
Cross-ancestry genetic investigation of schizophrenia, cannabis use disorder, and 
tobacco smoking 

 
Emma C Johnson1, Isabelle Austin-Zimmerman2, Hayley HA Thorpe3, Daniel F Levey4,5, David 

AA Baranger6, Sarah MC Colbert7, Ditte Demontis8,9, Jibran Y Khokhar3, Lea K Davis11,12,13, 
Howard J Edenberg14,15, Marta Di Forti2, Sandra Sanchez-Roige11,16, Joel Gelernter4,5, Arpana 

Agrawal1 

 
1Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA 

2Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and 
Neuroscience, King’s College London, London, UK 

3Department of Anatomy and Cell Biology, Western University, London, ON, Canada 
4Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New 

Haven, CT, USA 
5Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA 
6Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, 

MO USA 
7Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New 

York, NY USA 
8The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, 

Denmark 
9Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, 

Aarhus, Denmark 
10deCODE Genetics/Amgen, Inc., Reykjavik, Iceland 

11Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA 
12Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 

Nashville, TN, USA 
13Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA 

14Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 
Indianapolis, IN, USA 

15Department of Medical and Molecular Genetics, Indiana University School of Medicine, 
Indianapolis, IN, USA 

16Department of Psychiatry, UC San Diego School of Medicine, La Jolla, CA, USA 
 
Funding and competing interests 
ECJ received support from K01DA051759. DAAB received funding from K99AA030808. JYK 
received support from a Canada Research Chair in Translational Neuropsychopharmacology 
(CIHR). HHAT is funded by a Canadian Institutes of Health Research Postdoctoral Fellowship. 
SSR was supported by T32IR5226 and DP1DA054394. DFL received support from 
1IK2BX005058-01A2. JG received support from R01DA058862. J.G. is a holder of US patent 
10,900,082 titled: ‘Genotype-guided dosing of opioid agonists’, issued 26 January 2021. J.G. is 
paid for their editorial work on the journal Complex Psychiatry. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.17.24301430doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.01.17.24301430
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 
Individuals with schizophrenia frequently experience co-occurring substance use, including 
tobacco smoking and heavy cannabis use, and substance use disorders. There is interest in 
understanding the extent to which these relationships are causal, and to what extent shared 
genetic factors play a role. We explored the relationships between schizophrenia (Scz), 
cannabis use disorder (CanUD), and ever-regular tobacco smoking (Smk) using the largest 
available genome-wide studies of these phenotypes in individuals of African and European 
ancestries. All three phenotypes were positively genetically correlated (rgs = 0.17 – 0.62). 
Causal inference analyses suggested the presence of horizontal pleiotropy, but evidence for 
bidirectional causal relationships was also found between all three phenotypes even after 
correcting for horizontal pleiotropy. We identified 439 pleiotropic loci in the European ancestry 
data, 150 of which were novel (i.e., not genome-wide significant in the original studies). Of these 
pleiotropic loci, 202 had lead variants which showed convergent effects (i.e., same direction of 
effect) on Scz, CanUD, and Smk. Genetic variants convergent across all three phenotypes 
showed strong genetic correlations with risk-taking, executive function, and several mental 
health conditions. Our results suggest that both horizontal pleiotropy and causal mechanisms 
may play a role in the relationship between CanUD, Smk, and Scz, but longitudinal, prospective 
studies are needed to confirm a causal relationship. 
 
 
Introduction 
 Schizophrenia (Scz) is a psychiatric condition with an estimated twin-based heritability of 
around 80%1,2. Substance use disorders (SUDs) are highly prevalent in individuals with Scz3. Of 
these co-occurring SUDs, the role of cannabis use as a risk factor for Scz and first episode 
psychosis onset remains a classical “chicken or egg” problem in psychiatry4.  
 Some studies have suggested a causal, dose- and age-dependent effect of cannabis 
use on risk for onset of Scz and other forms of psychosis5–7. However, cannabis use and 
cannabis use disorder (CanUD) are heritable8 (twin heritability ~50%), and an alternative 
hypothesis is that shared genetic pathways underlie liability to Scz and cannabis use 
phenotypes9,10. Genetic correlations from genome-wide association studies (GWAS) have 
provided support for some genetic commonality (e.g., SNP-rg (Scz, cannabis use) = 0.2511, 
SNP-rg (Scz, CanUD) = 0.3712). A recent study identified 27 and 21 genome-wide significant loci 
contributing to the shared genetic etiology between Scz and cannabis use and CanUD, 
respectively13. However, the identification of shared loci was largely driven by genome-wide 
significant loci in the Scz GWAS, due to the relative difference in discovery power between the 
Scz and cannabis GWASs. Furthermore, these prior studies have largely been performed in 
samples predominantly of European ancestry, limiting the generalizability of these findings.    
 Horizontal pleiotropy (i.e., genetic variants independently contributing to both CanUD 
and Scz) and vertical pleiotropy (i.e., shared genetic associations via a causal path) are not 
mutually exclusive; both mechanisms may play a role in the co-occurrence of CanUD and Scz. 
Genetically informed studies of CanUD and Scz have reached mixed conclusions, with no single 
direction of causality receiving overwhelming support14,15. Several Mendelian Randomization 
analyses have suggested greater support for Scz causing cannabis use and CanUD than the 
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opposite direction11,16, while the most recent GWAS of CanUD found a bidirectional causal 
association between Scz and CanUD17. 

