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Abstract
Oncology therapeutic development continues to be plagued by high failure rates
leading to substantial costs with only incremental improvements in overall benefit and
survival. Advances in technology including the molecular characterisation of cancer
and computational power provide the opportunity to better model therapeutic
response and resistance. Here we use a novel approach which utilises Bayesian
statistical principles used by astrophysicists to measure the mass of dark matter to
predict therapeutic response. We construct “Digital Twins” of individual cancer
patients and predict response for cancer treatments. We validate the approach by
predicting the results of clinical trials. Better prediction of therapeutic response would
improve current clinical decision-making and oncology therapeutic development.
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Introduction

Therapeutic development in oncology continues to be challenging. Whilst significant
advances have been made in some instances, progress continues to be slow and
incremental. The vast majority of candidate therapies fail, and the failure rate in
advanced phase 3 clinical trials remains high. This inefficiency costs over $50 billion
per annum, which is unsustainable for most health systems and economies.

Advances in the molecular profiling of cancer, coupled with accelerated computing
power, provide the promise of moving away from a “trial and error” approach to cancer
treatment and therapeutic development, to one where we can predict therapeutic
efficacy prior to treatment. “Digital Twins”; in-silico virtual replicas of cancer patients,
offer enticing possibilities for improving cancer treatment. The benefits of accurate
prediction of therapeutic response and patient outcome can be applied at many points
in therapeutic development, from early candidate drug selection through to late phase
clinical trials and routine cancer care.

Here, we present a machine learning approach which simulates treatment with
cytotoxic and small molecule therapies with applicability across numerous cancer
types. We demonstrate how these models can predict overall response rates (ORR) for
a range of cancer types and treatments. The digital twins predict drug efficacy, for
single agent or drug combinations and can predict if treatment A will perform better
than treatment B in individual patients and in virtual clinical trials. The prediction
accuracies were tested against actual response rates and overall survival metrics in
historical clinical trials. Synthetic controls for comparator arms of clinical trials were
constructed to enable benchmarking of predicted clinical efficacy of investigational
drugs versus standard of care. The simulated clinical trial can then predict survival.
Finally, we demonstrate how this approach can be used for patient cohort enrichment
for an investigational drug of interest, and calculate the predicted increase in response
rates achieved through such enrichment strategies.
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Results

Constructing Digital Twins to simulate therapeutic
response and clinical trials

The modelling approach we used arose out of a collaboration with astrophysicists1 to
develop advanced Bayesian inference software that enables integrative modelling of
gravitational lensing and cancer biology. These partnerships motivated a transfer
learning approach where detailed molecular and therapeutic data generated from
biological experimentation was used to build generalisable Bayesian models that can
be applied to predict treatment efficacy for single agents and combinations.

We created a computational framework that could predict in vitro therapeutic
response and clinical response and survival using multi-dimensional data that included
molecular profiles, predominantly genomic and transcriptomic. Digital twins were
created to address specific questions using 3 distinct models: 1) Drug Efficacy Model
2) Treatment Response Model and 3) Overall Survival Model (Figure 1).

Figure 1: Schematic of the Digital Twin Simulator designed to model in silico therapeutic response and clinical
trials.
The components that underpin the digital twin are the Drug efficacy, the Treatment response and the Overall
survival models. The Drug Efficacy Model can ingest pre-clinical and/or clinical data. It uses the molecular profiles
of tumours or preclinical models such as gene expression and mutation profiles and a drug’s molecular fingerprint
derived from the compound structure. The drug efficacy model generates a perturbation kernel, which calculates
the similarity of the effect of a drug perturbation between two samples treated with two drugs. Gaussian process
regression using this kernel can predict multiple types of treatment response predictions such as in vitro IC50 and
drug synergy scores, and provides inputs for the Treatment response model. The Treatment Response Model
predicts patient response with outputs as two states: either response (partial response or complete response using
RECIST) or no response (stable disease or progressive disease). The Treatment response model provides input for
the Overall Survival model. The Overall Survival Model integrates inputs from individual patient clinical data,
treatment response, pathology and if available molecular profiles (gene expression +/- mutation profiles +/- copy
number alterations). The Overall Survival Model predicts overall survival for individual patients given a specific
treatment regimen and can be modified to consider alternative endpoints such as disease-free survival (DFS) to
reflect clinical trial study endpoints.
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The perturbation kernel is derived from the drug-efficacy model and is leveraged by
multiple Bayesian inference models to transfer understanding about shared molecular
mechanisms across in vitro combination screens and clinical treatment settings. It
defines the similarity in the molecular mechanisms between every pair of datapoints
(for example a patient treated with a taxane such as docetaxel vs. a different patient
treated with an anthracycline such as doxorubicin), which can be used to make
predictions of effect using Gaussian processes2.

The drug efficacy and perturbation kernel were built using in-vitro dose-response data
from the Cancer Therapeutic Response Portal (CTRP)3–5. The CTRP dataset consists of
481 anti-cancer compounds which include chemotherapy and targeted small
molecules. These were dosed against 860 cancer cell lines. The molecular data for the
cell lines was obtained from the Cancer Cell Line Encyclopedia6. This dataset was
used to train the perturbation kernel to predict IC50 for the compounds in the dataset
using a Sparse Gaussian Process. The perturbation kernel can also accurately predict
synergy scores from the NCI-ALAMANAC dataset (unpublished data) for combination
treatments. In this study, the model was tested using the perturbation kernel to predict
treatment response in clinical data using the TCGA dataset located at the NCI
Genomic Data Commons7. A summary of the datasets used and abbreviations can be
found in Table 1 and Table 2. A detailed breakdown of the cohorts used in this study
can be found in Extended Data Figure 1.

To evaluate the performance of the model across the TCGA dataset we split the
dataset into 5 cross-fold splits, stratified by cancer type and overall survival. We then
trained the models on 4 of the splits and predicted outcomes for the remaining
(omitted) split. All accuracy metrics reported are averages of the metrics calculated for
each split in turn. Many patients had missing information, these missing variables were
either imputed by the mean value of that column for that patient’s cancer type or from
the entire cohort. These mean values were calculated only from the training cross
folds when imputing for the validation cohort. The treatment response model was
used to calculate treatment response probabilities for all the patients using the training
cross-folds. If the patient received no treatment, then the patient was considered to
have 0 probability of treatment response.

The model used molecular fingerprints generated by the CDK8–11 and Cinfony12

chemoinformatics libraries from canonical SMILES structures obtained from
PubCHEM13 to incorporate structural information about each therapeutic. This process
restricts the treatment response predictions to small molecule therapies at this time
and hence we focus on chemotherapy drugs as monotherapy and drug combinations.
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Dataset Abbreviation Accessed

The Cancer Genome Atlas14–48 TCGA Between 2022-09-08
and 2023-06-15

Cancer Therapeutic Response Portal4,5 CTRP 2022-09-27

Cancer Cell Line Encyclopedia6 CCLE 2023-05-12, 2021-08-19

Table 1. Datasets used as inputs and dates accessed.

Drug Efficacy Model Treatment Response Model Overall Survival Model

Cancer Therapeutic Response Portal
(CTRP) dataset4,5

545 compounds
● 880 cell-lines

130,000 dose-response curves
● Accessed 2022-09-27

Cancer Cell Line Dataset (CCLE)
dataset6

● 990 Cell-lines
● WXS
● RNAseq
● Accessed 2023-05-12,

2021-08-19

The Cancer Genome Atlas TCGA14–48

Molecular data
● WXS
● RNAseq

1599 patients in the dataset had a
treatment response recorded as one of,

● Complete Response (1008)
● Partial Response (306)
● Stable Disease (446)
● Clinical Progressive Disease

(1008)
● Most patients received more

than one treatment, and the
treatment response data is
recorded per treatment.

