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Abstract (251 words) 57 

Background: Genome-wide association studies (GWAS) have predominantly focused on 58 

populations of European and Asian ancestry, limiting our understanding of genetic factors 59 

influencing kidney disease in Sub-Saharan African (SSA) populations. This study presents the 60 

largest GWAS for urinary albumin-to-creatinine ratio (UACR) in SSA individuals, including 61 

8,970 participants living in different African regions and an additional 9,705 non-resident 62 

individuals of African ancestry from the UK Biobank and African American cohorts.  63 

Methods: Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-64 

Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen 65 

Consortium). Association testing and meta-analyses were conducted, with subsequent fine-66 

mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed 67 

for transferability across populations.  68 

Results: Two genome-wide significant (P<5x10-8) UACR-associated loci were identified, one 69 

in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, 70 

and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA 71 

individuals, as well as the combined meta-analysis of all studies. Replication of previous 72 

significant results confirmed associations in known UACR-associated regions, including 73 

THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, 74 

African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across 75 

populations, with less than 1% of observed variance explained.  76 

Conclusion: This study contributes novel insights into the genetic architecture of kidney 77 

disease in SSA populations, emphasizing the need for conducting genetic research in diverse 78 
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cohorts. The identified loci provide a foundation for future investigations into the genetic 79 

susceptibility to chronic kidney disease in underrepresented African populations Additionally, 80 

there is a need to develop integrated scores using multi-omics data and risk factors specific to 81 

the African context to improve the accuracy of predicting disease outcomes. 82 

 83 

Introduction  84 

Chronic kidney disease (CKD) is a leading risk factor for years of life lost and premature 85 

mortality, with a 41.5% relative increase in mortality worldwide from 1990 to 2017 (GBD 86 

Chronic Kidney Disease Collaboration et al., 2020; Kovesdy, 2022). The estimated global 87 

prevalence of CKD is 9.1% and while predicted to be higher in Sub-Saharan Africa (SSA), the 88 

true prevalence and associated risk factors remain understudied (Kaze et al., 2018; GBD 89 

Chronic Kidney Disease Collaboration et al., 2020). The Africa Wits-INDEPTH partnership 90 

for Genomic Studies (AWI-Gen) cohort, which included ~12,000 participants from four SSA 91 

countries in West, East, and Southern Africa, reported overall CKD prevalence as 10.7% (95% 92 

confidence interval [CI]: 9.9-11.7), with notable geographic regional differences. The most 93 

important risk factors for CKD in SSA were older age, female sex, diabetes, hypertension, and 94 

human immunodeficiency virus (HIV) infection (George et al., 2019). 95 

Over the past decade, genome-wide association studies (GWAS) have identified numerous 96 

genetic loci associated with kidney function disease, namely, estimated glomerular filtration 97 

rate [eGFR], serum creatinine , and urine albumin-creatinine ratio [UACR] (Böger et al., 2011; 98 

Pattaro et al., 2012, 2016; Teumer et al., 2016, 2019; Hellwege et al., 2019; Tin and Köttgen, 99 

2020). The majority of the GWAS for kidney function and disease have examined associations 100 

with eGFR, while UACR, as a measure for albuminuria, has been investigated less often 101 

(Mahajan et al., 2016; Pattaro et al., 2016; Gorski et al., 2017; Haas et al., 2018; Teumer et al., 102 

2019; Wuttke et al., 2019; Zanetti et al., 2019). A recent GWAS in 564,257 individuals of 103 

multi-ancestry origins identified 68 associated risk loci for UACR were identified and proposed 104 

priority list of genes to explore as targets for the treatment of albuminuria (Teumer et al., 2019).  105 

While the majority of kidney disease-associated risk loci have been identified in studies on 106 

participants of European and East Asian ancestry, and the African diaspora (Lee et al., 2018), 107 

few have focused on participants living in SSA (Böger et al., 2011; Pattaro et al., 2012; Lin et 108 

al., 2019; Morris et al., 2019). Recently, in a study of genetic associations of eGFR in a 109 

Ugandan population-based cohort, (Fatumo et al., 2020) replicated the association between 110 

eGFR and the GATM locus .  111 
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Replication and transferability of GWAS signals across populations of different ancestries, and 112 

specifically with African ancestry populations, tend to be poor despite regional replication 113 

often identifying shared associated genomic regions (Pattaro et al., 2012). This may be due to 114 

differences in linkage disequilibrium (LD) with the causal variant, allele frequency differences 115 

between the populations, underlying population structure, and variabilities in environmental 116 

exposures. African populations, with their great genetic diversity and deep evolutionary roots, 117 

represent an opportunity for genetic discovery to identify and fine-map disease-associated risk 118 

variants (Gomez et al., 2014; Pereira et al., 2021).  119 

Polygenic scores (PGS) are used to quantify and stratify populations according to genetic risk. 120 