Few prior genetic studies have attempted to disentangle how nicotine/tobacco use 
genetics impacts the genetic relationship between Scz and CanUD. Approximately 72% of those 
with Scz report daily tobacco smoking (while this same report estimated 43% were regular 
cannabis users18), and there is evidence that individuals who smoke tobacco daily are at 
increased risk of psychosis19, an earlier age of onset of first psychotic episode19, and the 
development of schizophrenia20. The prevalence of tobacco use, whether as tobacco cigarettes 
or consumed with cannabis in certain preparations (e.g., blunts, where tobacco is removed from 
a cigar and replaced with cannabis, or spliffs, where cannabis and tobacco are rolled together), 
is also high in individuals with CanUD21,22. Prior studies have reported genetic correlations of 
tobacco smoking with CanUD (SNP-rg = 0.6117) and Scz (SNP-rg = 0.1423). Despite this, few 
epidemiologic studies have taken potential genetic sharing into account when reporting 
evidence for causal relationships between tobacco, cannabis, and Scz6,7. In turn, few genomic 
studies of cannabis and Scz have considered the role of tobacco13, despite the frequent co-
occurrence of tobacco and cannabis use, especially in Europe24. In a prior study, we found that 
genetic liability for CanUD was positively associated with genetic liability for Scz even when 
accounting for the genetic components of cannabis ever-use, tobacco smoking, and nicotine 
dependence10. Another study found a causal effect of genetic liability to cannabis use on risk for 
schizophrenia, and this association was unchanged when accounting for tobacco smoking15. 
Thus, the genetic association between cannabis and Scz appears to be independent of tobacco 
use genetics to some extent, although the relatively low power of prior CanUD GWAS meant 
limited conclusions could be drawn from these earlier studies. 

Given the significant genetic correlations between CanUD, tobacco smoking, and Scz, 
the increasing pace of cannabis legalization with emerging increases in CanUD incidence25, 
parallel increases in the popularity of nicotine vaping26, and the consequent potential impact on 
the course of Scz in those with heavy cannabis and tobacco use27–31, we investigated the 
evidence for causal relationships and horizontal pleiotropy between CanUD, tobacco smoking, 
and Scz. We used the largest genome-wide summary statistics available for Scz32 (European 
ancestry N = 161,405; African ancestry N = 15,846), CanUD17 (European ancestry N = 886,025; 
African ancestry N = 120,208), and ever-regularly smoking tobacco33 (Smk; European ancestry 
N = 805,431; African ancestry N = 24,278) in samples whose genetic ancestry is most similar to 
those historically from Europe (henceforth referred to as “European ancestry”) and samples 
whose genetic ancestry is most similar to those historically from Africa (henceforth referred to as 
“African ancestry”) to identify and characterize pleiotropic signals and conduct causal inference 
analyses. We focused on CanUD and Smk (as opposed to cannabis ever-use, or cigarettes per 
day) as CanUD was the cannabis phenotype with the largest genetic correlation with Scz, there 
was no available GWAS of cannabis consumption or heaviness of use, and current GWAS of 
nicotine dependence (relying on the Fagerström Test for Nicotine Dependence34 (FTND)) have 
been relatively under-powered compared to Smk. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.17.24301430doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.17.24301430
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 
Genome-wide genetic correlations 

Schizophrenia (Scz), Cannabis Use Disorder (CanUD), and ever-smoking tobacco 
regularly (Smk) were significantly genetically correlated in the European ancestry data (Table 
S1). The magnitude of the genetic correlation between Scz and CanUD (rg = 0.37, SE = 0.02, p 
= 2.97e-60) was statistically greater (pdiff = 6.5e-18) than the correlation between Scz and Smk 
(rg = 0.17, SE = 0.02, p = 6.88e-20) or between Scz and a measure of nicotine dependence 
more similar to CanUD, the FTND (rg = 0.22, SE = 0.04, p = 1.56e-7; pdiff = 0.002). This 
suggests that our choice of ever-regular smoking, rather than the FTND, as a measure of 
tobacco use was not the reason for the lower genetic correlation. 

In the African ancestry data, the largest genetic correlation was between Scz and 
CanUD (rg = 0.61, SE = 0.14, p = 1.41e-5; Table S1). While the genetic correlation between Scz 
and Smk (rg = 0.34, SE = 0.15, p = 0.03) was of greater magnitude than in the European 
ancestry data, this estimate was not significantly different from zero after accounting for multiple 
testing, due to the much larger standard error.  

 
Causal inference analyses 

Using CAUSE35, a method that accounts for both correlated and uncorrelated horizontal 
pleiotropic effects, we found evidence for bidirectional causal relationships between all three 
phenotypes in the European ancestry data (Figure 1a, Table S2).  

