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Abstract 

 
Research on peripheral (blood-based) biomarkers for psychiatric illness has 
typically been low-throughput, and traditional case-control studies are subject to 
potential confounds of treatment and other exposures. Here, we leverage large-
scale, high-throughput proteomics data and Mendelian Randomization (MR) to 
examine the causal impact of circulating proteins on neuropsychiatric 
phenotypes. We utilized plasma proteomics data from the UK Biobank (3,072 
proteins / 34,557 individuals) and deCODE Genetics (4,719 proteins / 35,559 
individuals). Significant proteomic quantitative trait loci served as MR 
instruments, with the most recent GWAS for schizophrenia, bipolar disorder, 
major depressive disorder, and cognitive task performance as phenotypic 
outcomes. MR revealed 109 Bonferroni-corrected causal associations (44 novel) 
involving 88 proteins across the four phenotypes. Several immune-related 
proteins, including interleukins and complement factors, stood out as pleiotropic 
across multiple phenotypes. Identification of causal effects for these circulating 
proteins suggests potential biomarkers for these conditions and offers insights 
for developing innovative therapeutic strategies.   
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Main 

Psychiatric conditions present unique challenges in both research and treatment, 
in part due to the absence of clear and definitive biomarkers for these diseases1. Unlike 
many physical health conditions where diagnosis and monitoring can be supported by 
objective laboratory tests or imaging results, psychiatric disorders largely rely on 
subjective clinical assessments and patient self-reports2,3. This reliance on subjective 
measures not only hampers precision in diagnosing psychiatric conditions but also limits 
the development of targeted therapies4. 

The lack of biomarkers in psychiatric conditions can be attributed to the lack of 
direct access to central nervous system tissue; brain-based biomarkers such as 
neuroimaging, while in some cases promising5, can be expensive and relatively low-
resolution compared to the molecular processes underlying disease pathophysiology. 
By contrast, peripheral (e.g., blood-based) biomarkers have the potential advantage of 
ease of collection and clinical feasibility. However, research in this area has typically 
been low-throughput in terms of both the number of subjects and the range of assays 
performed6. Additionally, traditional case-control studies examining blood-based 
biomarkers are subject to potential confounds of treatment, hospitalization, and other 
environmental exposures common to patients with psychiatric illness, complicating the 
search for causal, disease-relevant pathophysiological mechanisms. 

Genomewide association studies (GWAS) represent a high-throughput, 
comprehensive, and unbiased tool in providing insights into psychopathology; however, 
in-depth mechanistic insights that contribute to the disorders' pathogenesis might be 
further elucidated by leveraging additional functional data. The growing utilization of 
high-throughput proteomics platforms in large-scale genotyped biobanks provides new 
opportunities to obtain biological insights from GWAS data7–10. Notably, the Mendelian 
Randomization (MR) approach11 permits the identification of causal mechanisms, 
avoiding the potentially confounding effects of environmental exposures while allowing 
for sample sizes that are orders of magnitude larger than conventional case-control 
reports. 

Here, we provide the largest study utilizing MR to identify potentially causal 
effects of circulating proteins on psychiatric phenotypes. We employ blood-based 
proteomics data generated from two independent, large-scale cohorts (UK Biobank and 
deCODE Genetics) and well-powered GWAS for three psychiatric disorders: 
schizophrenia (SCZ), bipolar disorder (BIP), and major depressive disorder (MDD). 
These disorders are strongly inter-correlated at the molecular genetic level12, and all 
three are marked by deficits in cognitive task performance (CTP)13. Moreover, we have 
demonstrated in our recent work that the genetic architecture of cognitive traits is 
intricately associated with psychopathology14–16.  Consequently, we included CTP as an 
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additional outcome phenotype in the MR analysis. In addition to identifying potential 
peripheral biomarkers for these outcome phenotypes, our downstream analyses aimed 
to yield pathophysiological insights and novel potential drug targets for psychiatric and 
nootropic interventions.  

 

Results 

We have performed Mendelian randomization to investigate the causal impact of 
circulating proteins on SCZ, BIP, MDD and CTP (Figure 1, Supplementary Figure 1) by 
leveraging large-scale, high-throughput protein quantitative trait loci (pQTL) and 
genomic data obtained from individuals of European ancestry (see Methods). We 
performed MR analyses for cis-pQTLs and trans-pQTLs separately, using data obtained 
from two proteomic reference cohorts (UK Biobank and deCODE; Supplementary 
Tables 1a-1d). 

Cis association 

Mendelian Randomization analysis, employing cis-pQTL as instrumental 
variables, identified 74 proteins at the Bonferroni threshold described above that may be 
causally associated with the susceptibility to psychiatric disorders and cognitive ability 
(Table1, Figure 2). Specifically, 46 of these proteins were genetically predicted to have 
causal associations with SCZ, 16 with BIP, 8 with MDD, and 17 with CTP (Table1, 
Supplementary Figure 2 A, B, C, D; Supplementary Table). We note that in Figureure 2, 
the direction of effect for CTP was reversed to maintain consistency with the 
interpretation of psychiatric conditions (i.e., poorer cognition in the same direction as 
increased risk for psychiatric disorder). For example, Figureure 2 shows that higher 
protein levels of ITIH1 are significantly associated with decreased cognitive 
performance and increased risk for SCZ and BIP (Figure 2). All of the associated 
proteins exhibited at least nominal statistical significance (p<0.05) for the correct 
directionality (i.e., protein level causing the psychiatric or cognitive phenotype) using the 
MR Steiger approach; moreover, no protein showed significant horizontal pleiotropy (all 
p>0.05 for MR-Egger intercept test). However, eight proteins that were associated with 
SCZ and four proteins that were associated with CTP demonstrated nominally 
significant (p<0.05) levels of heterogeneity (Supplementary Table 2; see forest plots in 
Supplementary Figures 3A-3BK). Importantly, as demonstrated in Supplementary Table 
2, these 12 proteins demonstrated inflated significance levels in the 
complementary/sensitivity analyses using fixed-effects IVW in the TwoSampleMR17 
software. In some instances, raw p-values were as many as four orders of magnitude 
larger using TwoSampleMR than our primary method of determining significance, using 
multiplicative random effects in the ‘MendelianRandomization’ package. Similarly, many 
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proteins would have been deemed statistically significant by fixed-effects IVW in 
TwoSampleMR, which did not attain significance in our analysis and are therefore not 
included in our results. (While there is no universally accepted gold standard amongst 
MR approaches, we selected the more conservative options available throughout this 
work.) 

