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Abstract

Background Advanced Community First Responder (CFR) systems send so-called phased alerts: no-
tifications with built-in time delays. The policy that defines these delays affects response times, CFR
workload and the number of redundant CFR arrivals.
Methods We compare policies by Monte Carlo Simulation, estimating the three metrics above. We
bootstrap acceptance probabilities and response delays from 29,307 rows of historical data covering all
GoodSAM alerts in New Zealand between 1-12-2017 and 30-11-2020. We simulate distances between
the patient and CFRs by assuming that CFRs are located uniformly at random in a 1 km circle around
the patient, for different CFR densities. Our simulated CFRs travel with a distance-dependent speed
that was estimated by linear regression on observed speeds among those responders in the above-
mentioned data set that eventually reached the patient.
Results The alerting policy has a large impact on the expected number of alerts sent, the redundant
arrivals and the probability of patient survival. CFR app managers can use our results to identify a
policy that displays a desirable trade-off between these performance measures.

Keywords: community first responders, volunteer alert, out-of-hospital cardiac arrest, Monte Carlo
simulation
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1. Introduction1

Survival for out-of-hospital cardiac arrest (OHCA) can be significantly improved through bystander2

efforts.1 To shorten the time to good-quality cardiopulmonary resuscitation (CPR), some emergency3

call centers use mobile phone technology to rapidly locate and alert nearby trained volunteers. A4

number of such community first responder (CFR) systems are active in, for example, the United5

States,2 the United Kingdom3 and Europe.46

While details may differ between CFR systems, most systems alert multiple volunteers for each7

patient, and volunteers take some random amount of time to notice their alert and determine whether8

they will go. Volunteers subsequently indicate on the smartphone app whether they accept or reject9

the alert, and in case of acceptance, proceed to the patient’s location. Upon arrival, volunteers provide10

CPR until an ambulance takes over.11

Since The International Liaison Committee on Resuscitation (ILCOR) identified a lack of literature12

on the effect of CFR systems in 2015,5 several papers have been published that investigate systems13

through surveys6,2 or retrospective data analysis7 (see Table 2 in that paper). Many reported a14

positive impact, e.g., statistically significant improved survival to hospital discharge8 or a lower degree15

of disability or dependence after survival.9 One study applied Monte Carlo simulation to compare four16

hypothetical CFR systems by estimating response times and patient survival.1017

Challenges for an effective CFR system include the activation radius and volunteer density.2 One18

article studies densities of activated responders within a 1km circle and concludes that 10 volunteers19

/km2 are needed.11 A positive correlation between the fraction of inhabitants registered as volunteers20

and patient survival has been observed.12 It is reasonable to assume that managerial decisions for21

activation radii are dependent on volunteer density.22

Despite the recent growth in literature on CFR systems, there is no study systematically evaluating23

different alerting policies. An alerting policy prescribes which volunteer to alert when. Simple alerting24

policies alert up to a fixed number of volunteers, and/or up to a fixed radius around the patient, and25

send all alerts at once. More complex alerting policies may use phased alerts, sending alerts in batches26

with time lags in between, to see if previous ones have been accepted. Such a policy is used by St John27

New Zealand, an ambulance provider that deploys the CFR system GoodSAM. St John New Zealand28

configured the system to dispatch CFRs in batches of 3 with time lags of 30 seconds.29

For a single patient, it is best to send many alerts at once, but this leads to a higher volunteer30

workload as well as an increased likelihood of multiple volunteers arriving on scene, which may diminish31

their perceived contribution. Both aspects can lead to a long-term negative impact on volunteers’32

willingness to respond. The question arises how the choice of alerting policy affects patient survival as33

well as volunteer fatigue.34

We used Monte Carlo simulation to shed light on the question above, ultimately seeking to assist35

CFR system managers in understanding the consequences of their chosen alerting policy. We use36

historical data from GoodSAM responses in New Zealand between 2017 and 2020 to estimate travel37

times, as well as the probability of, and delay until, volunteer acceptance.38

1.1. Preliminaries39

The process of both CFR and EMS response is depicted in Figure 1. There, the name ‘EMS40

response time’ reflects the duration that is common for EMS providers to measure, and for which they41

often face targets and reporting obligations. For clarity, we have also added a ‘GoodSAM response42

time’, which starts at the moment the CFR system is activated.43
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Figure 1: CFR response process.