972 patients treated within 100 days of
diagnosis with RECIST* response
recorded

● 633 CR
● 74 PR
● 124 SD
● 147 PD
● 1776 total treatments

received

Accessed between 2022-09-08 and
2023-06-15

The Cancer Genome Atlas
TCGA14–48

4062 patients recorded to receive
treatment

9688 total treatments received

10,967 total patients with survival
data

3508 recorded deaths

Accessed between 2022-09-08
and 2023-06-15

Table 2: Input data for predictive modelling.
WXS, whole exome DNA sequencing; CR, complete response; PR, partial response; SD, stable disease; PD, progressive
disease; RECIST - Response Evaluation Criteria in Solid Tumours49.
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Validation of Digital Twin predictions using clinical trial
simulations.
We simulated digital trial arms for single chemotherapy drugs and combinations to
predict treatment response in cancer patients with the goal of assessing the accuracy
of digital twin predictions through comparison to historical clinical trial results. TCGA
data was used as input, no original individual participant clinical trial data is available
and was not used for predictions. Initially, the digital twin predictions were evaluated
using an unblinded approach where our technology team was aware of the results.
(Figure 2). The model treatment predictions were compared to the results of four
historical phase 2 and phase 3 clinical studies (1997 - 2018). These were trials in
metastatic pancreatic cancer (Burris, et al.50), advanced breast cancer (Chan, et al.51

and Tutt, et al.52) and platinum-sensitive recurrent ovarian cancer (Cantù, et al.53). We
compared the predicted log odds ratio (OR; Figure 2a) generated by the digital twin
model for Overall Response Rate (ORR) for each treatment arm tested in the clinical
study, and then compared this against the actual reported log odds ratios (log OR)
from the historical trial, the ground truth (Figure 2b). We started with single-agent
predictions, then progressively increased the complexity through combinations and
heterogenous treatments in more sophisticated clinical trial designs (Table 3).

Unblinded validation

Single-agent chemotherapy arms:

Study 1: The first clinical trial we simulated reported by Burris et al. in 1997, was a
prospective, randomised clinical trial in advanced pancreatic cancer50 (n=126; 17 sites
in USA & Canada; 1997), which randomised participants to either single-agent
5-fluorouracil (n=63) or gemcitabine (n=63). Clinical benefit was 23.8% for
gemcitabine compared with 4.8% for 5-fluorouracil (5-FU) (P = 0.002). Median survival
was 5.65 months for gemcitabine compared to 4.41 months for 5-FU (P = .0025).
Survival at 12 months was 18% for gemcitabine and 2% for 5-FU. Both chemotherapy
drugs are considered to be anti-metabolites, therefore this experiment tested the
model’s ability to detect the difference in drug efficacy for two drugs belonging to the
same drug class. The Digital Twin drug response predictions were based upon either
no response (stable disease or disease progression) or response (partial response or
complete response). The model correctly predicted gemcitabine chemotherapy would
have greater clinical benefit than 5-FU (predicted log odds ratio -0.10, P <
0.0001)(Figure 2).

Study 2: Two metastatic breast cancer studies were simulated, both designed to
prospectively compare single-agent therapeutic arms. These studies considered either
an anthracycline, a taxane or a platinum. Chan et al.51 reported a prospectively
randomised phase 3 study comparing taxane monotherapy (docetaxel; n=161) vs.
anthracycline monotherapy (doxorubicin; n=164) in metastatic breast cancer (n=326)
previously treated with an anthracycline-containing regimen (UK & Europe). The Digital

7

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.17.24301444doi: medRxiv preprint 

https://www.zotero.org/google-docs/?phezfJ
https://www.zotero.org/google-docs/?TjoLFy
https://www.zotero.org/google-docs/?ji8ukC
https://www.zotero.org/google-docs/?m4R1E4
https://www.zotero.org/google-docs/?rW2VJs
https://www.zotero.org/google-docs/?FPRg8k
https://doi.org/10.1101/2024.01.17.24301444


Twin model predicted single-agent docetaxel would be a better treatment than
single-agent doxorubicin using a relatively small dataset of n=21 (predicted log odds
ratio -0.09, P = 0.07)(Figure 2 and Table 3) The borderline P value reflecting the small
number of patients available for prediction expanding the confidence interval. The
actual trial (n=326) showed that docetaxel had a higher objective response rate than
doxorubicin (47.8% vs. 33.3%; P =.008).

Study 3: The other Phase 3 Clinical study in breast cancer reported by Tutt et al.52

(TNT; 17 sites, UK) compared carboplatin (n=188) vs. a taxane, docetaxel (n=188) as
first-line treatment in metastatic triple negative breast cancer (n=376). This study
showed that carboplatin was no more active than docetaxel in the BRCA wildtype
subpopulation of patients (ORR, 31.4% vs. 34.0%, respectively; P = 0.66). The Digital
twin model predicted, in alignment with the trial results, that neither carboplatin nor
docetaxel would have superior efficacy in the BRCA wild-type population. In summary,
the Digital twin model accurately predicts chemotherapy responses for different drug
classes and can effectively predict the difference in drug activity, if present for
single-agent treatments.

Single-agent vs. combination chemotherapy in relapsed disease:
Study 4: To continue to ascertain the potential limitations of the Digital Twin model,
we then added complexity to the predictions we set by including combination
treatments and used a study comparing a single drug against a drug combination. The
Digital Twin model virtually simulated a prospective randomised study in ovarian
cancer reported by Cantù et al. 202253 (n=97; Italy) allocating participants to either
single agent paclitaxel (taxane; n=50) or a combination of cyclophosphamide
(alkylating agent), doxorubicin (anthracycline) and cisplatin (platinum) (CAP; n=47).
This study recruited patients with recurrent ovarian cancer who had achieved
complete remission with previous platinum-based regimens, and whose disease
recurred after a progression-free interval of more than 12 months. The Digital Twin
model used data inputs from the TCGA cohort to predict that the cisplatin-based
combination (CAP) would have a higher response rate than paclitaxel. The Digital twin
prediction reflected the actual published higher overall treatment response rate for
CAP, which was 55% vs. 44.7% for CAP vs. Paclitaxel. (P = 0.062). Predicted ORR log
odds ratio -0.24, P < 0.001 for n= 251 vs. calculated log odds ratio from clinical trial
data -.044, P=0.133).
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Comparison Predicted

Study Trial Patients

log
Odds
Ratio

log Odds
Ratio SE significance statistic Patients

log
Odds
Ratio

log Odds
Ratio SE significance statistic

Proportion
better
outcome

Unblinded Validation

Burris et al
1997

Metastatic Pancreatic Cancer Median survival
5.65 vs. 4.41 months for Gemcitabine
compared to 5-FU,
(P = .0025) 126 -1.833 0.661 0.003 -2.77 165 -0.105 0.019 2.64E-07 -5.371 65.5%

Chan et al
2023

Metastatic breast cancer. ORR Docetaxel 47.8%
vs. Doxorubicin 33.3% P =.008) 326 -0.606 0.228 0.004 -2.65 21 -0.090 0.048 7.25E-02 -1.896 66.7%

Tutt et al 2018
First line treatment in metastatic Triple
Negative breast cancer ORR 31.4% for
Carboplatin vs. 34.0% for Docetaxel; P = 0.66) 376 -0.121 0.220 0.291 -0.55 21 -0.076 0.066 2.60E-01 -1.159 71.4%

Cantù et al
2002

Recurrent ovarian cancer. ORR 55% vs. 44.7%
for CAP vs. Paclitaxel. (P = 0.062) 97 -0.455 0.409 0.133 -1.11 251 -0.243 0.020 1.38E-26 -12.025 76.9%