An extensive literature search was conducted to identify any prior Transcriptome-
Wide Association Studies (TWAS), Summary-data-based Mendelian Randomization 
(SMR), Mendelian Randomization (MR), or colocalization analyses in SCZ, BIP, MDD, 
and CTP (Supplementary Table 3a-c), to ascertain the novelty of our findings. Notably, 
we examined literature examining not only blood-based but also brain-based QTL 
reference datasets; we also extended our search to both gene expression (eQTL) as 
well as proteomic (pQTL) data, as these can often differ18. Our literature review 
revealed that 9 of the 46 Bonferroni-significant proteins for SCZ had not been reported 
as statistically significant for the disorder. Similarly, 3 of the 16 proteins for BIP, 7 of 8 
for MDD, and nine proteins for CTP had not been previously reported as significant 
(corrected for multiple comparisons) for that specific phenotype (Table1, Supplementary 
Table 3c).  

If we employ a less strict 5% false discovery rate threshold (FDR<0.05), 210 
proteins are genetically predicted to have a causal association with susceptibility to 
psychiatric disorders and/or cognitive performance. Specifically, 132 proteins were 
genetically predicted to have causal associations with SCZ, 55 with BIP, 13 with MDD, 
and 74 with CTP (Table1, Supplementary Table 2). Our literature search revealed that a 
large proportion of these associations were not previously reported as significant (at  
FDR<0.05); specifically, 37 of these proteins were for SCZ, 17 for BIP, 9 for MDD, and 
50 were novel for CTP (Table1, Supplementary Table 3a-c). Additionally, all of the 
associated proteins were significant for directionality, and only two associated proteins 
(one in cognition and one in schizophrenia) were found to have nominally significant 
(p<0.05) horizontal pleiotropy. Using Cochran’s Q statistic derived from the IVW meta-
analysis, 19 proteins in SCZ, five proteins in BIP, and 16 proteins in CTP were found to 
have nominally significant (p<0.05) heterogeneity (for forest plots, see Supplementary 
Figures 3A-3BK). However, as noted previously, our use of multiplicative random-
effects IVW provides conservative p-values in the presence of such heterogeneity.  

Our study comprises pQTL data from two cohorts, UKB-PPP and deCODE, 
which utilize different protein profiling platforms (Olink and SomaScan, respectively). A 
comprehensive comparative analysis has recently reported a moderate level of 
correlation of the proteins assessed via these two distinct platforms19. Our MR results 
are consistent with this report, particularly in the context of cis-pQTLs. Pearson 
correlation analysis, undertaken independently for each condition, revealed coefficients 
in the range of 0.46 to 0.53 for per-protein effect sizes obtained from MR analysis 
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(Supplementary Figure 2 A, B, C, D).  Among the 74 proteins (PBONF<0.05) identified in 
our cis-pQTL MR analysis, 27 were assayed in both cohorts. The associations of these 
27 proteins with their respective outcome phenotypes (16 for SCZ, 6 for BIP, 5 for MDD, 
and 4 for CTP) were replicated in both cohorts. Separately, 31 unique proteins were 
exclusively assayed in the UKB-PPP cohort (19 for SCZ, 6 for BIP, 2 for MDD, and 10 
for CTP), and 16 unique proteins (11 for SCZ, 4 for BIP, 1 for MDD, and 3 for CTP) 
were specifically assayed in the deCODE cohort (Supplementary Table 2). Among the 
210 proteins that were found to be associated with a looser threshold (FDR<0.05), 77 
proteins were assayed in both cohorts, and all associations were replicated in both 
cohorts (45 for SCZ, 23 for BIP, 4 for MDD, and 31 for CTP). By contrast, 86 (56 for 
SCZ, 20 for BIP, 7 for MDD, and 30 for CTP) and 47 (32 for SCZ, 12 for BIP, 2 for MDD, 
and 14 for CTP) unique proteins were specifically assayed only in UKB-PPP and 
deCODE cohort respectively (Supplementary Table 2).  

Trans association 

The separate MR analysis employing trans-pQTLs as instrument variables 
identified 14 proteins meeting the Bonferroni-corrected threshold (PBONF<0.05) that may 
be causally associated with the susceptibility to psychiatric disorders and cognitive 
performance (Table1, Supplementary Table 2). Specifically, 6 of these proteins were 
genetically predicted to have causal associations with SCZ, 3 with BIP, 1 with MDD, and 
7 with CTP. (Table1, Supplementary Table 2, Figure 3; Supplementary Figure 2 A, B, C, 
D). Our systematic review (Table1, Supplementary Table 3a-c) indicated that none of 
the findings from the trans-pQTL analysis had been previously reported as statistically 
significant. Moreover, all the identified proteins for schizophrenia, bipolar disorder, and 
major depressive disorder, including notable proteins such as IL23R and TNS2, have 
not been previously reported at even nominal or subthreshold levels of statistical 
significance (Table1, Supplementary Table 3a-c). All proteins associated with the trans-
pQTL analyses demonstrated significance (P<0.05) in the MR Steiger test for causal 
direction, and none exhibited significant horizontal pleiotropy. However, three proteins 
associated with SCZ, one protein associated with BIP, and four proteins associated with 
CTP exhibited nominal significance (p<0.05) for heterogeneity (see forest plots in 
Supplementary Figurers 3A-BK).  