EMS response times are measured from the moment of call arrival, so they are not ideal for44

estimating OHCA survival: the time that has passed since patient collapse is more relevant. To45

that end, we define another duration, TEMS: the duration between patient collapse and EMS arrival.46

Similarly, we define TCPR: the duration between patient collapse and the arrival of the first responder,47

regardless of whether this is a volunteer or EMS. This is summarized in Figure 1.48

2. Material and methods49

We applied Monte Carlo simulation to estimate the GoodSAM response time (see Figure 1) for50

selected dispatch policies. This involved bootstrapping delay and acceptance probabilities from histor-51

ical records of GoodSAM responses in New Zealand, see Section 2.1. We report the estimated expected52

values of four key performance indicators (KPIs) described in Section 2.4.53

2.1. Data54

We used data obtained from the St John Ambulance Service, which operates the GoodSAM app55

in New Zealand. The data covers all OHCAs in the country between 1-12-2017 and 30-11-2020,56

along with their location and 911 call arrival time. The data also contains which CFRs were alerted57

through GoodSAM, at what time, and what their location was at the time of notification (alert time58

in Figure 1). Moreover, the data contains the time at which the volunteer reacted (decision time) by59

either accepting or rejecting the alert. Finally, the time volunteers arrived on scene (CFR arrival)60

is determined by the system, based on GPS signal. The data contains a total of 29,307 CFR alerts,61

which were either accepted (4009), accepted and dropped later (1199), rejected (7925), or not seen62

(16,174). From the 4009 accepting volunteers, 1776 eventually reached the patient.63

For the view delay, we measured the duration between the alert time and the decision time. We64

ignored entries for which the alert time was equal to ‘nan’ (thereby excluding 1 entry). If the decision65

time was not listed, which is the case for not-seen alerts, we set the view delay to infinity. We treated66

both accepted and accepted-but-dropped-later entries as accepts, and we treated rejected and not-seen67

as rejects.This led to an empirical acceptance rate of 4009+1199
29,307 ≈ 17.77%. Figure 2 shows the empirical68

view delay distribution, as well as the probability of an accept, given a certain view delay. Not-seen69

alerts are not visible in this plot as these have an infinite view delay.70

Acceptance rates in Australia and New Zealand were found to be similar to those reported for other71

CFR smartphone apps.672

The CFR’s travel duration depends on their distance from the patient. Locations and travel times73

were only recorded for alerted CFRs, so we cannot observe information on non-alerted individuals.74

However, in our counterfactual simulations those CFRs may be alerted, so we estimate their distances75

using Monte Carlo simulation. For each CFR that is within 1km of the patient, we simulate their76

location uniformly at random in this circle.77

To translate distance into travel time, we used empirical data on volunteer’s travel speed, condi-78

tioning on the distance between volunteer and patient. We excluded observations with a travel time of79

3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.17.24301457doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.17.24301457
http://creativecommons.org/licenses/by/4.0/


Figure 2: Historical view delays and acceptance probabilities as observed on GoodSAM in New Zealand.

0 seconds. We discretized the distances in 100-meter blocks and for each block, took the median speed80

of all volunteer responses in the data. We excluded the data for responses between 0 and 100 meters81

as we considered these less reliable. We then performed linear regression on the remaining medians to82

estimate the relationship between distance and speed.83

2.2. Policies84

We consider so-called alerting policies, which may base the decision to send an alert on the amount85

of time that has passed, and/or the responses that are received from previously alerted volunteers.86