Blinded Validation

Von Hoff et al
2013

Metastatic Pancreatic Cancer. OS 8.5 months
for gemcitabine/nab-paclitaxel group vs. 6.7
months for gemcitabine alone (HR 0.72,
p<0.001) 861 -1.345 0.219 0.000 -6.15 165 -0.090 0.013 2.67E-10 -6.732 32.1%

M.Levine et al
1998

Adjuvant breast cancer. Disease-free survival
for CMF (control arm) 53% vs 63% for CEF
(p=0.009) 710 -0.389 0.153 0.005 -2.55 961 -0.023 0.003 1.85E-10 -6.443 26.7%

Jones et al
2006

Breast cancer. DFS for TC 86% vs. 80% for AC
(HR 0.67; P = 0.015) 1016 -0.359 0.166 0.015 -2.16 961 -0.059 0.005 2.76E-32 -12.277 45.6%

N. Masuda et
al 2017

Adjuvant breast cancer, addition of
capecitabine to standard of care.
ER+ve HER2-ve subgroup HR 0.73 for OS (95%
CI 0.38-1.40; P=0.41)

601
ER+ve
/910 -0.170 0.186 0.181 -0.91 384 0.087 0.013 2.66E-10 6.490 38.3%

Table 3 Summary of clinical trials compared to predictions.
Abbreviations: ORR=Overall Response Rate; OS=Overall survival; mOS= median Overall Survival; DFS=Disease free survival; CAP= Cyclophosphamide, Doxorubicin and Cisplatin,
ER+=Estrogen receptor positive, HER2-ve=human epidermal growth factor receptor 2 negative
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Figure 2: Clinical Trials simulations by Digital Twin model (Unblinded and blinded).
The predictions from simulations of eight clinical trials by Digital Twins are shown by comparing the control arm and
investigational arm, and predicting the difference in drug efficacy. Model accuracy was tested by a comparison of
the predicted log odds ratio log(OR) for Overall Response Rate (ORR) by the model against the actual log Odds
Ratios reported from clinical trials50–53. For metastatic/advanced cancer studies, the drug response rate was
calculated using complete response + partial response. For adjuvant cancer studies, in the absence of in situ primary
cancer, drug response was calculated by defining clinical response as the absence of disease relapse at a specified
time point, and lack of response is equivalent to cancer relapse. 95% confidence intervals are shown for each
log(OR) value; Digital Twin predictions (purple) and actual reported Clinical trial outcomes (orange). The threshold is
set at zero, where >0 suggests the control arm has a better response and < 0 suggests that the investigational arm
is better. The number of patients used to generate predictions or recruited into the study is reported on the right,
with significance and statistics, see Statistics section in the Online Methods sections for details on how these values
were calculated. The numbers used to make these plots are shown in Table 3.

Blinded validation
As part of the validation process, the technology team were blinded to the published
outcomes of an additional four phase 3 clinical trials. Three clinical studies in early
breast cancer evaluated adjuvant chemotherapy regimens54–56 and one evaluated
first-line metastatic pancreatic cancer57 (Figure 2). The Digital Twin model correctly
predicted drug efficacy and the clinical trial result for all four clinical studies.
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Study 5 (USA, Europe & Australia):
Von Hoff et al.57 The phase III Metastatic Pancreatic Adenocarcinoma Clinical Trial
(MPACT) in metastatic pancreatic cancer compared the combination of nab-paclitaxel
plus gemcitabine vs. gemcitabine alone as first-line therapy. The study randomised
861 previously untreated metastatic pancreatic cancer patients between these
treatment arms. The response rates were 23% for nab-paclitaxel plus gemcitabine
versus 7% for gemcitabine alone (P<0.001). Median overall survival was 8.5 months in
the nab-paclitaxel-gemcitabine group vs. 6.7 months with gemcitabine alone (hazard
ratio 0.72, p<0.001). Using data for a similar chemotherapy drug, paclitaxel, the Digital
Twin model was able to correctly predict that nab-paclitaxel plus gemcitabine was
superior to gemcitabine alone (Predicted log odds ratio -0.090, p = <0.001) (Figure 2).

Study 6 (National Cancer Institute of Canada Clinical Trials Group):
In order to test the model’s limitations with regard to the number of patients the model
needed to train on, we designed a virtual trial with methotrexate chemotherapy,
because the model had trained on only eight cancer patients treated with
methotrexate. The study was a Phase 3 prospective randomised trial reported by
Levine et al.55 (1998), which enrolled high-risk, node positive pre/peri-menopausal
women post mastectomy or lumpectomy and axillary dissection (n=716) and
randomised them to either adjuvant ECF (epirubicin, cyclophosphamide and
fluorouracil), or adjuvant CMF (cyclophosphamide, methotrexate and fluorouracil)
treatment. The relapse-free survival for CMF (control arm) was 53% (95% CI, 45-58%)
and 63% (95% CI, 57-68; P=0.009) for CEF at 5 years. Although CEF was a more
effective chemotherapy regimen, it was associated with significantly more acute
toxicities and as a consequence is not widely used. In order to predict treatment
response in the adjuvant setting where the cancer has been surgically removed. Virtual
simulations by the digital twin model accurately predicted that adjuvant ECF would be
superior to adjuvant CMF in early breast cancer (Predicted log odds ratio -0.023, P =
<0.001; Table 3).

Study 7 (USA):
Reported by Jones et al. 200656 with 1016 participants with a median follow up of 5.5
years, a phase 3 prospective randomised trial in stage 1-3 breast cancer reported
disease-free survival at 5.0 years for TC (docetaxel and cyclophosphamide) of 86% vs.
80% for AC (doxorubicin and cyclophosphamide) (HR 0.67; 95% CI 0.5-0.94;
P=0.015)(Figure 2). The purpose of this trial was to compare the clinical outcomes in
patients treated with a standard adjuvant anthracycline regimen vs. a
non-anthracycline regimen. Virtual simulations by the model correctly predicted that
adjuvant TC (Docetaxel and Cyclophosphamide) would be superior to adjuvant AC
(doxorubicin and cyclophosphamide) in early breast cancer (Predicted log odds ratio
-0.059, P < 0.001; Table 3)

Study 8 (Japan & South Korea):
To further test the limitations of the Digital Twin’s performance, we aimed to challenge
it further. We tested it across mixed populations who received different neoadjuvant
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chemotherapy regimens containing either an anthracycline, a taxane, or both, and then
subsequently received heterogeneous adjuvant therapy. CREATE-X (Masuda et al.54

2017) was a Phase 3 prospective, randomised study (n = 910) that randomised
participants with residual disease following different neoadjuvant chemotherapy
regimens for breast cancer (stage I-III) to either capecitabine or a no capecitabine. The
study participants included both hormone-positive (ER+ve, HER2-ve) and
triple-negative (ER-ve, HER2-ve) patients. For simulation purposes, we focused on the
hormone-positive subpopulation only and assumed participants in the control arm
would receive endocrine treatment but no capecitabine. For the CREATE-X study, the
overall survival 95% confidence intervals and hazard ratios for the hormone-positive
subgroup crossed 1.0 (n=601; HR 0.73 0.38-1.40; P = 0.41) suggesting adjuvant
capecitabine was no better control. Virtual simulations by the Digital Twin model
predicted that in people with hormone-positive breast cancer (HER2-ve; stages 1-3),
treatment with adjuvant capecitabine would be inferior to standard of care such as
adjuvant hormone treatment with tamoxifen (log odds ratio = 0.07). Although the
predicted confidence intervals inferred inferiority, the prediction was within the
confidence interval of the actual trial results.