A PGS based on 63 eGFR-associated alleles showed significant association with kidney 121 

disease-related phenotypes, such as chronic kidney failure and hypertensive kidney disease in 122 

the Million Veteran Study (US) on 192,868 white and non-Hispanic individuals (Hellwege et 123 

al., 2019). A PGS based on 64 urine albumin-to-creatinine ratio (UACR) associated alleles was 124 

significantly associated with CKD (Teumer et al., 2019). Further analysis revealed positive 125 

associations of the PGS with an increased risk of HT and diabetes. However, PGS often 126 

translate poorly across different ancestries (Martin et al., 2017; Kamiza et al., 2022; Kachuri 127 

et al., 2023). Since most published GWAS for kidney disease and kidney function markers are 128 

based on European ancestry populations, the predictive accuracy of models developed from 129 

these studies is expected to be significantly diminished for African populations (Adam et al., 130 

2022; Choudhury et al., 2022; Kamiza et al., 2023; Majara et al., 2023).  131 

In this study, we present a GWAS for UACR conducted within resident Sub-Saharan African 132 

individuals. This population cross-sectional study includes a cohort of 8,970 individuals from 133 

four SSA countries from the AWI-Gen study (Ali et al., 2018), the African Research on Kidney 134 

Disease (ARK) study (Kalyesubula et al., 2020), with 9,705 individuals of African-ancestry 135 

from the UK Biobank (UKB) and African American participants from the CKD-Gen 136 

Consortium (Teumer et al., 2019). The primary objectives are to: (1) identify genetic loci 137 

associated with UACR as a marker of kidney disease in individuals from SSA and of African 138 

ancestry; (2) explore the replication of findings identified in previous GWAS; (3) perform 139 

analysis and comparison of PGS derived from non-African and multi-ancestry population 140 

studies and evaluate their transferability to African populations. 141 

 142 
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Participants and Methods  143 

Study participants 144 

Africa Wits-INDEPTH Partnership for Genomic Research (AWI-Gen) 145 

The study participants are a subset of the population cross-sectional AWI-Gen study (Ramsay 146 

et al., 2016; Ali et al., 2018). The study recruited adults primarily between the ages of 40 and 147 

80 years from six SSA study sites in West Africa (Nanoro, Burkina Faso and 148 

Navrongo,Ghana), East Africa (Nairobi, Kenya) and in South Africa (Bushbuckridge - 149 

hereinafter referred to as Agincourt Mpumalanga Province, Dikgale, Limpopo Province; and 150 

Soweto, Gauteng Province). All participants were of self-identified black ethnicity. Data 151 

collection was described in detail previously (Ali et al., 2018; George et al., 2019). Detailed 152 

demographic data, health-related questionnaire data, and anthropometric measurements were 153 

collected. Peripheral blood samples and urine samples were collected for biomarker assays (the 154 

relevant assays are described below). DNA was extracted from peripheral blood-derived buffy 155 

coat samples and used for genotyping. Urine microalbumin was measured using a colorimetric 156 

method on the Cobas© 6000/c501 analyzer, and urine creatinine was measured by the modified 157 

Jaffe method(Craik et al., 2023). This study was approved by the Human Research Ethics 158 

Committee (Medical), University of the Witwatersrand, South Africa (M121029, M170880) 159 

and the ethics committees of all participating institutions. All participants provided written 160 

informed consent following community engagement and individual consenting processes.  161 

African Research on Kidney Disease (ARK) 162 

The African Research Kidney Disease (ARK) study is a well characterised population-based 163 

cohort study of 2021 adults (20–80 years) of self-identified black ethnicity from Agincourt, 164 

(Mpumalanga, South Africa) with demographic data, health-related questionnaire data, and 165 

anthropometric measurements collected at enrolment (Fabian et al., 2022). Blood and urine 166 

were collected for biomarker assays (the relevant assays are described below). DNA was 167 

extracted from buffy coat samples and used for genotyping. Urine microalbumin was measured 168 

using a colorimetric method on the Cobas© 6000/c501 analyzer, and urine creatinine was 169 

measured by the modified Jaffe method(Craik et al., 2023). This study was approved by the 170 