To explicitly test for the presence of horizontal pleiotropy, and to ensure our results were 
not isolated to a specific method of causal inference, we also performed Mendelian 
Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO36) analyses in the 
European ancestry data. The MR-PRESSO global test for horizontal pleiotropy was significant 
for each pairwise test, and we found significant bidirectional causal effects between all three 
traits after the removal of outliers for horizontal pleiotropy (Figure 1b), consistent with the 
results from CAUSE. Results from other MR methods were generally consistent, with the same 
direction of effect (Table S3), although the more conservative MR-Egger test37,38 only showed a 
statistically significant causal effect of Smk on CanUD. 
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Figure 1. Panel A: Causal estimates (gamma) and 95% confidence intervals from CAUSE. 
Panel B: Causal estimates (beta) and 95% confidence intervals from MR-PRESSO. “Exposure” 
phenotypes are indicated by the color, while “Outcome” phenotypes are listed on the y-axis. 
 
Cross-trait loci: European ancestry   

In consideration of the significant genetic correlations and evidence for horizontal 
pleiotropy from MR-PRESSO, we used ‘Association analysis based on SubSETs’ (ASSET39) to 
combine the GWAS summary data for CanUD, Smk and Scz (separately by ancestry), using the 
two-tailed meta-analysis approach. Unlike traditional meta-analysis approaches, ASSET 
accounts for SNPs with significant effects on multiple disorders even if the effects on the traits 
are in opposite directions. Following Lam et al.40, we use the following notation for each subset: 
∩ represents variant subsets with the same directions of effect (+ or -), and | represents variant 
subsets whose effects are divergent across the different phenotypes. We therefore defined four 
subsets: (1) Scz ∩ CanUD ∩ Smk (i.e., a subset with convergent effects across all 3 traits); (2) 
Scz ∩ CanUD | Smk (i.e., a subset of variants with convergent effects for Scz and CanUD, but 
divergent effects for Smk); (3) Scz ∩ Smk | CanUD; and (4) CanUD ∩ Smk | Scz. 

In total, we identified 439 pleiotropic genomic risk loci (i.e., loci where the lead SNP has 
an effect on all three phenotypes). Of these, 150 loci were novel (i.e., not genome-wide 
significant in any of the original GWAS; see Table S4 and Table S5), with 127 of these loci 
having lead SNP p-values �1e-5 in at least one of the original GWAS, and the remaining 23 
having p-values �1.4e-4.  

For the subset of SNPs with convergent effects across all 3 traits (Scz ∩ CanUD ∩ Smk) 
in the European ancestry samples, we identified 202 genomic risk loci with 259 lead SNPs 
(Table S6). The strongest locus was on chromosome 8, with the top lead SNP being 
rs73229090 (chr8:27442127, p = 1.5e-62; Figure 2), located in an intron of the non-coding gene 
GULOP, replicating previous associations with each trait (e.g., 41–43). This SNP is also an 
expression quantitative trait locus (eQTL) for EPHX2 in B cells, tibial artery, esophagus, and 
cultured fibroblast cells, CHRNA2 in the cerebellum, and CCDC25 in the nucleus accumbens.  

The Scz ∩ CanUD | Smk subset of SNPs revealed 37 genomic risk loci with 37 lead 
SNPs (Table S7). The top association was on chromosome 16, with lead SNP rs9924686 
(chr16:30003076, p = 3.3e-15) within a locus previously implicated by Scz GWAS41. This SNP, 
located in the 3’ untranslated region of the serine/threonine-protein kinase gene TAOK2, has a 
CADD score of 18.16, suggesting deleteriousness, and a RegulomeDB score of 1f (eQTL + 
transcription factor binding/DNase peak), suggesting that this SNP is likely to affect transcription 
factor binding and linked to expression of a gene target. Furthermore, rs9924686 is an eQTL for 
several genes, including genes associated with metabolic and immunological traits44,45 (YPEL3 
and INO80E in adipose tissue and several brain tissues) and alcohol intake45,46 (PPP4C and 
MVP in cultured cell fibroblasts).  

We identified 46 genomic risk loci with 48 lead SNPs for the Scz ∩ Smk | CanUD subset 
(Table S8). Chromosome 2 had the strongest signal in this subset, with intergenic lead SNP 
rs2947411 (chr2:614168, p = 3.6e-19) that replicates previous associations with Smk43. This 
SNP was an eQTL for only one gene (SH3YL1 in whole blood).  

There were 114 genomic risk loci and 143 lead SNPs for the CanUD ∩ Smk | Scz subset 
(Table S9). The strongest meta-analytic effect was at lead SNP rs4620159 on chromosome 6 
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(chr6:111744735, p = 1.8e-28); this locus was previously associated with Smk and CanUD47,48. 
The lead SNP is an intronic variant in REV3L, a gene previously associated with smoking and 
several metabolic traits23,45.  

 

 
Figure 2. Example forest plots from the ASSET European ancestry cross-disorder meta-
analysis of CanUD, Smk, and Scz. The lower right panel shows lead SNP (rs73229090) in Scz
∩ CanUD ∩ Smk subset. The upper right panel shows SNP (rs9924686) in Scz ∩ CanUD | Smk 
subset. The upper left panel shows SNP (rs2947411) in Scz ∩ Smk | CanUD subset. The lower 
left panel shows SNP (rs4620159) in CanUD ∩ Smk | Scz subset. 
 