Predicting survival
An Overall Survival (OS) model was integrated into the Digital Twin clinical trial
simulator using a Random Survival Forest (RSF)58, a statistical non-parametric
ensemble learning method. The learning target is time-to-event and event
(censored/deceased) data, and primary output is survival probability vs. time curves.

Clinical data from 10,913 patients was pre-processed to yield a dataset comprising
4029 patients, with ages ranging from 11 to 90 years, spanning 23 different cancer
types. This dataset along with the RECIST response categories from the TRM stage
was used as input for the OS model.

We analysed five different prediction accuracy metrics: 1) cumulative dynamic AUC
ROC, 2) Uno’s concordance index59 (C-index), 3) time-dependent Brier score, 4) the
Brier skill score, and, 5) explained variance. Table 4 shows the average outcome
across 5-fold training and testing splits. A detailed explanation of the metrics is
provided in the Online Methods. Both the dynamic AUC and the C-index scores of the
Digital Twin were above 0.7 in a pan-cancer setting, a threshold set for a good
predictive model.

AUC ROC C-index Brier score Brier skill Explained
variance

0.78 0.71 0.168 0.42 0.44

Table 4 shows pan-cancer Digital Twin overall survival performance evaluation metrics.
Overall, we observe relatively high accuracies evaluated across all types of cancer tissue types.
The metrics shown are the average of 5-fold train and test splits.
Additionally, we evaluated the performance of our Digital Twin OS prediction in relation
to existing computational models found in the literature. The results are shown in
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Figure 3, with further details on these benchmarks available in Extended Data Table 1.
When evaluating across all tissue types, the Digital Twin model exhibited
commendable performance in comparison to the mean of all 29 other model-data
methods and tissue types identified in the literature60–77. Regarding Glioma, our model
demonstrated favourable performance compared to XGBoost-Surv by Dal Bo et al.69

(2023) and Deep Learning with Cox proportional hazard (CPH) by Jiang et al.77 (2021)
on the Udine Hospital and TCGA datasets, respectively. In Breast Cancer and
Glioblastoma our model performed comparably. Our model underperformed
benchmarks for Ovarian Cancers and Head and Neck Cancers. This may be attributed
to the absence of crucial data inputs, specifically, TNM cancer staging data.

However, benchmark studies typically do not address the prediction of survival curves
for various drugs, including novel ones, and primarily focus on predicting survival
curves for specific cancer types. In contrast, our model possesses the capability to
address hypothetical scenarios, offering insights into questions such as the projected
survival curve when a specific patient undergoes treatment with a novel drug.

Figure 3: Benchmarking accuracy of overall survival method against existing methods
(a) A comparison of the C-index for 29 method-data benchmark approaches in modelling survival within the field of
oncology, compared against our Digital Twin OS model for pan-cancer. (b-f) A similar comparison per specific cancer
type. Details can be found in Extended Data Table 1.

Cohort Enrichment
The FDA defines cohort enrichment as the “prospective use of any patient
characteristic to select a study population in which detection of a drug effect (if one is
in fact present) is more likely than it would be in an unselected population.”
Enrichment strategies should accelerate drug development, increase the magnitude of
drug responses and therefore accelerate the path to drug approval.

Here we evaluated the effectiveness of using the predicted response score to segment
cohorts into responder and non-responder cohorts. For each cohort we chose two
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thresholds to split the cohort into positive, intermediate and negative groups and
evaluated the log odds ratio of overall response rate to assess the potential for cohort
enrichment.

Figure 4. Assessing log odds
increase in response rate
through cohort enrichment
Cohort enrichment improves
predicted therapeutic response
rates showing that all cancers,
perhaps with the exception of
ovarian cancer would benefit
from a molecular enrichment
strategy to select responders.
Similarly, with the exception of
Irinotecan, pemetrexed and
capecitabine the model did
identify a significant benefit
using the molecular data used
to enrich for responders given
the available patient numbers.
The odds ratio in observed
response rates between the
biomarker positive and negative
cohorts as segmented by
treatment response predictions.
The 95% confidence intervals
are shown for each drug and
cancer type.

The cohorts were split into 3 groups to assess the interpretability and quality of risk
stratification of the response scores predicted by the model.This cohort molecular
enrichment approach was tested in 19 different solid tumour types and 17 different
cytotoxic drugs (Figure 4). The Digital Twin output data suggests that 16 solid tumour
types, except ovarian cancer, would benefit from a molecular predictive enrichment
strategy integrated into clinical trial designs. This data also confirms that machine
learning approaches can successfully identify molecular patterns and enrich drug
response for commonly used chemotherapy drugs such as docetaxel or cisplatin,
which currently do not have robust predictive biomarkers and are used in unselected
cancer populations.

14

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.17.24301444doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.17.24301444


Discussion
Predicting therapeutic response has the potential to transform cancer care and
oncology therapeutic development. We developed a Bayesian statistical approach that
is similar to modelling gravitational lensing to predict the mass of dark matter by
astrophysicists, where the complexity and interactivity of multiple data points is
required. We show that this approach predicts with reasonable accuracy the response
of therapeutics preclinically and clinically which we validated through comparison to
clinical trials.

This approach can be applied at various points in therapeutic development. These
include, but are not limited to:

1. Predicting response in preclinical models to inform decisions regarding which
cancer and specific indication is more likely to be associated with response;

2. Combination strategies;
3. Selecting which therapeutics to advance through early clinical development;
4. Selecting which therapeutic to advance to late-stage development;
5. Improved patient selection for clinical development;
6. Construction of synthetic controls for clinical trials. In addition, other potential

applications, not tested here, include prediction of toxicity.

One of the aspects of this approach is that the model can predict likely response for
individual patients as well as cohorts. Predicting an individual's response to a specific
treatment ahead of time has the potential to substantially impact on routine cancer
care. This would better inform clinical decision-making for an individual patient,
avoiding likely ineffective therapies, and selecting the better option or a clinical trial.
Moreover, increasing the accuracy of prediction for an individual would mean that they
could potentially serve as their own control in a clinical trial. If the survival of an
individual patient with standard of care could be predicted with a known level of
accuracy, more meaningful information could be drawn from that individual's response
or lack of response to a novel therapy.

An important factor to consider is how accurate a prediction needs to be in order for it
to be useful. With the high failure rate of oncology therapeutic development, an
incremental increase in predictive accuracy for critical decisions would have potential
significant impact on the probability of success.

Important current limitations that need to be addressed are the variability in predictive
accuracy between different classes of therapeutics and different cancer types. Whilst
this may be simply the amount and quality of data ingested, adjustments to the model
may need to be made to reflect the mechanism of action of therapeutics, where
known. Biological inferences from the model as it stands need to be developed further
so as to better define candidate biomarkers that could be rapidly translated into the
clinic.

15

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.17.24301444doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.17.24301444


Acknowledgements
This work was supported by Innovate UK [grant number 50074]. The data used in this
study is in whole or part based upon data generated by the TCGA Research Network.

16

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.17.24301444doi: medRxiv preprint 

https://www.cancer.gov/tcga
https://doi.org/10.1101/2024.01.17.24301444


References
1. Nightingale, J. W., Hayes, R. G. & Griffiths, M. `PyAutoFit`: A Classy Probabilistic Programming Language for Model

Composition and Fitting. J. Open Source Softw. 6, 2550 (2021).
2. Rasmussen, C. E. & Williams, C. K. I. Gaussian processes for machine learning. (MIT Press, 2006).
3. Rees, M. G. et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat.