At a less stringent threshold (FDR<0.05), associations of a total of 51 proteins 
were identified for the outcome phenotypes (Table1, Supplementary Table 2). 
Specifically, 21 proteins were associated with SCZ, 6 with BIP, 1 with MDD, and 28 with 
CTP. Our review of the literature on prior blood- or brain-based TWAS, SMR, and MR 
analysis revealed that 49 of our findings were novel. Additionally, all these associations 
demonstrated significance in the MR Steiger directionality test, and none of the proteins 
demonstrated significant horizontal pleiotropy. However, six proteins that were 
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associated with CTP and five proteins associated with SCZ were found to have at least 
nominally significant (P<0.05) heterogeneity (Supplementary Table 2).  

As observed previously with the proteins identified utilizing cis-pQTL, a notable portion 
of the proteins identified using trans-pQTLs also were found to be inflammatory 
modulators such as CRP, GRIK2, IL1RL2, ISL1, C15ORF48, CDA, F9, SERPINF2, and 
RYR1 (Supplementary Table 2). In our analysis of CTP, the presence of several 
complement and interleukins, such as CCL21, CD4, HLA-E, IL1A, and IL23R, stands 
out as noteworthy (Supplementary Table 2). 

Unlike for cis-pQTLs, we observed only modest correlations of MR results across 
the two proteomics platforms, with varying coefficients across all four phenotypes in the 
range of 0.09 to 0.15 for per-protein effect sizes (Supplementary Figure 4 A, B, C, D). 
Results were consistent with an earlier report that conducted a comprehensive 
comparative analysis of the proteins assessed via these two distinct platforms19. Only 1 
protein (RPS10) among the 14 unique proteins (PBONF<0.05) identified in our study was 
assayed by both deCODE and UKB-PPP platform and it’s associations with SCZ and 
BIP were replicated in both platforms. In contrast, only 17 proteins (8 for SCZ, 3 for BIP, 
and 7 for CTP) among the 51 unique proteins (FDR<0.05) were assayed in both 
platforms (Supplementary Table 2).  

Overlap across phenotypes 

We observed considerable evidence for pleiotropic effects of many proteins 
across phenotypes, providing further insights into the shared etiology among the 
psychiatric conditions and cognitive ability. In Figure 4A, we utilize cis-pQTL 
associations that are significant according to Bonferroni correction, showcasing all 
associations that are significant according to the FDR as well as those that are 
nominally significant (P<0.01) in our MR analysis for these proteins. For example, ITIH4 
demonstrates significant associations with SCZ and BIP, enhancing the interpretability 
of the FDR-level association with CTP and nominally significant association with MDD. 
In parallel, TWF2 emerges as another protein with involvement in all four phenotypes 
(Figure 4 A, B). Interestingly, IL23R, a novel discovery in trans-pqtl analyses for MDD, 
displays an inverse relationship between cognition and depression (Figure 4 A, B). 
PARP1 also displays pleiotropic relationships in opposite directions; otherwise, all 
pleiotropic relationships are concordant for up- or down-regulation.  
 

Pathway enrichment 

Pathway enrichment analyses revealed that the circulating proteins significantly 
associated with SCZ are enriched in immune response pathways such as "Toll 
Receptor Signaling Pathway,” in addition to enrichment of shared proteins with 
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neurodegenerative disorders such as Alzheimer's and Parkinson's (Supplementary 
Table 4a). In pathway enrichment analysis for BIP-associated proteins, immune-related 
pathways, platelet-related pathways, and peptidase-mediated proteolysis pathways 
were observed to be significantly enriched (Supplementary Table 4a). For MDD, in 
addition to pathways relating to immune response regulation, significant proteins were 
enriched in signaling pathways related to the MAPK cascade, which is involved in 
neuronal plasticity, function, and survival20 (Supplementary Table 4a). In line with 
psychiatric disorders, our pathway enrichment analysis for cognitive ability also unveiled 
several immune response-related pathways and neurodevelopmental and synaptic 
pathways such as Axon Guidance, Axonogenesis, and Neuron Projection Guidance 
(Supplementary Table 4a).  

Protein-Protein Interaction 

MAPK3, FURIN, ITIH1, ITIH3 and ITIH4 were found to constitute the main hub of 
the PPI network in SCZ (Supplementary Figure 6A). A previous study of schizophrenia-
associated CNV genes also identified MAPK3 as the most prominent network hub in 
protein–protein interaction networks within the 16p11.2 proximal region21. Additionally, 
TIE1 and ESAM were found to constitute a separate network, potentially related to 
blood-brain barrier function. The PPI networks for other phenotypes did not reveal many 
insights, although ITIH1 was found to be an important node in bipolar disorder 
(Supplementary Figure 6B). BTN3A1 and BTN3A13 were found to constitute an 
important node in CTP (Supplementary Figure 6 C). No nodes or PPI interaction were 
identified in MDD (Supplementary Figure 6 D). 

Drug Target Enrichment 

Several of the proteins identified in our study, including PDIA3, ITIH4, ITIH3, 
CD14, AIF1, and CTSS, are targets of established nonsteroidal anti-inflammatory drugs 
such as Rofecoxib and Celecoxib (Table1, Supplementary Table 4b). SCZ-associated 
proteins were found to be enriched for known psychiatric agents such as modafinil and 
valproic acid, as well as calcium channel blockers which have frequently emerged from 
schizophrenia GWAS analysis22. The proteins identified in the SCZ analysis were also 
enriched for targets of nicotine, suggesting a possible rationale for the use of nicotine as 
a self-medicating agent among individuals with schizophrenia23. In addition to known 
antipsychotic and mood-stabilizing drugs such as olanzapine, carbamazepine, and 
valproic acid, proteins identified in bipolar disorder were found to be enriched for targets 
of amantadine, which is known for its anti-NMDA activity and suggested to be an 
important therapeutic option for acute bipolar depression (Supplementary Table 4b). 
Among the proteins identified in this study for major depressive disorder, NEGR1 and 
TYRO3 were found to be targets of paroxetine, a widely prescribed selective serotonin 
reuptake inhibitor, as well as phenelzine, an MAO inhibitor is prescribed for MDD 
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patients who have not responded to other treatments. Additionally, PARP, NEGR1, 
FES, TYRO3, and DAG1 were found to be targeted by retinoic acid (Supplementary 
Table 4b). Proteins identified in cognition were enriched for targets of yohimbine, which 
has been studied for nootropic and anxiety-reducing purposes 24 (Supplementary Table 
4b).  