Our policies only alert a more distant volunteer when all closer volunteers are already alerted. This87

helps to narrow down the set of all policies to realistic and promising ones. We further assume that88

no alerts are sent out after a volunteer accepts an alert, or 10 minutes have passed after GoodSAM89

activation, whichever comes first.90

We evaluate the following policies:91

1. Send all at time 0 : alert all available volunteers within the dispatch radius immediately upon92

GoodSAM activation, which we call time 0.93

2. Send n at time 0 : Alert n volunteers immediately at time 0, and send no alerts after.94

3. Keep-n-active: Alert n volunteers at time 0 and replace every incoming reject with an additional95

alert.96

4. NZ current policy : Alert 3 volunteers at time 0 and 3 additional volunteers every 30 seconds97

until one volunteer accepts the alert, or 10 minutes have passed.98

For send n at time 0, we consider the values of n between 1 and 15. For keep-n-active we consider99

values of n between 1 and 10. This gives a total of 27 policies.100

2.3. Simulation101

To estimate performance for the different policies, we applied Monte Carlo simulation, considering102

two sources of uncertainty: 1) the distance between the volunteers and the patient, and 2) the view103

delay and reply of alerted volunteers. The simulation evaluates 1,000 different OHCAs. For each104

OHCA, their CFR view delays and corresponding replies were bootstrapped 10,000 times from the105

empirical data. Each view delay and reply were jointly sampled to maintain the statistical dependence106

between the time a volunteer takes to respond and the likelihood that the reply is ‘accept’ (see Figure107

2). This calculation estimates all KPIs with very narrow confidence intervals.108

2.4. Performance metrics109

We consider two KPIs related to the quality of care and two KPIs related to the inconvenience110

caused to volunteers.111

Coverage: fraction of incidents that receive a CFR response within a given time threshold. We112

define this on the ‘GoodSAM response time’ (see Figure 1) and use a threshold of 5 minutes.113
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Lives saved: the number of OHCA patients that are expected to survive until hospital discharge,114

in New Zealand, annually. This number is estimated using the relationship between time to CPR, time115

to EMS (TCPR and TEMS in Figure 1) and the probability of survival as modeled by Waalewijn et116

al.13 We assumed a TEMS of 13 minutes as this is St John New Zealand’s target for urgent requests.14117

To estimate TCPR, we further need to estimate the ‘Witness delay’, which we assumed to be 1 minute,118

and the ‘Triage delay’, for which we used 124 sec (the median of the data).119

The resulting survival percentage was converted to lives saved, by multiplying it by 5,141, which120

is the nationally observed number of OHCAs per year.15121

Number of alerts: the average number of alerts sent per incident.122

Redundant arrivals: the average number of volunteers arriving on scene after the first responder,123

per incident.124

125

The relative performance of the different policies depends on the number of volunteers. This126

number depends on the density of volunteers in an area. We evaluated the different policies under a127

low (10 volunteers within 1km), medium (30 volunteers within 1km) and high (100 volunteers within128

1km) density of volunteers. These densities roughly correspond to what would be found in Auckland,129

New Zealand if 0.2% of the inhabitants signed up (low), what is recommended in11 (medium) and our130

estimate for central Amsterdam (high).131

3. Results132

3.1. Parameter estimation133

Figure 3a shows the observed median travel speeds for different distances, which increase with134

distance. Linear regression of travel speeds in km/h, y, on distances in meters, x, based only on the135

distances above 100 meters has an R2 of 0.96 and yields the relationship136

y = 1.83 + 0.0108x. (1)

The resulting relationship between the distance in meters and travel time in minutes, plotted in137

Figure 3b, is138

travelT ime(x) =
60x

1830 + 10.8x
. (2)
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Figure 3: Distance-dependent travel times estimated based on historical data.
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3.2. Performance of policies139

Tables 1-3 show the results for the different policies for a low, medium and high number of vol-140

unteers. For reference, alerting 0 volunteers would lead to 98 survivors, 0 redundant arrivals, 0 alerts141

and 0 coverage.142

By only alerting the closest volunteer, the number of survivors can be increased to 120, 124, or143