Chem. Biol. 12, 109–116 (2016).
4. Seashore-Ludlow, B. et al. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer

Discov. 5, 1210–1223 (2015).
5. Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small

molecules. Cell 154, 1151–1161 (2013).
6. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508

(2019).
7. Grossman, R. L. et al. Toward a Shared Vision for Cancer Genomic Data. N. Engl. J. Med. 375, 1109–1112 (2016).
8. Willighagen, E. L. et al. The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas,

and substructure searching. J. Cheminformatics 9, 33 (2017).
9. Steinbeck, C. et al. Recent developments of the chemistry development kit (CDK) - an open-source java library for

chemo- and bioinformatics. Curr. Pharm. Des. 12, 2111–2120 (2006).
10. May, J. W. & Steinbeck, C. Efficient ring perception for the Chemistry Development Kit. J. Cheminformatics 6, 3

(2014).
11. Steinbeck, C. et al. The Chemistry Development Kit (CDK):  An Open-Source Java Library for Chemo- and

Bioinformatics. J. Chem. Inf. Comput. Sci. 43, 493–500 (2003).
12. O’Boyle, N. M. & Hutchison, G. R. Cinfony – combining Open Source cheminformatics toolkits behind a common

interface. Chem. Cent. J. 2, 24 (2008).
13. Kim, S. et al. PubChem 2023 update. Nucleic Acids Res. 51, D1373–D1380 (2023).
14. Abeshouse, A. et al. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell

171, 950-965.e28 (2017).
15. Ally, A. et al. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 169,

1327-1341.e23 (2017).
16. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human

glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).
17. The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell

carcinomas. Nature 517, 576–582 (2015).
18. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung

cancers. Nature 489, 519–525 (2012).
19. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell

carcinoma. Nature 499, 43–49 (2013).
20. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric

adenocarcinoma. Nature 513, 202–209 (2014).
21. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer.

Nature 487, 330–337 (2012).
22. Robertson, A. G. et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 171,

540-556.e25 (2017).
23. The Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Papillary Renal-Cell

Carcinoma. N. Engl. J. Med. 374, 135–145 (2016).
24. Fishbein, L. et al. Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer

Cell 31, 181–193 (2017).
25. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder

carcinoma. Nature 507, 315–322 (2014).
26. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490,

61–70 (2012).
27. Ciriello, G. et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell 163, 506–519 (2015).
28. The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature

511, 543–550 (2014).
29. Zheng, S. et al. Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell 29,

723–736 (2016).
30. The Cancer Genome Atlas Research Network. Comprehensive, Integrative Genomic Analysis of Diffuse

Lower-Grade Gliomas. N. Engl. J. Med. 372, 2481–2498 (2015).
31. Cancer Genome Atlas Research Network et al. Distinct patterns of somatic genome alterations in lung

adenocarcinomas and squamous cell carcinomas. Nat. Genet. 48, 607–616 (2016).
32. The Cancer Genome Atlas Research Network. Genomic and Epigenomic Landscapes of Adult De Novo Acute

Myeloid Leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

17

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.17.24301444doi: medRxiv preprint 

https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://doi.org/10.1101/2024.01.17.24301444


33. Akbani, R. et al. Genomic Classification of Cutaneous Melanoma. Cell 161, 1681–1696 (2015).
34. The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474,

609–615 (2011).
35. The Cancer Genome Atlas Research Network. Integrated genomic and molecular characterization of cervical

cancer. Nature 543, 378–384 (2017).
36. The Cancer Genome Atlas Research Network & Levine, D. A. Integrated genomic characterization of endometrial

carcinoma. Nature 497, 67–73 (2013).
37. The Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma.

Nature 541, 169–175 (2017).
38. Raphael, B. J. et al. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 32,

185-203.e13 (2017).
39. Agrawal, N. et al. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell 159, 676–690 (2014).
40. Shen, H. et al. Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Rep. 23, 3392–3406

(2018).
41. Cherniack, A. D. et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell 31, 411–423

(2017).
42. Robertson, A. G. et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma.

Cancer Cell 32, 204-220.e15 (2017).
43. Farshidfar, F. et al. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular

Profiles. Cell Rep. 18, 2780–2794 (2017).
44. Hmeljak, J. et al. Integrative Molecular Characterization of Malignant Pleural Mesothelioma. Cancer Discov. 8,

1548–1565 (2018).
45. Radovich, M. et al. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 33, 244-258.e10

(2018).
46. Abeshouse, A. et al. The Molecular Taxonomy of Primary Prostate Cancer. Cell 163, 1011–1025 (2015).
47. Davis, C. F. et al. The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell 26,

319–330 (2014).
48. Brennan, C. W. et al. The Somatic Genomic Landscape of Glioblastoma. Cell 155, 462–477 (2013).
49. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1).

Eur. J. Cancer 45, 228–247 (2009).
50. Burris, H. A. et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients

with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 15, 2403–2413
(1997).

51. Chan, S. et al. Prospective Randomized Trial of Docetaxel Versus Doxorubicin in Patients With Metastatic Breast
Cancer. J. Clin. Oncol. 17, 2341–2341 (1999).

52. Tutt, A. et al. A randomised phase III trial of carboplatin compared with docetaxel in BRCA1/2 mutated and
pre-specified triple negative breast cancer “BRCAness” subgroups: the TNT Trial. Nat. Med. 24, 628–637 (2018).

53. Cantù, M. G. et al. Randomized controlled trial of single-agent paclitaxel versus cyclophosphamide, doxorubicin,
and cisplatin in patients with recurrent ovarian cancer who responded to first-line platinum-based regimens. J.
Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 20, 1232–1237 (2002).

54. Masuda, N. et al. Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N. Engl. J. Med. 376,
2147–2159 (2017).

55. Levine, M. N. et al. Randomized trial of intensive cyclophosphamide, epirubicin, and fluorouracil chemotherapy
compared with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive
breast cancer. National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 16, 2651–2658 (1998).

56. Jones, S. E. et al. Phase III Trial Comparing Doxorubicin Plus Cyclophosphamide With Docetaxel Plus
Cyclophosphamide As Adjuvant Therapy for Operable Breast Cancer. J. Clin. Oncol. 24, 5381–5387 (2006).

57. Von Hoff, D. D. et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N. Engl. J.
Med. 369, 1691–1703 (2013).

58. Ishwaran, H., Kogalur, U. B., Blackstone, E. H. & Lauer, M. S. Random survival forests. Ann. Appl. Stat. 2, 841–860
(2008).

59. Uno, H., Cai, T., Pencina, M. J., D’Agostino, R. B. & Wei, L. J. On the C-statistics for Evaluating Overall Adequacy of
Risk Prediction Procedures with Censored Survival Data. Stat. Med. 30, 1105–1117 (2011).

60. Jing, B. et al. A deep survival analysis method based on ranking. Artif. Intell. Med. 98, 1–9 (2019).
61. Marcinak, C. T. et al. Accuracy of models to prognosticate survival after surgery for pancreatic cancer in the era of

neoadjuvant therapy. J. Surg. Oncol. (2023).
62. Huang, Z. et al. Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations.

BMC Med. Genomics 13, 1–12 (2020).
63. Courtiol, P. et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat.

Med. 25, 1519–1525 (2019).
64. Katzman, J. L. et al. DeepSurv: personalized treatment recommender system using a Cox proportional hazards

deep neural network. BMC Med. Res. Methodol. 18, 1–12 (2018).

18

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.17.24301444doi: medRxiv preprint 

https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://doi.org/10.1101/2024.01.17.24301444


65. Royston, P. & Altman, D. G. External validation of a Cox prognostic model: principles and methods. BMC Med. Res.
Methodol. 13, 1–15 (2013).

66. Hao, J., Kim, Y., Mallavarapu, T., Oh, J. H. & Kang, M. Interpretable deep neural network for cancer survival
analysis by integrating genomic and clinical data. BMC Med. Genomics 12, 1–13 (2019).