Gene-Drug Interaction and Potential Druggability 

We identified 7 actionable drug targets for SCZ, 5 for BIP, 3 for MDD, and 4 for CTP 
(PBONF<0.05) (Table1, Supplementary Table 5a) using only strictly significant proteins 
obtained from MR analysis utilizing cis-pQTLs as genetic instruments. These potential 
drug targets include FES, MAPK3, ACE, CD14  ITIH3, HLA-E, and NCAM16 
(Supplementary Table 5a). Our findings indicate that several of these proteins are 
targets of drugs already in use for psychiatric indications, such as ITIH3 with clozapine 
and ACE with sertraline. Additionally, a subset of these targets may identify potential 
opportunities for drug repurposing, including methotrexate (an immune suppressant and 
antimetabolite) for bipolar disorder and duloxetine (an antidepressant) for cognitive task 
performance. Perhaps most importantly, almost all the proteins identified in our study, 
with a few exceptions, were indicated to be druggable (Table1, Supplementary Table 
5b).  
 

Discussion 

The present study identified evidence of 109 Bonferroni-corrected causal 
associations between 88 proteins and one or more of our target phenotypes. Compared 
to the relevant existing literature across both blood- and brain-based studies of protein 
levels and/or gene expression, approximately half of these associations are significant 
for the first time in our study, including numerous pQTLs identified in trans. Loosening 
the statistical threshold to the FDR <0.05 level resulted in several hundred associations 
with widespread pleiotropic effects detected (Figureure 4A,B; Supplementary Table 2).  

It is noteworthy that many of the proteins identified in our study are related to 
immune function, including interleukins, toll-like receptors, and complement factors 
(e.g., CF1, CD14, CD40, CD46, HLA-E, CF1, IL1RL2, and IL20RB). Furthermore, our 
investigation sheds light on several other proteins associated with the regulation of the 
inflammatory response, such as CREB3L4, CSK, CTSF, CTSS, ICAM5, INHBC, IRF3, 
ITGAL, and ITGBL1. While prior case-control studies25 have often identified heightened 
levels of pro-inflammatory cytokines such as IL-6, IL-8, and IL-1ꞵ in patients with 
serious mental illness, it is noteworthy that none of these emerged as significant in our 
analysis, consistent with evidence that medication26,27 and other state-related factors 
influence the levels of these biomarkers in patients with serious mental illness. Similarly, 
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prior case-control research has replicably observed elevated blood levels of CRP in 
individuals with schizophrenia; however, these findings may be state-related28,29. In this 
context, it is noteworthy that our results indicated a reduced level of circulating CRP 
was associated with genetic risk for schizophrenia. Moreover, the strongest individual 
signal in the present study was IL23R; higher levels of IL23R were associated with 
increased risk of depression and poorer cognition. While elevated IL23 has been 
associated with depression in patients with psoriatic arthritis30 (for which IL23 is a major 
causal factor)31 there have been mixed reports concerning the correlation between IL23 
levels in the blood of patients with idiopathic depression32,33.  

More broadly, blood-based inflammatory markers identified in the present study 
should be tested as potential early indicators of the risk of developing psychiatric 
disorders and cognitive impairment. It is worth noting that most prior case-control 
studies have utilized low-throughput methods to assess circulating proteins; only three 
very recent studies have utilized the Olink or SomaScan platform to assess a large 
panel of proteins in serious mental illness34–36. Studies in patients at clinical high risk for 
psychosis, or in the first episode of psychosis, may be particularly informative due to 
relative lack of cumulative medication exposure, as well as providing information on the 
potential prognostic value of such blood-based proteomic biomarkers37.   

In addition to immune and inflammatory proteins, our study was able to implicate 
many new proteins/genes by leveraging the large sample sizes available in our 
proteomic reference panels, and comparing our results to the systematic review of prior 
omics studies (Supplementary Table 3). For example, the apolipoprotein B receptor 
(APOBR) was the strongest cis-pQTL signal associated with cognitive task performance 
in the present study, and has not been previously reported in comparable studies. 
However, circulating levels of ApoB have been associated with risk for Alzheimer’s 
disease38,39 and age-related cognitive decline40,41. Similarly, we observed that increased 
levels of circulating PCMT1, which has been shown to be neuroprotective in animal 
models of cognitive aging42, were causally associated with better cognitive task 
performance. We also report, for the first time, a causal relationship between reduced 
levels of folate hydrolase I (FOLH1) and increased risk for bipolar disorder (as well as a 
nominally significant association with schizophrenia in the same direction). In the brain, 
this protein catalyzes the breakdown of N-acetylaspartylglutamate into glutamate, 
thereby serving as a high-level control of neurotransmission and excitotoxicity43; 
reductions in the levels of FOLH1 have been reported in post-mortem brain tissue of 
patients with schizophrenia44. Further studies to examine the relationship between blood 
levels of FOLH1 and glutamate neurotransmission in schizophrenia and bipolar disorder 
are warranted. Additionally, reduced levels of syntaxin binding protein 1 (STXBP1, 
critical to release of neurotransmitters from synaptic vesicles) were associated with 
schizophrenia. While this association has not been previously reported, it is noteworthy 
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that loss of function mutations in this gene cause a range of neurodevelopmental 
disorders45. 

Intriguingly, the pathway enrichment analysis in schizophrenia also reveals 
shared proteins with neurodegenerative disorders such as Alzheimer's and Parkinson's 
Disease, consistent with a recent brain-based proteomic study46 demonstrating 
unexpected overlap between schizophrenia and neurologic disorders. This raises the 
possibility of immune protein-mediated neurodegeneration as a potential contributing 
factor to the risk of schizophrenia. Pathway enrichment analysis for bipolar disorder also 
found enrichment of peptidase-mediated proteolysis pathways. Regulated proteolysis is 
a fundamental process for maintaining the health and proper functioning of neurons47, 
as well as for the dynamic remodeling of synapses during synaptic plasticity48. 
Disruptions or defects in any of these proteolytic pathways can have significant 
consequences, including impairments in neural communication, synaptic stability, and 
overall brain function, underscoring the critical role of regulated proteolysis in 
maintaining the proper functioning of the nervous system47.  