129, for 10, 30 or 100 volunteers within 1km, respectively. For coverage, the contribution of the closest144

volunteer is 11.9%, 13.4%, or 14.5%, respectively.145

Comparing policies Send n alerts at time 0, with Keep n alerts active indicates that a similar level146

of survival can be obtained with 1 alert less at time 0, by replacing rejects with additional alerts. This147

would reduce the impact of the alerts on the volunteers (both in terms of redundant arrivals as well148

as the number of alerts) without sacrificing survival.149

The current policy used by GoodSAM in New Zealand on average leads to sending out 11.4 alerts150

per incident, if sufficiently many volunteers are within 1km from the patient. The corresponding151

number of expected survivors per year is 181, 205, or 229 for a low, medium and high number of152

volunteers. Coverage as a result of this policy is estimated at 28.1%, 43.6%, or 61.5%, respectively.153

The policy that sends an alert to all volunteers at time 0 by definition yields the highest estimated154

survival (191, 231 and 259 survivors per year) and coverage (42.3%, 80.7% and 99.6%), but also gives155

the highest estimated number of redundant arrivals (0.919, 4.333 and 16.77) and alerts.156

4. Discussion157

The trade-offs between the KPIs in Tables 1-3 help a CFR system manager to identify a desirable158

dispatch policy. This choice will likely depend on the volunteer density in the region. Our reported159

number of volunteers within 1 km of the patient has a direct relationship with the volunteer density.160

The three cases we considered correspond to a density of 3.18 vol/km2, 9.55 vol/km2, and 31.83161

vol/km2, respectively. For reference, the literature recommends a volunteer density of at least 10162

vol/km2.11163

The insight that a different density might lead to a different preferred policy might be somewhat new164

in the academic literature; however, it was already known to GoodSAM. For this reason, their system165

offers the ability to configure different rules for urban and rural areas, which is done by uploading166

KML files that represent parts of the map. This feature implies that potential insights from this paper167

can readily be implemented in practice.168

Alerting the same number of volunteers leads to higher expected survival and better coverage as169

volunteer density increases. This effect is visible throughout Tables 1-3, and also holds in generality,170

assuming all other system parameters remain equal. The reason is that the n-th closest volunteer is171

expected to be nearer to the patient when volunteer density is higher.172

Comparing policies Send 6 alerts at time 0 and Send 10 alerts at time 0 shows different survival173

numbers for different volunteer densities. In Table 1 the difference is 13 lives, while in Table 3 it is 24174

lives. The reason is that in Table 1, the 6th-10th volunteers are farther from the patient than they are175

in Table 3.176

Perhaps more surprising is that the policy Send 6 alerts at time 0 gives approximately the same177

survival probability as Keep 5 alerts active, and that this is the case in each of the three tables. We178

have no intuition for this, but conjecture that this result would be found for any volunteer density179

within the entire range of 3.18 – 31.83 vol/km2.180

The current strategy in New Zealand of alerting volunteers in batches of three with 30-second181

intervals leads to few redundant arrivals, but at a low volunteer density, this comes at a high cost in182

terms of coverage. This insight might be a reason to fine-tune the number of alerts per batch and the183

interval between batches to better align with the view delay and acceptance probability, especially in184

sparsely populated parts of the country.185

A limitation of this study is that the time on-scene is based on the geolocation of the phone which186

may have some error in it due to gaps in cell tower coverage and the resulting inability to ping the187

phone when it is in the vicinity of the patient. It is unknown how often this situation occurs. The188

stop-gap to this is that responders can also manually generate a time on scene by pressing a button189

on the app, but responders do not always do this.190

Another limitation is that we focused on volunteers who directly go to the patient to provide191

CPR. However, in practice, certain CFR systems differentiate alerts, directing some volunteers to192
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immediately attend to the patient and others to retrieve an Automated External Defibrillator (AED).193

Such a system raises new questions; answering those questions would require an extension of our194

methods.195

We limited attention to policies that alert far-away volunteers only if all nearer ones have already196

been alerted. While this choice may seem restrictive, these policies are optimal when we do not have197

volunteer-specific knowledge. While some CFR systems collect volunteer-specific parameters such as198

acceptance rates, to the best of our knowledge, no system currently uses this information in their199

real-time dispatch decisions.200

We explored results for three different volunteer densities, but a CFR system will have varying201

volunteer densities throughout the day and the region. It might then be worthwhile to differentiate202

the dispatch policy within one system through times of the day and parts of the region. Accurately203

evaluating such a CFR system would require running simulations with the correct mix of densities and204

policies, thereby introducing complexity and likely diminishing insight. Therefore we decided not to205

pursue that approach here.206

Although it is plausible that a high number of alerts and/or redundant arrivals reduce future CFR207

engagement, there is, to the best of our knowledge, no study that quantifies the magnitude of this effect.208