Cross-trait loci: African ancestry   

No associations passed the genome-wide significance threshold (alpha = 5e-8) in the 
ASSET analysis of the African ancestry data. However, the 14,001 pleiotropic SNPs that were 
genome-wide significant in the European ancestry data showed smaller p-values than expected 
by chance in the African ancestry data (i.e., the distribution of p-values was significantly left-
skewed, with a Kolmogorov-Smirnov goodness-of-fit test indicating significant (p < 2e-16) 
divergence from a distribution of 14,001 randomly sampled SNP p-values). This suggests that 
with larger sample sizes, future analyses might identify similar loci across both the European 
and African ancestry datasets.  
 
Cross-ancestry meta-analysis 
 We performed a sample size-weighted cross-ancestry meta-analysis of the ancestry-
specific one-sided meta-analysis results from ASSET. Unlike the ancestry-specific two-tailed 
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meta-analyses described above, the one-sided meta-analysis in ASSET is more like a 
traditional meta-analysis, resulting in one effect size per SNP regardless of whether the SNP 
shows divergent directions of effect across traits. The cross-ancestry meta-analysis of CanUD, 
Smk, and Scz resulted in 448 genome-wide significant risk loci (Table S10). 
 
Genetic associations with other phenotypes 
 After defining SNP subsets using ASSET, we used GNOVA49 to estimate genetic 
correlations between the SNP subsets and educational attainment50 (Edu), executive function51, 
risk-taking46, and Townsend deprivation index (TDI; a regional measure of deprivation in the 
UK) in the European ancestry data (Figure 3, Table S11). Edu has previously been shown to 
be positively correlated with a subset of variants contributing to Scz risk40, despite negative 
genetic correlations between Scz and cognitive function52, and we expected that related 
socioeconomic status (i.e., TDI), executive function, and risk-taking phenotypes might be 
differentially associated with SNP subsets. For all subsets, the effect estimate was aligned with 
the direction of effect for CanUD.  

The Scz ∩ CanUD ∩ Smk subset (i.e., variants with the same direction of effect on all 
three phenotypes) showed the strongest genetic correlations with all traits tested except Edu, 
where the Scz ∩ CanUD ∩ Smk and CanUD ∩ Smk | Scz subsets showed similar magnitudes 
of genetic correlation. For Edu, risk-taking, and TDI, the Scz ∩ CanUD ∩ Smk and CanUD ∩ 
Smk | Scz subsets showed the same direction of genetic correlation, while the Scz ∩ Smk | 
CanUD subset showed correlations in the opposite direction. In other words, genetic variants 
with the same direction of effect on CanUD and Smk, regardless of the direction of effect on 
Scz, showed similar negative genetic correlations with Edu, and positive genetic correlations 
with risk-taking and TDI, while genetic variants with the same direction of effect on Scz and Smk 
but not CanUD showed correlations in the opposite direction. Notably, the Scz ∩ CanUD ∩ Smk 
and Scz ∩ CanUD | Smk subsets were negatively genetically correlated with executive function, 
while the Scz ∩ Smk | CanUD subset was positively correlated and the CanUD ∩ Smk | Scz 
subset was not significantly correlated, suggesting a pivotal role of the intersection of CanUD 
and Scz, regardless of Smk, on executive functioning. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.17.24301430doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.17.24301430
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 3. Estimated genetic correlations between educational attainment (Edu), executive 
function (EF), risk-taking (Risk), and Townsend deprivation index (TDI) and SNP subsets 
from ASSET. Asterisks (*) represent genetic correlations that are statistically significant after 
Bonferroni correction for 16 tests (p < 0.003).  

 
We also created polygenic scores (PGS) from each SNP subset in the European 

ancestry data and tested their associations with a range of health-related phenotypes in the 
BioVU biobank. In line with the genetic correlations in GNOVA, the PGS for the convergent 
subset of SNPS (Scz ∩ CanUD ∩ Smk) showed the strongest associations overall with most 
subsets of traits (Figure 4A), especially suicide attempt, psychosis, PTSD, conduct disorders, 
antisocial/borderline personality disorder, bipolar disorder, and alcohol-related disorders, among 
other psychiatric phenotypes (Figure 4B). Exceptions to this pattern included metabolic and 
endocrine phenotypes (Figure 4B), for which the PGS for the CanUD ∩ Smk | Scz subset had 
the greatest magnitude of associations with many of these traits, including acidosis, adult failure 
to thrive, type 2 diabetes, and hyperkalemia.  
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Figure 4. Associations between polygenic scores for SNP subsets from ASSET and 
health-related phenotypes in the BioVU biobank. Panel A: Upset plot showing the number of 
phenotypes within different categories associated with one or more PGS. Panel B: Forest plots 
showing associations between the four ASSET SNP subset PGSs and mental disorders (left 
panel) and endocrine/metabolic traits (right panel) in BioVU. 
 
Partitioned genetic covariance analysis 
 When stratified by broad tissue type, the genetic covariance between CanUD and Scz 
was significantly enriched for brain tissues in the European ancestry data (� = 0.029, p = 8.3e-
4), while the genetic covariance between Smk and Scz was not significantly enriched for any 
tissue category (Figure S1, Table S12).  
 