A primary goal of GWAS is the identification of novel drug targets47, yet this 
process is complicated by the lack of specificity of the broad genomic loci typically 
identified by GWAS. Omics studies, such as the present study’s examination of pQTLs, 
permits the conversion of GWAS signals into specific drug targets49. Our drug target 
enrichment analysis successfully identified already-approved medications for each of 
the three psychiatric disease phenotypes (Supplementary Table 4b), providing evidence 
supporting our approach. In addition to these “positive control” results, it is noteworthy 
that several other candidate compounds emerging from this analysis have converging 
mechanistic evidence of therapeutic potential. For example, the drug target enrichment 
analysis for MDD identified several proteins that are targeted by retinoic acid. It has 
recently been demonstrated that retinoic acid induces a signaling cascade that 
produces post-synaptic tuning effects in the hippocampus comparable to those elicited 
by ketamine (a rapidly-acting antidepressant)50. Moreover, Rai14, a molecule 
downstream of retinoic acid in that signaling pathway, was shown to stabilize and 
maintain mature dendritic spines, resulting in protection from depression-like 
behaviors51. Our druggability analysis (Supplementary Table 5) can also be utilized to 
identify potential psychiatric side effects of existing medications with non-psychiatric 
indications. For example, we confirm a prior report that inhibition of ACE (common in 
the treatment of hypertension) may be associated with increased risk for 
schizophrenia52. 

Limitations:  

 While the present study was designed to understand the pathophysiology of 
brain-related phenotypes, our proteomic panel is derived from blood, rather than brain. 
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Consequently, it is likely that we were unable to detect effects of nervous system 
proteins with limited expression in blood. In this context, however, it is noteworthy that 
several of our novel findings are proteins that are primarily expressed in brain, including 
NRCAM and NCAM1, two neural cell adhesion molecules. Moreover, because 
postmortem brain tissue is difficult to obtain, our reference panel is 1-2 orders of 
magnitude larger than those available, enhancing power for those proteins that are 
detectable in blood. While there may be tissue-specific differences in pQTL effects53,54, 
recent well-powered studies suggest that many QTLs are consistent across tissues55,56.  

The control population utilized in the bipolar disorder GWAS cohort may have 
some overlap with the cohort used by deCODE to generate pQTL data. However, it is 
noteworthy that the majority of our findings were observed in the UKB-PPP cohort, 
which does not share any overlap with the Bipolar Disorder GWAS cohort. Specifically, 
out of the 61 (55 cis-pQTL associations, 6 trans-pQTL associations) significant proteins 
(FDR< 0.05), 28 proteins were assayed in both the deCODE and UKB-PPP cohort, with 
concordant results in both. Additionally, 20 of the 61 proteins were assayed exclusively 
in the UKB-PPP cohort; only 13 were exclusively identified in the deCODE pQTL study 
and could not be tested in UKB-PPP. The relatively high concordance between cis-
pQTL MR findings in the UKB-PPP and deCODE datasets indicates that technical 
differences may not hinder meta-analytic studies across the SomaScan and Olink 
platforms. On the other hand, it is important to note that the MR results derived from 
trans-pQTL instruments were only weakly correlated across platforms, suggesting that 
caution should be applied in interpreting these results.  

Methods 

Overview  

Our study utilizes protein quantitative trait loci (pQTL) derived from circulating 
plasma, drawn from two extensive resources: the UK Biobank Pharma Proteomics 
Project (UKB-PPP) and deCODE Genetics. These resources encompass the profiling of 
plasma pQTL data for 2,923 proteins from the UKB-PPP cohort that comprises data 
from 34,557 UK individuals of European ancestry and 4,719 aptamers from the 
deCODE cohort comprising 35,559 Icelandic individuals of European ancestry. GWAS 
summary statistics were obtained for European-ancestry subjects from the most recent 
Psychiatric Genomics Consortium (PGC) reports for SCZ, BIP, and MDD, as well as the 
largest available non-overlapping dataset for CTP (detailed below). Mendelian 
randomization was carried out to investigate the proteomic associations for each 
phenotype (Figure 1, Supplementary Figure 1). Finally, proteins that showed statistically 
significant causal effects from MR analysis were used for pathway, protein-protein 
interaction (PPI), and drug target enrichment analysis for each outcome phenotype 
separately.  
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1. Data Sources and Study Design 

1.1 Exposure Data Selection 

In this study, we employed protein quantitative trait loci (pQTL) data from two 
genome-wide association studies (GWAS) conducted among individuals of European 
descent to curate genetic instruments for Mendelian randomization analysis. 

1.1.1 UK Biobank Pharma Proteomics Project (UKB-PPP) 

This project involves profiling plasma pQTL data for 2,923 proteins derived using 
the Olink Explore 3072 platform from a cohort of 34,557 UK Biobank participants57 of 
European ancestry.  

1.1.2 deCODE Genetics 

In addition, we utilized plasma pQTL data obtained from deCODE Genetics, a 
study that includes 4,719 proteins measured across 35,559 Icelandic individuals. These 
proteins were quantified using the SOMAscan version 4 assay58. 

1.2. Quality Control and processing of pQTL dataset 

Summary statistics from UKB-PPP and deCODE genetics underwent a QC-
filtering process, which involved the exclusion of insertion-deletion (INDELs) variants, 
variants with a minor allele frequency (MAF) below 0.001, palindromic variants with 
MAF exceeding 0.42, and, for trans-pQTLs, variants in the extended MHC region 
(Chr6:25-34Mb). QC-filtered summary statistics were then converted to GWAS VCF 
files, where the alternative allele denotes the effect allele, using the gwas2vcf tool 
(github.com/MRCIEU/gwas2vcf)59. After the QC-filtering step, we selected variants that 
achieve genome-wide significance (p > 5 × 10−8) for LD pruning to identify strong, 
independent genetic instruments. We first separated QC-filtered genome-wide 
significant variants into cis and trans-pQTLs, where cis-pQTLs are variants within 1 Mb 
upstream and downstream of the associated protein-coding genes (ensemble 108 
annotations) and QC-filtered genome-wide significant variants outside of the cis region 
are considered trans-pQTLs. LD pruning was then performed for cis and trans-pQTLs 
separately to identify independent genetic instruments, using the LEUGWASR tool 
(Options- Clump_kb=10000, Clump_r2=0.01) with UKB-PPP (N=33,000) as LD 
reference panel (https://github.com/MRCIEU/ieugwasr).  