Human Research Ethics Committee (Medical), University of the Witwatersrand, South Africa 171 

(M160939). All participants provided written informed consent following community 172 
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engagement and individual consenting processes. The geographical area of recruitment 173 

overlaps with the Agincourt sub-cohort of AWI-Gen but there is no overlap in participants. 174 

UK Biobank (UKB) 175 

Individuals of self-reported Caribbean and African ancestry from the UKB were identified for 176 

this study. Of this subset of UKB individuals, those with both genotyping and UACR data were 177 

retained for the analysis. UACR was derived using urinary levels of albumin and creatinine. In 178 

the UKB, albumin was measured using the immuno-turbidimetric analysis method (Randox 179 

Biosciences, UK) while creatinine was measured using the enzymatic analysis method 180 

(Beckman Coulter, UK) (Casanova et al., 2019).  181 

Phenotype generation and harmonization 182 

UACR was calculated for AWI-Gen and ARK studies using urinary levels of albumin and 183 

creatinine as previously described (George et al., 2019; Fabian et al., 2022). Participants with 184 

missing values for albumin and creatinine were excluded from this study. We applied filtering 185 

criteria similar to those employed by the CKD-Gen consortium (Köttgen and Pattaro, 2020). 186 

In cases where the values for urine albumin and urine creatinine fell outside the upper and 187 

lower limits of detection, the values were replaced with the respective upper and lower limits: 188 

for urine creatinine, the range was 3 to 400 mmol/L and for urine albumin, the range was 3.75 189 

to 475 mg/L for AWI-Gen and ARK. For the UKB dataset, the upper limit was 6.7 mg/L for 190 

urine albumin. Albuminuria was defined as UACR >3.0mg/mmol.  191 

Genotyping 192 

AWI-Gen and ARK 193 

Genomic DNA was genotyped using the H3Africa custom genotyping array. The H3Africa 194 

custom array was designed as an African-common-variant-enriched GWAS array 195 

(https://www.h3abionet.org/h3africa-chip) (Illumina) with ~2.3 million single nucleotide 196 

polymorphisms (SNPs). 197 

UK-Biobank 198 

Genotyping was performed by Affymetrix on two closely related purpose-designed arrays. 199 

~50,000 participants were genotyped using the UK BiLEVE Axiom array (Resource 149600) 200 

and the remaining ~450,000 were genotyped using the UK Biobank Axiom array (Resource 201 

149601). The dataset is a combination of results from both arrays. A total of 805,426 markers 202 
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were released in the genotype data. We extracted individuals with self-reported (Data-Field in 203 

dataset 21000) African Ancestry split between African (UKB-African) and Caribbean origins 204 

(UKB-Caribbean) from the raw dataset (Casanova et al., 2019).  205 

Quality control 206 

For each dataset, AWI-Gen (Choudhury et al., 2022), ARK and UKB, the following pre-207 

imputation quality control (QC) steps were applied: removal of non-autosomal and 208 

mitochondrial SNPs; SNPs with genotype missingness greater than 0.05; minor allele 209 

frequency (MAF) less than 0.01; and Hardy-Weinberg equilibrium (HWE) P-value less than 210 

0.0001. Individuals were excluded if they had more than 5% overall genotype missingness; 211 

heterozygosity lower than 0.150 and higher than 0.343; and discordant genotype and phenotype 212 

sex information. We used the GWAS QC workflow of the H3Africa Consortium Pan-African 213 

Bioinformatics Network to perform data QC (H3ABioNet H3AGWAS) 214 

(https://github.com/h3abionet/h3agwas) (Baichoo et al., 2018; Brandenburg et al., 2022a).  215 

In our final QC step, we identified and excluded outliers, admixed and related individuals using 216 

PCASmart, a feature of the EIGENSOFT software (Price et al., 2006), Admixture software 217 

(Alexander et al., 2009) using AGV (Gurdasani et al., 2015) and 1000 Genomes Project data 218 

(Auton et al., 2015) and PLINK (Version 1.9) (Purcell et al., 2007; Chang et al., 2015). More 219 

detail on filter parameters for each software can be found in Supplementary Table 1. 220 

Imputation 221 

Genotype imputation was performed on each dataset separately (AWI-Gen, ARK, and UKB) 222 

using the Sanger Imputation Server with the African Genome Resources reference panel 223 