Discussion 
 The nature of the relationship between cannabis use and schizophrenia is a compelling 
and fiercely debated question in psychiatry, one that is complicated by the possibility of shared 
genetic factors and the frequent co-occurrence with tobacco smoking. There are major public 
health implications associated with a causal effect of cannabis use on schizophrenia risk, so a 
resolution of this question is important. Here, we describe the largest genome-wide, cross-
ancestry and cross-disorder analyses of cannabis use disorder (CanUD), tobacco smoking 
(Smk), and schizophrenia (Scz) to date.  

Our analyses revealed three key findings. First, CanUD and Smk are both genetically 
correlated with Scz, and this was consistent in both the European and African ancestry 
datasets. However, CanUD and Scz showed a greater degree of genetic overlap than Smk and 
Scz. Second, causal inference analyses suggested evidence of bidirectional causality for 
genetic liability to Scz, CanUD, and Smk, albeit in the presence of horizontal pleiotropy. Third, 
genomic loci that comprise the intersection between CanUD and Scz are associated with other 
mental health conditions and executive functioning.  

In causal inference analyses that accounted for both correlated and uncorrelated forms 
of horizontal pleiotropy, we saw evidence for bidirectional causal relationships between all three 
phenotypes. We found evidence of horizontal pleiotropy for all trait pairs through the MR-
PRESSO global test, but again found significant bidirectional causal estimates even after 
removing outlier SNPs for horizontal pleiotropy. Collectively, these results support causal links 
between CanUD, Smk, and Scz, although it is worth noting that the MR-Egger test did not 
support any causal relationships except for genetic liability for Smk causing CanUD. Convergent 
evidence from additional sources (especially longitudinal, prospective cohort studies) are 
needed53, especially in light of conflicting results from epidemiological studies5,6,54 and the 
limitations (and assumptions) associated with genetic methods of causal inference55. 

Over 200 loci had convergent genome-wide significant effects on CanUD, Smk and Scz. 
The strongest convergent locus was on chromosome 8, with the lead SNP being a brain eQTL 
for EPHX2, CHRNA2, and CCDC25. While CHRNA2, a nicotinic cholinergic receptor (nAChR), 
seems an intuitive finding for Smk, this locus was most strongly associated with Scz and CanUD 
(Figure 2), and the top lead variant in all recent CanUD GWASs has mapped to this locus12,17,42. 
The role of cholinergic disturbance in positive56 symptoms and cognitive symptoms 57 of Scz 
raise the potential for use of nChR agonists for treatment of comorbid Scz, CanUD and Smk58. 
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EPHX2 encodes soluble epoxide hydrolase (sEH), the overexpression of which has been 
implicated in Scz59 and other diseases with a neuroinflammatory component (e.g., Alzheimer’s 
Disease). There is evidence for synergy between sEH and fatty acid amide hydrolase (FAAH60), 
which metabolizes endogenous cannabinoids and the inhibition of which is being evaluated for 
the treatment of pain. Given the emerging and paradoxical role of CanUD and a 
proinflammatory state61, the role of EPHX2 at the intersection of these disorders is intriguing. 

Variants previously implicated in metabolic phenotypes emerged from the Scz ∩ CanUD 
| Smk subset. For instance, the lead SNP rs9924686 in TAOK2 was negatively associated with 
CanUD and Scz but not Smk and has been implicated in numerous prior GWAS of metabolic 
traits62,63. Further, while PGS derived from this subset were associated with both psychiatric and 
metabolic traits, the direction of association differed between this subset and the polygenic 
score of the fully convergent subset for metabolic but not psychiatric phenotypes (Figure 4).  

Genetic predisposition for executive functioning was negatively correlated with the 
subset of fully convergent variants (Scz ∩ CanUD ∩ Smk), as well as those in the Scz ∩ CanUD 
| Smk subset, but positively associated with the other two subsets (i.e., where effects diverged 
for either CanUD or Scz), suggesting that only variation shared by CanUD and Scz related to 
lower executive functioning. Executive functioning deficits are a defining feature of Scz52 and a 
broad range of substance use disorders51,64,65, consistent with our findings. Executive 
functioning deficits have also been implicated in a broader range of mental health conditions51, 
which also aligns with our observation that variants influencing CanUD and ScZ, regardless of 
their effects of Smk, appear to index serious psychiatric comorbidity. Notably, while executive 
functioning is related to educational attainment51, the pattern of associations between 
convergent subsets of variants and educational attainment appeared to be quite different – for 
instance, any subset where CanUD and Smk diverged was associated with greater educational 
attainment, suggesting that educational attainment was more closely related to convergent 
signals for CanUD and Smk, rather than Scz. Thus, our study implicates the genetic liability to 
lower executive functioning as a common mechanism undergirding CanUD and Scz.  
 The genetic correlation between CanUD and Scz (rg = 0.37, SE = 0.02) was significantly 
greater (pdiff = 6.5e-18) than that between Smk and Scz (rg = 0.17, SE = 0.02) in the European 
ancestry data (with a similar but non-significant pattern in the African ancestry data: rg(CanUD, 
Scz) = 0.61, SE = 0.14 vs. rg(Smk, Scz) = 0.34, SE = 0.15). This suggests a greater proportion 
of shared genetic effects for CanUD and Scz than for Smk and Scz. When we partitioned the 
genetic covariance between phenotype pairs (Scz and CanUD, and Scz and Smk) into broad 
tissue types, the genetic covariance of CanUD and Scz was enriched for brain tissue, while the 
genetic covariance between Smk and Scz was not significantly enriched in any tissue category. 
These results are consistent with an overall pattern of findings in our study: the degree of 
genetic overlap, and the extent to which it is enriched in meaningful biological categories, is 
greater for CanUD and Scz than for Smk and Scz.  