67. Koo, K. C. et al. Long short-term memory artificial neural network model for prediction of prostate cancer survival
outcomes according to initial treatment strategy: development of an online decision-making support system.
World J. Urol. 38, 2469–2476 (2020).

68. Starke, S. et al. Longitudinal and multimodal radiomics models for head and neck cancer outcome prediction.
Cancers 15, 673 (2023).

69. Dal Bo, M. et al. Machine learning to improve interpretability of clinical, radiological and panel-based genomic data
of glioma grade 4 patients undergoing surgical resection. J. Transl. Med. 21, 450 (2023).

70. Andrearczyk, V. et al. Multi-task Deep Segmentation and Radiomics for Automatic Prognosis in Head and Neck
Cancer. in Predictive Intelligence in Medicine (eds. Rekik, I., Adeli, E., Park, S. H. & Schnabel, J.) 147–156 (Springer
International Publishing, 2021). doi:10.1007/978-3-030-87602-9_14.

71. Boehm, K. M. et al. Multimodal data integration using machine learning improves risk stratification of high-grade
serous ovarian cancer. Nat. Cancer 3, 723–733 (2022).

72. Ueno, H. et al. New criteria for histologic grading of colorectal cancer. Am. J. Surg. Pathol. 36, 193–201 (2012).
73. Kawai, K. et al. Nomograms for colorectal cancer: A systematic review. World J. Gastroenterol. 21, 11877–11886

(2015).
74. Schumacher, M. et al. Randomized 2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in

node-positive breast cancer patients. German Breast Cancer Study Group. J. Clin. Oncol. 12, 2086–2093 (1994).
75. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.

Nature 486, 346–352 (2012).
76. Knaus, W. A. et al. The SUPPORT prognostic model: Objective estimates of survival for seriously ill hospitalized

adults. Ann. Intern. Med. 122, 191–203 (1995).
77. Jiang, S., Zanazzi, G. J. & Hassanpour, S. Predicting prognosis and IDH mutation status for patients with

lower-grade gliomas using whole slide images. Sci. Rep. 11, 16849 (2021).
78. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
79. Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd acm sigkdd

international conference on knowledge discovery and data mining 785–794 (2016).
80. Peng, J. et al. The prognostic value of machine learning techniques versus cox regression model for head and

neck cancer. Methods 205, 123–132 (2022).
81. Davies, A. & Ghahramani, Z. The Random Forest Kernel and other kernels for big data from random partitions.

Preprint at https://doi.org/10.48550/arXiv.1402.4293 (2014).
82. Altman, D. G. Practical statistics for medical research. (CRC press, 1990).
83. Sheskin, D. J. Handbook of parametric and nonparametric statistical procedures. (Chapman and hall/CRC, 2003).
84. Hung, H. & Chiang, C.-T. Estimation methods for time-dependent AUC models with survival data. Can. J. Stat. 38,

8–26 (2010).
85. Graf, E., Schmoor, C., Sauerbrei, W. & Schumacher, M. Assessment and comparison of prognostic classification

schemes for survival data. Stat. Med. 18, 2529–2545 (1999).
86. Pölsterl, S. scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn. J. Mach. Learn. Res. 21,

1–6 (2020).
87. Moncada-Torres, A., van Maaren, M. C., Hendriks, M. P., Siesling, S. & Geleijnse, G. Explainable machine learning

can outperform Cox regression predictions and provide insights in breast cancer survival. Sci. Rep. 11, 6968
(2021).

88. Harrell Jr, F. E., Lee, K. L., Califf, R. M., Pryor, D. B. & Rosati, R. A. Regression modelling strategies for improved
prognostic prediction. Stat. Med. 3, 143–152 (1984).

19

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.17.24301444doi: medRxiv preprint 

https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://www.zotero.org/google-docs/?MSFYiB
https://doi.org/10.1101/2024.01.17.24301444


Online Methods
Here, we describe a Digital Twin, an integrated machine-learning model for simulating
clinical trials and estimating clinical trial endpoints for various treatment scenarios
including novel drugs. It consists of three main models: the Drug Efficacy Model (DEM),
the Treatment Response Model (TRM), and the Overall Survival (OS) model and
employs multi-modal data input as illustrated previously in Figure 1. The DEM is trained
to estimate the impact of treatment. It provides an estimation of a patient's treatment
response in the prospective cohort under the prospective treatment, entirely from
preclinical data. With treatment response estimation, the overall survival model
predicts the clinical trial endpoints.

Drug Efficacy Model (DEM)
The DEM learns to estimate half-maximal inhibitory concentration (IC50) based on the
pre-clinical information from cell-line studies. The model takes a set of features for the
drug-patient pair: Whole Exome Sequencing (WXS), RNA sequencing (RNAseq), drug
structures, and dose-response curves. The input data includes 545 compounds using
SMILES (simplified molecular-input line-entry system) describing the structure of
chemical species, 1343 genes in RNAseq, 1342 copy number variation (CNVs) from the
WXS data and 130,000 Hill parameters for the dose–response curves. The drug
structures were encoded as CDK8–10 molecular descriptors from their SMILES ID using
cinfony12. The description of the input data for the Digital Twin DEM is shown in
Extended Data Figure 1a.

Here, we deliberately opted for Random Forest78,79 (RF) because it allowed us to
examine the leaf assignments that create the IC50 estimates. These leaf assignments
are later used in the estimation of treatment response categories in the next stages of
Digital Twin. Besides, RF tends to outperform other models in prognostic value80. DEM
produces three types of outputs: 1) an estimate of the IC50 of a given drug in the given
patient's tissue, 2) drug combination synergy curves (the phenomenon where the
combined effect of two or more drugs is greater than the sum of their individual
effects), and 3) Perturbation Kernel81 leaf assignments. The latter is the main output,
and input to the next stage of the Digital Twin, to the Treatment Response Model.

To evaluate the performance of the DEM, i.e. evaluate how good the predictions of a
model on unseen validation data, we compare predicted against observed IC50 in
Extended Data Figure 2. The root mean squared error (RMSE) of the log10 IC50was 0.47
the coefficient of determination was 0.61.

Perturbation Kernel
Here, a Perturbation Kernel is a method based on a Random Forest Kernel (RFK)81, that
helps find patterns and relationships between data points in a more complex space
where those patterns might be more apparent. It is constructed using the random
partition sampling scheme, generating several RF decision trees, which are trained on
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a subset of features. In trained RF, each leaf in each tree is considered a partition. In
learning algorithms, a kernel is a function that calculates the similarity or distance
between pairs of data points. It is calculated based on counting the fraction of times
these data points share a partition. Thus, the more these points share the same
partition, the less distance between them and the more similar they are.

The Perturbation Kernel leaf assignments are output derived from the DEM and are
utilised to transfer knowledge concerning shared molecular mechanisms across in vitro
studies, combination screens, and clinical treatments. It outlines the similarity in
molecular mechanisms between pairs of patients, for example, a patient treated with a
taxane and another patient treated with an anthracycline. Subsequently, these are
employed to train the Treatment Response Model for the prediction of treatment
response categories.

Treatment Response Model (TRM)
The TRM learns to accurately predict four RECIST treatment response categories49

from the output of DEM: 1) clinical progressive disease 2) stable disease, 3) partial
response 4) complete response. The input to the model are the leaf assignments from
the Perturbation Kernel, that is the output from the DEM. Random Forest in DEM allows
the use of leaf assignments to form a kernel function between inputs. Assuming that
similarity in IC50 estimates correlates with similarity in treatment response, it was
possible to conduct kernel regression to estimate treatment response categories. To
perform kernel regression we use the Gaussian Process2.