Our MR instruments included a total of 17,317 cis-pQTLs linked to 2,063 unique 
proteins assessed within the UKB-PPP cohort (Supplementary Table 1a-b) as well as 
23,350 cis-pQTLs related to 1,675 unique proteins measured in the deCODE cohort 
(Supplementary Table 1a-b). Although 847 proteins were assayed on both platforms, 
yielding a total of 2,891 unique proteins examined in MR using cis-pQTL instruments, 
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we maintained the full denominator of 3,738 analyses for our Bonferroni correction to 
conservatively account for the fact that we took the lowest available p-value.  

Separately, we utilized (as instruments for MR analysis) 31,709 trans-pQTL 
instruments (excluding the extended MHC region) corresponding to 2,543 unique 
proteins assessed within the UKB-PPP cohort (Supplementary Table 1c-d), as well as 
71,763 trans-pQTLs related to 4,268 unique proteins measured in the deCODE cohort  
(Supplementary Table 1c-d). Among these, 1,527 unique proteins were assayed by 
both platforms. Despite this overlap, we conservatively controlled for 6,811 tests in our 
Bonferroni corrections of the trans-pQTL MR results. 

 

1.3. Outcome Data 

1.3.1. Psychiatric GWAS data  

We have obtained the most recent large-scale meta-analyses of GWASs 
conducted by the Psychiatric Genomics Consortium (PGC) for three complex 
psychiatric disorders which include schizophrenia (Ncase = 67,323, Ncontrol = 93,456; file 
name: daner_PGC_SCZ_w3_90_0418b_ukbbdedupe.trios)60, bipolar disorder (Ncase = 
40,463, Ncontrol = 313,436; file name: daner_bip_pgc3_nm_noukbiobank.gz)61, major 
depressive disorder (Ncase = 166,773, Ncontrol = 507,679; file name: 
daner_MDDwoBP_20201001_2015iR15iex_HRC_MDDwoBP_iPSYCH2015i_Wray_Fin
nGen_MVPaf_2_HRC_MAF01.gz)62 as our outcome data for the MR analysis. The 
downloaded summary statistics for each disorder included only subjects of European 
ancestry. It excluded any subjects drawn from the UK Biobank to avoid any overlap with 
the cohort that used data from UKB-PPP. Additionally, the SCZ and MDD cohorts did 
not include subjects from overlapping with the deCODE pQTL cohort. However, the 
GWAS of bipolar disorder contained samples from deCODE (Ncase = 1972, Ncontrol = 
192,602); summary statistics excluding these individuals were not available, and the 
extent of overlap of individuals with the deCODE pQTL cohort is not known. 

1.3.2. Cognitive Task Performance (CTP) GWAS data  

Separately, for Cognitive Task Performance (CTP), we have recomputed GWAS 
for the largest available sample size of European ancestry subjects, excluding 
individuals in the UKB-PPP cohort. (It should be noted that this GWAS also contains no 
individuals from deCODE.) Specifically, we first accessed the genotypic data for “fluid 
intelligence” (Field ID: 20016) from the UK Biobank (UKB) cohort for all individuals of 
European ancestry, excluding those assayed on the proteomic platform of UKB-PPP 
(remaining N=141,123). Our analysis comprised the following key steps: initial sample 
and genotype quality control, excluding variants with genotyping call rates below 90%, 
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those in Hardy-Weinberg disequilibrium (PHWE < 1 x 10−15), and variants with a minor 
allele frequency <1%. We then performed a GWAS of the “fluid intelligence” phenotype 
using the regenie pipeline (version 3.2.4)63, with covariates including sex, mean age, 
age2, sex by age interaction, sex by age2 interaction, and the top 20 principal 
components. 

Subsequently, we meta-analyzed these GWAS summary statistics from the 
cognitive GWAS of Savage et al. (2018)64, excluding all subjects from the UK Biobank 
(remaining N=74,210; file name: Cognition_Meta_GWAS_without_UKBPP1.tbl). GWAS 
meta-analysis was performed using METAL software65. The resulting GWAS summary 
statistics (N = 215,333) were employed as outcome data for the CTP trait in our MR 
analysis.  

1.4. Processing the GWAS summary statistics 

Summary statistics data of the three psychiatric GWASs and CTP meta-GWAS 
were converted to a GWAS VCF file using the gwas2vcf tool. To ensure consistency of 
genomic coordinates all the psychiatric GWAS summary statistics were converted into 
the GRCh38 build to match that of the pQTL data. 

2. Mendelian randomization (MR) analysis 

We performed MR analyses using the ‘MendelianRandomization’ package 
version 0.8.066 67 within the R environment. SNPs significantly associated with each 
protein (i.e., pQTLs) were used as instruments. The package includes approaches that 
compute Wald’s ratio for each SNP instrument’s effect on the outcome phenotype; 
when multiple SNP instruments are available for a given protein, these effects are 
combined using the delta-weighted inverse-variance method (IVW-Delta). We applied 
default parameters ‘MendelianRandomization’, where the function that estimates fixed-
effects IVW-Delta was carried out only when fewer than four SNP instruments were 
available; otherwise, multiplicative random-effects IVW-Delta was employed. Random-
effects meta-analysis is more conservative than fixed-effects meta-analysis in the 
presence of heterogeneity across instruments without sacrificing power in the absence 
of heterogeneity68. Moreover, multiplicative random-effect meta-analysis is more 
conservative in the presence of pleiotropy34 than an additive random-effects approach. 
(For comparison purposes and as a technical replication, we also performed MR 
analyses with standard fixed-effects IVW, using the commonly utilized TwoSampleMR 
package17; results of this comparison are available in the supplementary materials.)  