Our analyses of African ancestry data increase the generalizability of our findings. 
However, the smaller sample size of the individual African ancestry GWASs and limited 
available data for follow-up analyses (e.g., annotation files for partitioned genetic covariance 
analyses) constrained the extent to which we were able to accomplish our goal of equitable 
analyses. The genetic correlation between CanUD and Scz was substantially larger in the 
African ancestry data (rg = 0.610, SE = 0.140, p = 1.41e-5) than in the European ancestry data 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 18, 2024. ; https://doi.org/10.1101/2024.01.17.24301430doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.17.24301430
http://creativecommons.org/licenses/by-nc-nd/4.0/


(rg = 0.373, SE = 0.023, p = 2.97e-60), albeit with a much larger standard error, suggesting that 
with increasing sample size, there could be considerable opportunity to identify pleiotropic loci. 

Several other limitations applied to our study. First, while early age of cannabis initiation 
and use of high-potency cannabis have been suggested as risk factors for Scz, we did not have 
data available on potency and did not include age at first use in our analyses, as the only 
available GWAS for this phenotype was relatively underpowered and had non-significant SNP-
heritability66. Similarly, we were unaware of any GWAS of cannabis consumption (i.e., 
heaviness or frequency of use). Another limitation is that the individual GWAS likely contain 
comorbid cases (e.g., a SCZ case with co-occurring CanUD), and this could artificially inflate 
our estimates of genetic correlations. Furthermore, cross-trait assortative mating has been 
shown to bias genetic correlations (e.g., between alcohol use disorders and schizophrenia)67, 
although the extent to which this could be affecting estimates of correlation between Scz, 
CanUD, and Smk specifically has not yet been quantified. Finally, there may be some sample 
overlap among the different GWAS (especially for CanUD and Smk), which could have inflated 
our MR results (but not CAUSE, which accounts for sample overlap).  

Overall, our results add to the body of literature suggesting that both Smk and CanUD 
may be important predisposing factors as well as sequela of Scz. We demonstrate that the 
relationship between Smk, CanUD, and Scz may be due to both correlated genetic and 
reciprocal causal effects. Further, we identify executive functioning as a potential phenotype that 
links genetic liability for CanUD and Scz. While cigarette use is generally decreasing68, nicotine 
exposure through vaping is increasing26,69 and cannabis legalization and use are becoming 
more widespread worldwide70. As substance use policies and modes of use continue to change, 
it is important to carefully monitor epidemiologic trends in mental health conditions, especially 
schizophrenia and other psychotic disorders, and consider targeted interventions that may 
benefit individuals with heavy cannabis and tobacco use.  
 
 
Methods 
Genome-wide summary statistics 
We used summary statistics from the largest available GWAS of each trait: Scz, CanUD and 
tobacco smoking.  

● Schizophrenia (Scz): We used data from the most recent Psychiatric Genomics 
Consortium (PGC) Schizophrenia genome-wide association study (GWAS) meta-
analysis of individuals of European ancestry (N = 161,405; Ncases = 67,390)32. We also 
analyzed summary statistics from a GWAS meta-analysis of schizophrenia in African 
ancestry individuals (N = 15,846; Ncases = 7509), from the Cooperative Studies Program 
(CSP) #572 and the Genomic Psychiatry Cohort71. 

● Cannabis use disorder (CanUD): We used data from Levey et al.’s recent GWAS meta-
analysis of cannabis use disorder17, which combined data from the Million Veteran 
Program, the Psychiatric Genomics Consortium, the Lundbeck Foundation Initiative for 
Integrative Psychiatric Research, and deCODE Genetics (European ancestry N = 
886,025; Ncases = 42,281; African ancestry N = 120,208; Ncases = 19,065). 

● Ever-smoked tobacco regularly (Smk): We used summary statistics from the GWAS & 
Sequencing Consortium of Alcohol and Nicotine use (GSCAN) GWAS of self-reported 
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ever/never regular cigarette smoking (European ancestry N = 805,431; Never = 393,707; 
African ancestry N = 24,278; Ncases = 9,916)72. We used the publicly-available set of 
summary statistics, which does not include data from 23andMe; the sample sizes 
reported here reflect that exclusion. This phenotype was measured in a variety of ways 
in different cohorts (e.g., “Have you smoked over 100 cigarettes over the course of your 
life?”, “Have you ever smoked every day for at least a month?”, “Have you ever smoked 
regularly?”). We selected this phenotype over others reflecting smoking quantity 
(cigarettes per day) or dependence because it had the largest sample size and the most 
genome-wide significant loci of any tobacco-related GWAS and shows considerable 
overlap with other nicotine use traits; thus, it seems likely that the genetics of Smk would 
be inclusive of most genetic factors related to tobacco involvement.  