The performance of the TRM was evaluated based on its ability to classify the
response categories in the overall pan-cancer setting, considering individual cancer
types and distinct cancer treatments (see Extended Data Table 2). The following
grouped RECIST categories were analysed: 1) Disease Control (combined complete
response, partial response and stable disease) 2) Response (combined complete
response and partial response) and 3) Complete Response. Overall, TRM
demonstrated high accuracy, scoring 0.75, 0.74 and 0.69 in the respective grouped
categories, along with Area Under the Curve (AUC) values of 0.63, 0.73, and 0.72. AUC
reports the Receiver Operating Characteristic area under the curve for the
non-thresholded prediction, and can be interpreted as the probability that a positive
responder had a higher predicted probability of response than a negative responder.
These were evaluated in a 5-fold cross-validation, and the reported value is the mean
across the held-out cross-fold validation sets.

In addition, Extended Data Table 2 shows detailed model performance evaluation.
Specifically, it displays accuracy, AUC, precision, recall and F1 score across a) grouped
RECIST categories b) 9 cancer types and c) 12 cancer drugs. The Weighted Average
provides scores weighted by the support for positive and negative responses. Average
precision is the area under the precision-recall curve, measuring the average precision
overall of all classification thresholds as a function of recall, with higher values being
preferable.
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Significant variations in performance are evident across treatments and tissue types,
and much of this variability is likely attributed to the limited availability of response
data for many cohorts.

Statistics
The clinical trials confidence intervals are calculated according to Altman82 and
Sheskin83. To calculate the predicted log(OR) (log odds ratio), the log(OR) was
calculated for each individual patient in the dataset based on the treatment response
model’s prediction, and the mean log(OR) and standard error were directly calculated.
Because the log(OR) can be calculated for each individual patient the confidence
intervals are much smaller than for an equivalent clinical study which is measuring the
difference in response between two populations. When calculating the log odds
Overall Response Rate (ORR) for a combination therapy the highest log odds for all
treatments in the combination was taken.

Overall Survival
We built an Overall Survival (OS) model as an integral component of the Digital Twin
clinical trial simulator. A survival model is a statistical method to predict the time until
an event, such as death. It deals with the censored data, indicating that the event of
interest did not happen during the study period, and produces survival probability vs.
time curves. We employed Random Survival Forest (RSF), a non-parametric ensemble
learning method that can incorporate censored and time-to-event data58. The learning
process involves the creation of multiple decision trees, and the model is selected
based on the accuracy of predictions on unseen data.

The inputs for the OS are: 1) clinical records data, 2) cancer tissue type and 3) RECIST
response categories from the TRM stage of the Digital Twin. Initially, 10,967 patients
with survival data were pre-processed to end up with data from 4,029 patients with
cancer tumour stages 0-4, lymph node stages 0-3, metastasis status (yes/no), and
ages ranging from 11 to 90 years, across 23 cancer tissue types. Cancer types with
small amounts of patients were removed from the analysis.

For patients with missing data, missing values were imputed with the mean values. The
imputation was performed separately in the train set and validation set. Here, we
group RECIST response categories into binary: 1) Disease (clinical progressive disease
and stable disease, and 2) Response (partial response and complete response). The
descriptive figure about the data is shown in Extended Data Figure 1.

To evaluate the performance of the model, we analysed five different prediction
accuracy metrics across the solid tumours: 1) area under the receiver operating
characteristic (AUC ROC) averaged for all times also known as cumulative dynamic
AUC84 and 2) Uno’s concordance index (C-index) based on the inverse probability of
censoring weights59. It is a goodness of fit measure for models that produce risk
scores, commonly used in survival analysis. The intuition behind the C-index is - when
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comparing patients against each other if the patient with the higher risk score has a
shorter time-to-event; 3) the integrated time-dependent Brier score85. It provides an
overall calculation of the model performance at all available times. The smaller
numerical values represent higher prediction accuracy (0 is the best achievable score
with perfect accuracy and 1 is the worst score). 4) the Brier skill score that is the
difference between the Brier score of the reference mode and the Brier score of the
forecast model, divided by the Brier score of the reference model (1 is the best
achievable score) and 5) explained variance, which is a proportion to which a model
accounts for the variation of a given data set. Time-dependent metrics are integrated
over time. We used scikit-survival86 for calculating the majority of metrics.

We conduct the performance evaluation using a 5-fold split (train/test splits), and all
survival metrics reported are averaged across all cross-folds. In the pan-cancer
setting, the model attained high accuracies as described by the following: AUC ROC =
0.78, C-index = 0.71, Brier score = 0.168, Brier skill = 0.42, and Explained Variance =
0.44. The performance of the OS per cancer was shown in Table 5 of the main body.

For the comparison with the benchmark studies (Figure 3 in the main body), we
conducted a literature survey, selecting studies that focus on the survival analysis
modelling within the oncology field. The complete list of studies is available in
Extended Data Table 1. Given that the majority of studies utilise Harrell’s C-index88, we
computed and compared it on a per-cancer basis.

Feature Importance
We performed the feature importance analysis which emphasised the fact that the
predicted output from the DEM modulates the Overall Survival, influencing clinical trial
outcomes.

We used two methods: permutation-based importance and Cox proportional hazards
model. The former is calculated by randomly permuting a feature and measuring the
difference between the model prediction score after permutation and without. Cox
estimates the impact of individual covariates on the hazard ratio (HR), allowing to
quantify how changes in specific features affect the risk of an event occurring over
time. The latter is a standard survival analysis model in oncology87.

Results are shown in Extended Data Fig 3. Results indicate that the “Disease (No
response)”, which is inferred from the DEM plays a significant role in model
performance. A stronger “disease” results in a positive log(HR) on the Cox model with
the highest HR among all features. The permutation importance method shows that
this feature has high importance, almost comparable to the patient’s age, which is
considered one of the most important factors in cancer survival.
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Integration
Finally, we integrate DEM, TRM and OS models in order to be able to simulate clinical
trials for both existing and novel cancer therapies. We call it a Digital Twin, a virtual
model designed to accurately reflect clinical trials of cancer treatments with cytotoxic
and small molecule therapies across various cancer types. The simulation output can
then be any desired endpoint as predicted by the overall survival model.

The integration of distinct models involves utilising outputs from the preceding model
as inputs for the subsequent model. DEM incorporates pre-clinical data, including gene
expression and mutation profiles, drug response curves and drug compounds and
produces a perturbation kernel. This perturbation kernel is subsequently employed in
the TRM for predicting RECIST response categories. These predicted response
categories are then incorporated into the OS model, along with clinical records data, to
forecast overall patient survival over time.
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Extended Data Figures

Extended Data Figure 1: Digital Twin input data description
Description of the input data used to train the Drug Efficacy Model (a), Treatment Response Model (b) and Overall
Survival Model (c). The distribution of clinical features across the event type (died/censored) (c1). The distribution of
time-to-event data across cancer types (c2).
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Extended Data Figure 2 Drug Efficacy Model Performance
We compare observed vs predicted IC50 to evaluate the performance of the Drug Efficacy Model. The root mean
squared error (RMSE) of the log10 IC50 was 0.47 the coefficient of determination was 0.61.
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Extended Data Figure 3: Feature importance
Feature importance: permutation-based importance (lower x-axis) and Cox hazard
ratio-based importance (upper x-axis). Results indicate that the “disease (no response)”
feature, which is inferred from the DEM plays a significant role in model performance. Results
are based on a single split.
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Method-Data C-index Notes Reference

DeepSurv - METABRIC,
Rotterdam&GBSG,
SUPPORT

0.65, 0.68,
0.62

METABRIC - The Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC). GBSG - German Breast Cancer Study
Group (GBSG). Rotterdam - is a breast cancer data set. SUPPORT -
Study to Understand Prognoses Preferences Outcomes and Risks of
Treatment (cancer is present as a feature only).
Harrell C-index is used.
Only breast cancer.