MR analyses were conducted separately for each pQTL dataset (UKB-PPP and 
deCODE). For the proteins that are present in both UKB-PPP and deCODE data, we 
conducted a p-value-based meta-analysis using Fisher’s method implemented in the 
metap package (https://github.com/cran/metap/blob/master/R/sumlog.R; sumlog 
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function). Analyses were also conducted separately for cis-pQTLs and trans-pQTLs 
without extended MHC region (will be referred to as trans-pQTL in the later text). 

2.1. Causal Direction, Heterogeneity, and Horizontal Pleiotropy Test 

We have used MR Steiger test17 from the TwoSampleMR package17  to test for 
the appropriate causal direction (i.e., protein level causal to psychiatric or cognitive 
phenotype). To test the robustness and sensitivity of the result, we have used the MR-
Egger intercept test69 from TwoSampleMR package17 to estimate horizontal pleiotropy 
and Cochran’s Q statistic derived from the IVW to estimate heterogeneity70.   

3. Multiple Correction 

We applied Bonferroni correction separately for cis-pQTL and trans-pQTL 
analyses within each phenotype. We further performed False Discovery Rate (FDR; 
Benjamini-Hochberg) correction on the lowest p-values obtained from the UKB-PPP, 
deCODE, or metap for cis- and trans-pQTL instruments, separately for all four 
phenotypes. Specifically, a total of 3,738 proteins had cis-pQTL instruments, and 6,809 
proteins had trans-pQTL instruments available, resulting in a Bonferroni-corrected p-
value (PBONF) of 1.3x10-5 (0.05/3,738) for Mendelian Randomization analysis of proteins 
using cis-pQTLs, and 7.3x10-6 (0.05/6,811) for MR analysis of proteins with trans-
pQTLs.  

4. Systematic literature review 

To determine the novelty of our findings, we conducted a comprehensive and 
systematic literature review using the "advanced search" feature on PubMed, 
encompassing all outcome phenotypes considered in our study. Studies examining 
molecular phenotypes in relation to psychiatric GWAS have primarily focused on gene 
expression quantitative trait loci (eQTLs), so these were included in our search along 
with studies of pQTLs. (It should be noted that transcriptomic and proteomic data can 
often differ 18). Moreover, such studies have frequently examined brain-based molecular 
phenotypes, which have the advantage of direct assessment of neural tissue. However, 
brain-based studies have the disadvantage of relatively small sample sizes compared to 
our pQTL reference panels of ~35,000 individuals each. Thus, our search strategy on 
PubMed was as follows:  

Include the following terms in their title or abstracts: ("pqtl" or "pqtls" or 
"expression quantitative trait loci" or "protein quantitative trait loci" or "eqtl" or 
"eqtls" or "proteome" or "proteomics" or "proteomic" or "transcriptome" or 
"transcriptomic" or "transcriptomics" or "qtl" or "proteomes" or “transcriptomes" or 
"proteogenomic" or "expression") AND ("TWAS" or "transcriptome-wide 
association study" or "transcriptome wide association study" or "SMR" or 
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"Summary data based mendelian randomization" or "mendelian randomization" 
or "MR" or "Mendelian randomisation" or "cis").   

The initial search resulted in 43,226 publications found. We then refined our search 
within the 43,226 publications that include any one or more following terms in their title:  

 "schizophrenia" or "bipolar”  or "depression" or "depressive" or "cognition" or 
"cognitive" or "intelligence" or "education" or "psychiatric" or "neurological" or 
"common disorders" or "common diseases" or "common trait" or "complex 
phenotypes" or "complex traits" or "complex trait" or "complex disorders" or 
"complex diseases" or "brain" or "neuropsychiatric".  

This refinement resulted in 998 publications. We then removed any reviews, papers 
without human data, papers with data from induced pluripotent stem cells or organoids 
or tissues other than brain or blood, papers without available data, and preprints. 50 
relevant publications remained - these selected articles were thoroughly reviewed to 
evaluate the novelty of our work. The novelty of our findings was evaluated using two 
distinct thresholds. Proteins deemed significant at the stringent Bonferroni level (P < 
0.05) in our study were classified as novel if they lacked prior investigation or exhibited 
a P-value > 0.000015 or a PP4 interaction score less than 0.7 in the included literature. 
Similarly, proteins reaching significance at the less stringent 5% false discovery rate 
threshold (FDR < 0.05) in our study were categorized as novel if there were no no prior 
investigation on them or if they displayed a P-value > 0.001 or a PP4<0.7 within the 
included studies. 

5. Pathway Enrichment 

We performed gene-set enrichment analysis, examining only those proteins 
identified with the highest confidence level: specifically, proteins that were strictly 
significant (PBONF < 0.05) in the cis-pQTL analyses for each phenotype. We used a web-
based tool, EnrichR71, specifically using its integrated gene-set libraries from KEGG, 
Reactome, MSigDB, and Gene Ontology (Cellular component, Molecular Function, and 
Biological Process).  

6. Protein-protein Interaction 

For these same Bonferroni-significant proteins emerging from the cis-pQTL 
analyses, a protein-protein interaction network for each outcome phenotype was 
constructed using STRINGDB (https://string-db.org/)72. This online tool incorporates a 
broad range of data sources to derive both known and predicted protein-protein 
interactions from both direct (physical) and indirect (functional) associations. Network 
images are derived using a spring model, with nodes modeled as masses and edges as 
springs; the final position of the nodes in the image is computed by minimizing the 
'energy' of the system.  
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7. Drug Target Enrichment 

Further, for these same Bonferroni-significant proteins emerging from the cis-
pQTL analyses, we performed a Drug Target enrichment analysis in EnrichR, 
specifically using its integrated libraries from DSigDB, DrugMatriX, and CMAP. 