We also used genome-wide summary statistics for educational attainment, executive function, 
risk-taking, and the Townsend Deprivation Index (TDI): 

• Educational attainment: We used data from a GWAS of educational attainment 
from Lee et al.50 (2018) in individuals of European ancestry (N = 766,345). 

• Executive function: We used summary statistics from a GWAS of executive 
function in the European ancestry subset of the UK Biobank by Hatoum et al.51 
(2023; N = 427,037). 

• Risk-taking: We used data from a GWAS by Linnér et al.46 (2019) of a single item 
that queried whether someone was a risk-taker. This GWAS was a meta-analysis 
of the UK Biobank and 10 replication cohorts (N = 466,571). 

• TDI: We used summary statistics from the Neale Lab GWAS 
(https://www.nealelab.is/uk-biobank) of the Townsend Deprivation Index (a 
measure of material deprivation in a region, incorporating data on 
unemployment, non-car-owning households, non-home-owning households, and 
household overcrowding) in the European ancestry subset of the UK Biobank (N 
= 336,798). 

Genome-wide genetic correlation analyses 
We used linkage disequilibrium score regression73,74 (LDSC) to estimate pairwise 

genome-wide genetic correlations (rg) between Scz, Smk, and CanUD. For the European 
ancestry summary statistics, we used pre-computed LD scores from the 1000 Genomes Phase 
3 European reference panel (available from the LDSC website). For the African ancestry 
summary statistics, we used pre-computed LD scores from the PanUKBB African ancestry 
sample (available from https://pan.ukbb.broadinstitute.org/downloads).  

We further tested whether genetic correlations were significantly different from each 
other using a block-jackknife method74,75. The block-jackknife method is a resampling approach, 
where the difference between resampling genetic correlations is used to calculate a jackknife 
standard error. From this standard error a Z-statistic is estimated and used in a two-tailed Z-test 
to determine if the difference between two genetic correlations is significantly different from zero 
(i.e., H0: rg(Scz, Smk) - rg(Scz, CanUD) = 0). 
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Causal inference analyses 

We tested for causal relationships between Scz, CanUD, and Smk using CAUSE35. 
Compared to traditional Mendelian Randomization methods, CAUSE has the advantage of 
accounting for correlated horizontal pleiotropic effects (i.e., a genetic instrument is associated 
with a confounder which is related to both the exposure and the outcome) as well as 
uncorrelated horizontal pleiotropy. CAUSE uses a less stringent p-value threshold (p < 1e−3) to 
incorporate data from more variants across the genome. CAUSE constructs two nested models: 
a sharing model and causal model. Both models allow for horizontal pleiotropic effects; 
however, only the causal model includes a causal effect parameter (gamma). CAUSE compares 
the sharing and causal models to each other, to determine which model best fits the data, by 
estimating the difference in the expected log pointwise posterior density (ΔELPD). CAUSE then 
computes a z-score from the ΔELPD that can be compared to a normal distribution to obtain a 
one-sided p-value, which corresponds to a test of the null hypothesis that the sharing model fits 
the data at least as well as the causal model. Significant p-values therefore indicate the 
presence of a causal effect, after accounting for pleiotropy.  

We performed additional causal inference analyses, including Mendelian Randomization 
Pleiotropy RESidual Sum and Outlier (MR-PRESSO36) analyses to test for horizontal pleiotropy 
and causal relationships among Scz, CanUD, and Smk. We performed these analyses using the 
TwoSampleMR R package76,77. We required SNP instruments to have p-value < 5e-8 and 
performed LD-based clumping. We report the results from the MR-PRESSO global test for 
horizontal pleiotropy, MR-PRESSO test for causality after removing outliers for horizontal 
pleiotropy, MR-Egger, weighted median, inverse variance weighted, simple mode, and weighted 
mode tests for causality, heterogeneity tests for the inverse variance weighted and MR-Egger 
tests, and the MR-Egger pleiotropy test (Table S3). 

We only performed these analyses using the European ancestry summary statistics, 
because the African ancestry summary statistics were relatively under-powered for a causal 
inference analysis, particularly the Scz summary statistics. 
 
Cross-disorder genome-wide association study meta-analysis 

We used ‘Association analysis based on SubSETs’ (ASSET39) to combine the GWAS 
summary data for CanUD, Smk and Scz (separately by ancestry), using the two-tailed meta-
analysis approach to obtain a single cross-disorder association statistic. Unlike traditional meta-
analysis approaches, ASSET takes into account SNPs with significant effects on multiple 
disorders even if the effects on the traits are in opposite directions. We used the LDSC genetic 
covariance intercept to approximate the degree of sample overlap amongst the studies and 
included it in the ASSET covariance matrix. Default parameters were applied using the ‘h.traits’ 
function. 