We welcome such studies, as they might aid in designing even better dispatch policies. The current209

knowledge gap led us to refrain from recommending a specific dispatch policy, instead presenting a list210

of options from which a CFR system manager can choose.211

Future research might address more sophisticated policies. For example, we conjecture that it would212

be a good idea to consider a CFR as inactive when they have not responded for some prescribed time.213

Moreover, it could be useful to let the chosen policy depend on the real-time locations of volunteers214

and the time of day. If, for example, the third volunteer is far from the patient, it might be better to215

alert only two, and more alerts might be sent at times when volunteers are less likely to respond.216

5. Conclusions217

A CFR system’s dispatch policy affects the trade-off between the number of alerts, redundant218

arrivals, and patient survival. In comparison to sending all alerts immediately, it is beneficial to send a219

reduced number of alerts immediately plus additional alerts upon receiving rejections. This reduces the220

number of redundant arrivals as well as the number of alerts, without losing much in terms of patient221

survival. The benefit of such a policy increases with an increasing number of volunteers around the222

patient.223

This paper quantified KPI trade-offs for several reasonable dispatch policies and varying volunteer224

densities, and hence can guide CFR system managers in choosing a policy that suits their region. The225

choice likely depends on the volunteer density in the region and might even be differentiated within226

one system if volunteer densities vary over the day and between different parts of the region.227

We hope that this article will stimulate discussion on phased dispatching of CFRs and pave the228

way for incorporating methods from the field of operations research in designing improved dispatch229

policies.230
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Policy Coverage Survivors per year Nr of alerts Redundant arrivals

Send all at time 0. 0.428 191 10.0 0.918
Keep 1 alerts active. 0.125 123 1.3 0.000
Keep 2 alerts active. 0.210 140 2.6 0.041
Keep 3 alerts active. 0.273 153 3.8 0.114
Keep 4 alerts active. 0.320 163 4.9 0.211
Keep 5 alerts active. 0.355 172 6.0 0.326
Keep 6 alerts active. 0.381 178 7.0 0.453
Keep 7 alerts active. 0.399 184 8.0 0.587
Keep 8 alerts active. 0.413 188 8.8 0.718
Keep 9 alerts active. 0.422 190 9.5 0.834
Keep 10 alerts active. 0.428 191 10.0 0.918
Send 1 alerts at time 0. 0.119 120 1.0 0.000
Send 2 alerts at time 0. 0.205 135 2.0 0.032
Send 3 alerts at time 0. 0.270 148 3.0 0.089
Send 4 alerts at time 0. 0.318 158 4.0 0.168
Send 5 alerts at time 0. 0.354 166 5.0 0.264
Send 6 alerts at time 0. 0.380 173 6.0 0.375
Send 7 alerts at time 0. 0.399 179 7.0 0.498
Send 8 alerts at time 0. 0.413 184 8.0 0.630
Send 9 alerts at time 0. 0.422 188 9.0 0.771
Send 10 alerts at time 0. 0.428 191 10.0 0.918
NZ current strategy. 0.283 181 8.1 0.574

Table 1: Results for n = 10 volunteers within 1 km, based on 1000 simulated volunteer locations, with 10000 view delay
and acceptance simulations each. The maximum confidence interval halfwidth as a fraction of the mean among all these
numbers was 0.013 (ignoring those cases where the mean was zero). Policies that send more than 10 alerts at time 0 are
omitted, as there are only 10 eligible volunteers in this situation.
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Policy Coverage Survivors per year Nr of alerts Redundant arrivals