(https://www.sanger.ac.uk/tool/sanger-imputation-service/). EAGLE2 was used for pre-224 

phasing and the PBWT algorithm was used for imputation (Loh et al., 2016). After imputation, 225 

poorly imputed SNPs with info scores less than 0.3 and with a HWE P-value less than 1x10-04 226 

were removed. The genomic positions were mapped to GRCh37p11.  227 

Phenotype transformation for association testing 228 

For AWI-Gen, ARK, and UKB datasets, UACR was transformed on the logarithm scale. Linear 229 

regression of variables was performed with covariates in R (Version 3.6): ln(UACR) ~age + 230 

sex + genetic principal components (PCs) 1-5. Residuals were extracted and transformed using 231 

Rank-Based Inverse Normal Transformation to ensure the normal distribution of residuals 232 

(Casanova et al., 2019). PCs were calculated using a sub-set of LD pruned pre-imputed SNPs 233 
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in PLINK (Version 1.9) (Purcell et al., 2007; Chang et al., 2015). The sub-set was derived by 234 

LD pruning using PLINK (Version 1.9) (Purcell et al., 2007; Chang et al., 2015) with an LD 235 

(r2) threshold of 0.2 with windows of 50 kb and 10 kb for step size. 236 

Association testing 237 

Mixed model association testing was performed with imputed genotype probabilities using 238 

GEMMA (Version 0.98.1) (Zhou and Stephens, 2012). GEMMA uses a relatedness matrix to 239 

account for genetic structure and relatedness between individuals. The relatedness matrix was 240 

built with a sub-set of pre-imputed SNPs described above.  241 

Mixed model association testing was performed independently on each dataset. A total of nine 242 

datasets were tested. The datasets were defined as follows: six datasets for AWI-Gen: AWI-243 

Agincourt, AWI- Dikgale, AWI-Nanoro, AWI-Nairobi, AWI-Navrongo and AWI-Soweto; 244 

one dataset for ARK: ARK-Agincourt; and two datasets for UK Biobank: UKB-Caribbean and 245 

UKB-African. For each dataset, Quantile-to-quantile plots (QQ-plots) were generated, and 246 

inflation factors were calculated using SNPs with MAF>0.01 to verify that the association 247 

signals were not inflated due to unaccounted population sub-structure. The genome-wide 248 

significance level for novel discovery was considered at P<5x10-08.  249 

CKD-Gen 250 

We used previously published meta-analysis summary statistics from the CKD-Gen 251 

Consortium. The CKD-Gen Consortium datasets consist of three meta-analysis summary 252 

statistics: 1) CKD-Gen European ancestry individuals (CKD-Gen-EA); 2) CKD-Gen African 253 

American ancestry individuals (CKD-Gen-AA); and 3) CKD-Gen Multi-ancestry individuals 254 

(CKD-Gen-MA) which include individuals from CKD-Gen-EA and CKD-Gen-AA (Teumer 255 

et al., 2019). The CKD-Gen Consortium meta-analysis summary statistics were retrieved from 256 

http://ckdgen.imbi.uni-freiburg.de/.  257 

Briefly, CKD-Gen-AA is a meta-analysis based on 7 studies with African American 258 

participants. For each study, genotyping was performed using genome-wide arrays followed 259 

by application of study-specific quality filters prior to phasing, imputation, and association 260 

analysis software (description can be found in Supplementary Table 1 and 2 from (Teumer 261 

et al., 2019)). Meta-analysis was performed using fixed effects inverse-variance weighted 262 

meta-analysis of the study-specific GWAS result files with imputation quality (IQ) score > 0.6 263 

and MAC > 10, effective sample size ≥ 100, and a beta < 10, using METAL (for more details 264 

see (Teumer et al., 2019)). 265 
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Meta-analysis  266 

Fixed-effect meta-analyses were  conducted using the METASOFT software (Han and Eskin, 267 

2011). The first meta-analysis (MetaSSA) used the GWAS summary statistics generated from 268 

individual-level data from resident SSA populations. This included AWI-Agincourt, AWI- 269 

Dikgale, AWI-Nanoro, AWI-Nairobi, AWI-Navrongo, AWI-Soweto and ARK-Agincourt. 270 

The second meta-analysis (MetaNONRES) included data from individuals of African ancestry 271 

who are not residing in SSA. We used the GWAS summary statistics generated from 272 

individual-level data from the UK-Biobank (UKB-African and UKB-Caribbean) and CKD-273 

Gen African American sub-set (CKD-Gen-AA). The third meta-analysis (MetaALL) consisted 274 

of a meta-analysis that pooled the summary statistics of all studies from AWI-Agincourt, AWI- 275 