We then separated the ASSET results into subsets. Following Lam et al.40, we use the 
following notation for each subset: ∩ represents variant subsets with the same directions of 
effect (+ or -), and | represents variant subsets whose effect sizes are in the opposite direction 
of those for one versus the other two traits. We defined four subsets: (1) Scz ∩ CanUD ∩ Smk 
(i.e., a subset with convergent effects across all 3 traits); (2) Scz ∩ CanUD | Smk (i.e., a subset 
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of variants with convergent effects for Scz and CanUD, but divergent effects for Smk); (3) Scz ∩ 
Smk | CanUD; and (4) CanUD ∩ Smk | Scz. 

For each subset, we used FUMA v1.6.178 for annotation and identification of genome-
wide significant risk loci and independent lead SNPs. We used the matching ancestry subset of 
the 1000 Genomes Project Phase 379 reference panel for clumping and annotation of SNPs 
(e.g., the African ancestry reference panel for our African ancestry cross-disorder summary 
statistics). We used the default parameters for FUMA, with “independent SNPs” defined as 
those with p < 5e-8 and independent of each other with LD r2 < 0.6, and “lead SNPs” as 
independent SNPs which are strictly independent at a more stringent LD r2 < 0.1. Genomic risk 
loci (defined by LD blocks of independent SNPs) that were 250 kb or closer were merged into a 
single locus.  

To perform a cross-ancestry meta-analysis, we used the ancestry-specific one-sided 
meta-analysis results from ASSET. Unlike the two-tailed approach described above, the one-
sided meta-analysis in ASSET is more akin to a traditional meta-analysis and results in one 
effect size per SNP, regardless of whether the SNP shows divergent directions of effect across 
traits. We combined the ancestry-specific ASSET results using a sample-size weighted meta-
analysis scheme in METAL80. As before, we uploaded METAL results to FUMA for clumping 
and annotation, using the 1000 Genomes Project Phase 379 all ancestries reference panel. 
 
Identification of novel loci 
 To determine whether the ASSET meta-analysis revealed any novel loci in the European 
ancestry data that were not genome-wide significant in the original GWAS (CanUD, Smk, Scz), 
we used the LDLink package81 in R to identify all LD proxy SNPs (r2>0.6) for each of the 439 
lead pleiotropic SNPs. We then merged these results with the summary statistics for the original 
CanUD, Smk, and Scz GWASs to determine whether the locus had been identified as genome-
wide significant in any of the original GWASs.  
 
Genetic correlations with other relevant phenotypes 

After defining SNP subsets using ASSET, we used GeNetic cOVariance Analyzer 
(GNOVA49) to estimate genetic covariances (ρg) and correlations (rg) between the SNP subsets 
and relevant phenotypes in the European ancestry data. For all subsets, the effect estimate was 
aligned with the direction of effect for CanUD, for ease of interpretation. It was unclear how best 
to weight the estimate for each subset; following the example of Lam et al.40, we used the 
largest absolute effect size from the three phenotypes as SNP weights in each subset (flipping 
the sign of the estimate as necessary, to align with the direction of effect for CanUD). 
 
Polygenic scores of ASSET-derived SNP subsets and associations in BioVU  
  We created polygenic scores for each ASSET-derived SNP subset in the European 
ancestry subset of the BioVU biobank (N=72,225)82,83. We fitted a logistical regression model to 
each of 1,338 case/control phenotypes (“phecodes") to estimate the odds of diagnosis given 
each PGS. Models were adjusted for sex, median age of the longitudinal electronic health 
records, and the first 10 PCs. Analyses were conducted using the PheWAS version 0.99.5-2 R 
package. Phecodes were excluded from the analysis if they did not have at least two 
International Disease Classification codes mapping to a PheWAS disease category (Phecode 
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Map 1.2; https://phewascatalog.org/phecodes) and had less than 100 cases. The disease 
phenotypes included 145 circulatory system, 123 genitourinary, 118 endocrine/metabolic, 125 
digestive, 118 neoplasms, 91 musculoskeletal, 85 sense organs, 73 injuries & poisonings, 68 
dermatological, 76 respiratory, 69 neurological, 64 mental disorders, 42 infectious diseases, 42 
hematopoietic, 34 congenital anomalies, 34 symptoms, and 31 pregnancy complications. The 
phenome-wide significance threshold was set at a Bonferroni-adjusted threshold of p ≤ 3.62e-5. 
 
Partitioned genetic covariance analyses 

We used GNOVA49 to partition the genetic covariance (ρg) between CanUD, Smk, and 
Scz into salient annotation categories. These included tissue-specific functionality (GenoSkyline 
annotations, which are tissue-specific functional regions defined by integrating high-throughput 
epigenetic annotations). GNOVA is robust to potential sample overlap between summary 
statistics. We applied Bonferroni correction for multiple testing across all 3 trait pairs (CanUD ~ 
Smk, CanUD ~ Scz, and Smk ~ Scz) and 7 tissue types tested (e.g., we corrected for 3 x 7 = 21 
tests, for an � = 0.002.) We only performed these analyses using the European ancestry 
summary stats, as the annotation data was derived using European ancestry samples.  
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