Katzman et al. (2018),
Curtis et al., (2012),
Royston and Altman
(2013), Schumacher et
al., (1994). Knaus et al.,
(1995).

RSF - METABRIC,
Rotterdam&GBSG,
SUPPORT

0.62, 0.65,
0.62

CPH - METABRIC,
Rotterdam&GBSG,
SUPPORT

0.63, 0.66,
0.58 CPH - cox proportional hazards model.

CPH for survival and
Deep Learning for
identification of tissue
type - TCGA 0.62

RH - radiomic–histopathological combining modalities mode is the
highest c-index. Focus on ovarian cancer (OV). Multimodal data. Boehm et al. (2022)

AECOX - TCGA 0.66
AutoEncoder with Cox regression network. Train and evaluate 12
cancer types. Type of c-index not specified. Huang et al., (2020)

CoxPASNet - TCGA 0.63

Only two cancer types are analysed - Glioblastoma and ovarian. Use
TCGA genomic and clinical data. The comparison is performed
against Cox-EN, Cox-nnet, and SurvivalNet. Hao et al., (2018)

MesoNet - MESOBANK
and TCGA 0.64-0.65 Predict survival of mesothelioma patients from digitised images. Courtiol et al., (2019)

RankDeepSurv -
METABRIC,
Rotterdam&GBSG,
SUPPORT

0.66, 0.69,
0.62

A deep feedforward neural network with new loss function, defined
as the summation of an extended mean squared error loss and a
pairwise ranking loss, incorporating survival data-based ranking
information.
Only breast cancer. Jing et al., (2019)

LSTM - SCap 0.81
Prostate cancer only. Harrell’s C-index is used. AUC is provided
0.83. Koo et al., (2020)

CPH - MSKCCPAN 0.62

Uno’s c-index used. MSKCCPAN - Memorial Sloan Kettering Cancer
Center Pancreatic Adenocarcinoma Nomogram. This is a prediction
tool to help physicians make treatment decisions. Pancreatic cancer
only. Marcinak et al., (2023)

Nomogram 0.71
A nomogram for predicting the occurrence of postoperative
colorectal lesions in colorectal cancer. Kawai et al., (2015)

SPSS software and
STATA/SE 10 - Local
data 0.72

The paper is analysing an optimal TNM staging edition and criteria.
The c-index (Harrell’s) is taken as the average of all stages present
TNM5 - TNM7. Colorectal cancer. Ueno et al., (2012)

Deep learning -
HECKTOR 2020 0.672, 0.626

C-index is for Hand-Crafted (HC) radiomics features and fully
automatic pipeline respectively. Head and Neck cancer. Fontaine et al., (2021)

Feature extraction with
CPH - Local German
dataset

0.78, 0.61,
0.64 CT, and two FDG-PET features models respectively. Starke et al., (2023)

Deep Learning with CPH
-TCGA 0.784, 0.654

Lower‑grade gliomas. The 0.654 c-index is the WHO grade 3
gliomas from TCGA dataset, which were not used for training. Jiang et al., (2021)

XGBoost-Surv - Udine
Hospital data 0.68

Glioma grade 4. Clinical data, radiological data, or panel-based
sequencing data such as presence of somatic mutations and
amplification. Dal Bo et al., (2023)

Extended Data Table 1: Overall survival comparisons

C-index metrics for benchmark computational models, with a focus on survival analysis in oncology. Time-dependent
survival area under the curve (AUC) is infrequently reported in scientific publications. There are two concordance
indices: defined by Harrell et al., (1984)88 and by Uno et al. (2011)59 which is based on the inverse probability of
censoring weights. We utilise both of them, as the latter does not overestimate the index when there are a small
number of events. However, the majority of studies use Harrell’s C-index.
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Metric Positive Weighted Avg.
Acc. AUC Avg.

precision
response

rate
PPV NPV Sensitivity Specificity Precision Recall f1-score Precision Recall f1-score

Overall

Disease control 0.747 0.625 0.883 0.830 0.849 0.261 0.846 0.257 0.849 0.846 0.847 0.750 0.747 0.748
Response 0.735 0.733 0.844 0.710 0.815 0.542 0.811 0.550 0.815 0.811 0.813 0.737 0.735 0.735
Complete Response 0.692 0.723 0.777 0.634 0.759 0.579 0.756 0.585 0.759 0.756 0.756 0.695 0.692 0.692

Cancer

Lung squamous cell 0.774 0.651 0.773 0.607 0.732 1.000 1.000 0.333 0.732 1.000 0.845 0.795 0.774 0.831
Stomach 0.669 0.542 0.814 0.736 0.750 0.333 0.824 0.238 0.750 0.824 0.785 0.640 0.669 0.696
Head and Neck 0.643 0.424 0.750 0.786 0.750 0.000 0.818 0.000 0.750 0.818 0.783 0.589 0.643 0.783
Colon 0.615 0.410 0.601 0.633 0.638 0.250 0.939 0.083 0.638 0.939 0.754 0.537 0.615 0.710
Lung adenocarcinoma 0.605 0.536 0.672 0.605 0.617 0.500 0.917 0.133 0.617 0.917 0.736 0.575 0.605 0.702
Pancreatic 0.541 0.527 0.563 0.469 0.500 0.564 0.373 0.700 0.500 0.373 0.418 0.544 0.541 0.526
Bladder 0.437 0.400 0.610 0.563 0.500 0.000 0.775 0.000 0.500 0.775 0.608 0.282 0.437 0.608

Drug

Docetaxel 0.787 0.565 0.839 0.860 0.871 0.500 0.853 0.500 0.871 0.853 0.860 0.792 0.787 0.785
Cisplatin 0.781 0.667 0.874 0.799 0.836 0.370 0.901 0.297 0.836 0.901 0.867 0.749 0.781 0.791
Platinum therapies 0.764 0.649 0.873 0.804 0.837 0.347 0.881 0.300 0.837 0.881 0.857 0.741 0.764 0.750
Fluorouracil 0.757 0.617 0.843 0.825 0.844 0.396 0.852 0.381 0.844 0.852 0.848 0.756 0.757 0.756
Anthracyclines 0.753 0.647 0.846 0.894 0.801 0.000 0.922 0.000 0.801 0.922 0.857 0.658 0.753 0.857
Doxorubicin 0.753 0.647 0.846 0.894 0.801 0.000 0.922 0.000 0.801 0.922 0.857 0.658 0.753 0.857
All therapies 0.732 0.695 0.852 0.759 0.825 0.446 0.823 0.454 0.825 0.823 0.823 0.734 0.732 0.732
Taxanes 0.712 0.608 0.844 0.776 0.805 0.374 0.833 0.314 0.805 0.833 0.816 0.712 0.712 0.706
Paclitaxel 0.667 0.542 0.774 0.727 0.746 0.393 0.825 0.274 0.746 0.825 0.779 0.660 0.667 0.649
Carboplatin 0.657 0.555 0.828 0.774 0.767 0.191 0.788 0.190 0.767 0.788 0.775 0.641 0.657 0.678
Oxaliplatin 0.650 0.617 0.776 0.806 0.700 0.500 0.783 0.433 0.700 0.783 0.736 0.635 0.650 0.636
Gemcitabine 0.512 0.566 0.705 0.624 0.664 0.411 0.471 0.604 0.664 0.471 0.539 0.579 0.512 0.516

Extended Data Table 2: Treatment Response Model Performance
A summary of the performance evaluation metrics of the treatment response model (TRM). The metrics were evaluated in a cross-fold validation with 5 splits. The reported value is the
mean across the held-out cross-fold validation sets. The output of the TRM is a probability of response, so for the binary accuracy metrics, the prediction was thresholded such that the
predicted response rates matched that of the training set.
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