Send all at time 0. 0.806 231 30.0 4.333
Keep 1 alerts active. 0.149 128 1.3 0.000
Keep 2 alerts active. 0.258 148 2.6 0.041
Keep 3 alerts active. 0.343 164 3.8 0.114
Keep 4 alerts active. 0.411 176 4.9 0.211
Keep 5 alerts active. 0.468 185 6.0 0.326
Keep 6 alerts active. 0.516 193 7.1 0.455
Keep 7 alerts active. 0.556 199 8.1 0.595
Keep 8 alerts active. 0.591 205 9.2 0.743
Keep 9 alerts active. 0.620 209 10.2 0.897
Keep 10 alerts active. 0.646 213 11.2 1.056
Send 1 alerts at time 0. 0.134 124 1.0 0.000
Send 2 alerts at time 0. 0.240 142 2.0 0.032
Send 3 alerts at time 0. 0.326 157 3.0 0.089
Send 4 alerts at time 0. 0.398 169 4.0 0.168
Send 5 alerts at time 0. 0.457 178 5.0 0.264
Send 6 alerts at time 0. 0.507 186 6.0 0.375
Send 7 alerts at time 0. 0.550 193 7.0 0.498
Send 8 alerts at time 0. 0.586 199 8.0 0.631
Send 9 alerts at time 0. 0.617 203 9.0 0.771
Send 10 alerts at time 0. 0.643 207 10.0 0.918
Send 11 alerts at time 0. 0.666 211 11.0 1.071
Send 12 alerts at time 0. 0.686 214 12.0 1.228
Send 13 alerts at time 0. 0.703 216 13.0 1.389
Send 14 alerts at time 0. 0.718 218 14.0 1.552
Send 15 alerts at time 0. 0.731 220 15.0 1.719
NZ current strategy. 0.434 205 11.3 1.002

Table 2: Results for n = 30 volunteers within 1 km, based on 1000 simulated volunteer locations, with 10000 view delay
and acceptance simulations each. The maximum confidence interval halfwidth as a fraction of the mean among all these
numbers was 0.009 (ignoring those cases where the mean was zero.)
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Policy Coverage Survivors per year Nr of alerts Redundant arrivals

Send all at time 0. 0.996 259 100.0 16.768
Keep 1 alerts active. 0.168 134 1.3 0.000
Keep 2 alerts active. 0.297 159 2.6 0.042
Keep 3 alerts active. 0.400 178 3.8 0.114
Keep 4 alerts active. 0.484 193 4.9 0.211
Keep 5 alerts active. 0.552 205 6.0 0.326
Keep 6 alerts active. 0.609 214 7.1 0.456
Keep 7 alerts active. 0.657 222 8.1 0.595
Keep 8 alerts active. 0.698 228 9.2 0.743
Keep 9 alerts active. 0.733 233 10.2 0.897
Keep 10 alerts active. 0.763 237 11.2 1.056
Send 1 alerts at time 0. 0.145 129 1.0 0.000
Send 2 alerts at time 0. 0.263 152 2.0 0.032
Send 3 alerts at time 0. 0.362 170 3.0 0.089
Send 4 alerts at time 0. 0.445 184 4.0 0.168
Send 5 alerts at time 0. 0.515 196 5.0 0.265
Send 6 alerts at time 0. 0.575 205 6.0 0.375
Send 7 alerts at time 0. 0.626 214 7.0 0.498
Send 8 alerts at time 0. 0.670 220 8.0 0.631
Send 9 alerts at time 0. 0.708 226 9.0 0.771
Send 10 alerts at time 0. 0.740 231 10.0 0.918
Send 11 alerts at time 0. 0.769 235 11.0 1.071
Send 12 alerts at time 0. 0.794 238 12.0 1.228
Send 13 alerts at time 0. 0.815 241 13.0 1.388
Send 14 alerts at time 0. 0.834 244 14.0 1.552
Send 15 alerts at time 0. 0.851 246 15.0 1.718
NZ current strategy. 0.615 229 11.4 1.021

Table 3: Results for n = 100 volunteers within 1 km, based on 1000 simulated volunteer locations, with 10000 view delay
and acceptance simulations each. The maximum confidence interval halfwidth as a fraction of the mean among all these
numbers was 0.005 (ignoring those cases where the mean was zero.)
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