight the potential of deep survival models in personalized 

risk trajectory prediction, offering a more accurate and flexible framework for understanding 

complex temporal dynamics in the context of maternal health. 
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