8. Gene-Drug Interaction and Potential Druggability 

 To further examine the druggability of these significant proteins emerging from 
Mendelian Randomization, we utilized DGIdb4.073 (www.dgidb.org) to identify approved 
compounds, immunotherapies, and known chemical compounds that could interact with 
these proteins. Additionally, we used DGIdb4.0 to identify potential druggable genes 
that are known or predicted to interact with drugs. DGIdb is an online tool that uses a 
combination of expert curation and text-mining to extract drug-gene interactions from 
resources such as DrugBank, PharmGKB, ChEMBL, Drug Target Commons. 
Furthermore, DGIdb can categorize genes as potentially druggable based on their 
presence in selected pathways, molecular functions, and gene families from the Gene 
Ontology, the Human Protein Atlas, IDG, "druggable genome" lists from Hopkins and 
Groom74 and Russ and Lampel75, among others. 
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Data and Code Availability 

1. Outcome GWAS summary statistics can be downloaded from  
SCZ: received from PGC consortium - will be made available upon publication 
BIP: https://Figureshare.com/ndownloader/files/40036705 
MDD: 
https://ipsych.dk/fileadmin/ipsych.dk/Downloads/daner_MDDwoBP_20201001
_2015iR15iex_HRC_MDDwoBP_iPSYCH2015i_Wray_FinnGen_MVPaf_2_H
RC_MAF01.gz  
CTP: Received from UKBB - will be made available upon publication 

1. Mendelian Randomization (MR) package  
(GitHub link: https://github.com/cran/MendelianRandomization ) 

2. TwoSampleMR package 
(GitHub link: https://mrcieu.github.io/TwoSampleMR/index.html )  

3. Meta-analysis package  
(Github link: https://github.com/cran/metap/blob/master/R/sumlog.R) 

4. EnricR  
(Webportal link: https://maayanlab.cloud/Enrichr/)  

5. StringDB - Protein-Protein Interaction  
(Webportal link: https://string-db.org/ ) 

6. LEUGWASR package  
(Github link: https://github.com/MRCIEU/ieugwasr) 
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Table 1: Summary of Results 
The following table summarizes the number of significant proteins identified for each of 
the four outcome phenotypes. While we have emphasized the highest confidence 
(Bonferroni- significant) results in the text above, we also present results at the FDR 
level of significance in the Table below, as well as Supplementary Tables 4c, 4d, 5c, 
and 5d. 
 

Phen
o 

cis-pQTL 
MR 
results 

cis-
pQTL 
Novel 

Gene 
sets  
(# sets) 

Drug 
Targets 
Enrichment  
(# drugs) 

Drug 
Targets 
(DGIdb) 

Druggabl
e (DGIdb) 

trans-
pQTL MR 
results  

trans-
pQTL 
novel 

SCZ 46 (132) 9 (43) 
14 
(132) 186 (68) 7 (33) 37 (105) 6 (21) 6 (15) 

BIP 16 (55) 3 (18) 25 (17) 190 (82) 5 (18) 13 (46) 3 (6) 3 (6) 

MDD 8 (13) 7 (10) 16 (30) 54 (27) 3 (3) 8 (12) 1 (1) 1 (1) 

CTP 17 (74) 9 (50) 12 (61) 59 (18) 4 (19) 13 (57) 7 (28) 6 (27) 
Note: Numbers in Table represent number of significant results at Bonferroni 
significance (number of results at FDR<0.05 in parentheses). 
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 Figure 1. MR analysis workflow.  
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Figure 2. Manhattan plot showing findings from MR analysis for schizophrenia, bipolar 
disorder, major depressive disorder, and cognitive task performance, employing Cis- 
pQTLs from UKB-PPP and deCODE dataset as instrumental variables 
Note: Manhattan plots: (Top panel) proteins with positive predictive beta-values (Bottom panel) proteins with negative 
predictive beta-values relative to the traits investigated. X-axis: genomic coordinates/chromosomes; Y-axis: -log10p 
values of associations. Traits: Bipolar Disorder (turquoise), Cognitive ability (red), MDD (purple), Schizophrenia 
(orange). MR/Meta-Analysis: Meta-P (circle), deCODE: Results for deCODE specific MR analysis (triangle), UKB- 
PPP: Results for UKB-PPP specific MR analysis (square). Proteins based on more than one method, on multiple 
traits may be represented in the figure.  
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Figure 3. Manhattan plot showing findings from MR analysis for schizophrenia, bipolar 
disorder, major depressive disorder, and task performance employing Trans-pQTLs 
from UKB-PPP and deCODE datasets as instrumental variables 
Note: Manhattan plots: (Top panel) proteins with positive predictive beta-values (Bottom panel) proteins with negative 
predictive beta-values relative to the traits investigated. X-axis: genomic coordinates/chromosomes; Y-axis: -log10p 
values of associations. Traits: Bipolar Disorder (turquoise), Cognitive ability (red), MDD (purple), Schizophrenia 
(orange). MR/Meta-Analysis: Meta-P (circle), deCODE: Results for deCODE specific MR analysis (triangle), UKB- 
PPP: Results for UKB-PPP specific MR analysis (square). Proteins based on more than one method, on multiple 
traits may be represented in the figure.  
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Figure 4A. Cis-pQTL MR results across traits 
Note: Proteins significantly associated with at least one trait are presented in the figure. The strength of MR 
association p-values is represented by a blue gradient across data values. The strength of association is further 
annotated for easy reference, nominally significant p < 0.05 (circle), FDR significant pscz < 1.7 x 10-3 pBIP < 7.3 x 10-4, 
pMDD < 9 x 10-9 pCTP < 1 x 10-3 (square), and Bonferroni significant p < 1.33761x 10-5 (triangle) are annotated 
accordingly.  
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Figure 4B. Trans-pQTL MR results across traits 
Note: Proteins significantly associated with at least one trait are presented in the figure. The strength of MR 
association p-values is represented by a blue gradient across data values. The strength of association is further 
annotated for easy reference, nominally significant p < 0.05 (circle), FDR significant pscz < 1.49 x 10-4, pBIP < 2.07 x 10-

5 pMDD < 1.55 x 109 pCTP < 2 x 10-7 (square) and Bonferroni significant p < 7.34 x 10-6(triangle) are annotated 
accordingly.  
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