Dikgale, AWI-Nanoro, AWI-Nairobi, AWI-Navrongo, AWI-Soweto, ARK-Agincourt, UKB-276 

African, UKB-Caribbean and CKD-Gen-AA. Figure 1 outlines the meta-analysis workflow. 277 

As a secondary analysis, role of heterogeneity had been investigated between cohorts from 278 

different regions of origin by performing separate meta-analyses for residents of Southern 279 

African (AWI-Agincourt, AWI-Dikgale, AWI-Soweto, and ARK-Agincourt) and residents of 280 

West Africa (AWI-Nanoro, AWI-Navrongo). Random-effects model from METASOFT  (Han 281 

and Eskin, 2011) take account for potential heterogeneity between study, we performed Meta 282 

RE using all dataset (MetaALL
RE) (Borenstein et al., 2010; Adriani Nikolakopoulou et al., 2014). 283 

The genome-wide significance level for novel discovery was considered at P<5x10-08.  284 

 285 

Post association analysis 286 

Plotting 287 

QQ-plots and Manhattan plots were generated using the FastMan library (Paria et al., 2022) 288 

(available at https://github.com/kaustubhad/fastman) and the Hudson library (available at 289 

https://github.com/anastasia-lucas/hudson). These visualizations were created using SNPs with 290 

a MAF threshold of 0.01 or more. For regional plots, we utilized the standalone version of the 291 

LocusZoom software (Pruim et al., 2010). 292 

Genetic LD reference  293 

For the estimation of the LD reference panel for conditional and joint (COJO) analysis, 294 

clumping, and fine-mapping, three LD reference panels were constructed using genotype data 295 

from the appropriate datasets. For resident SSA dataset comparisons, the LD reference panel 296 
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(LDSSA) was constructed using AWI-Gen and ARK individual-level genotype data. For non-297 

resident SSA dataset comparisons, the LD reference panel (LDNONRES) was constructed using 298 

UKB individual-level genotype data. For the combined datasets comparison, the LD reference 299 

panel (LDALL) was constructed using AWI-Gen, ARK, and UKB individual-level genotype 300 

data. 301 

Fine-mapping and lead SNPs 302 

For each locus with a lead SNP with a P-value below 5x10-08, fine-mapping was conducted 303 

using the H3ABioNet H3AGWAS pipeline and implementing a stepwise model selection 304 

procedure through GCTA (Yang et al., 2011, 2012; Brandenburg et al., 2022a) to identify 305 

independently associated SNPs. Subsequently, we utilized the FINEMAP software (Version 306 

1.4) (Benner et al., 2016), considering one causal variant, to define the credible set with 99% 307 

confidence using a stochastic approach (Benner et al., 2016).  308 

Conditional analyses (GCTA) 309 

Conditional analyses used the GCTA software implemented within the H3AGWAS pipeline, 310 

with summary statistics obtained from the meta-analyses as input. In these analyses, the lead 311 

SNPs identified in each meta-analysis were conditioned upon lead SNPs found in previously 312 

published studies. Changes in the p-value, both increasing or decreasing significance, of the 313 

lead SNP, confirmed a relationship between the two SNPs.  314 

Replication of previous findings 315 

Replication was performed according to the following criteria: 1) Exact replication: if any 316 

genome-wide significant lead SNPs found in CKD-Gen-EA and CKD-Gen-MA reached 317 

statistical significance (p<0.05) in MetaSSA, MetaNONRES or MetaALL after Bonferroni correction 318 

(A total of 60 independent lead SNPs were identified in the CKD-Gen datasets, of which 55 319 

lead SNPs were from CKD-Gen-EA and 57 lead SNPs were from CKD-Gen-MA) and that the 320 

lead SNPs have same direction of effect. 2) LD Window replication: for a given genome-wide 321 

significant SNP found in the CKD-Gen datasets, SNPs were extracted from MetaSSA, 322 

MetaNONRES and MetaALL that are in LD with the said CKD-Gen lead SNP. LD pruning used 323 

the clump procedure in PLINK (Version 1.9) (r2 = 0.1, windows size 1000 kb, P1 = 5x10-08, P2 324 

= 0.1). The lowest p-value(s) from SNPs within the given LD window were extracted and this 325 

LD window was considered statistically significant if the p-value was less than 5x10-04 in both 326 

datasets. Additionally, the direction of effect between the CKD-Gen and Meta-datasets 327 
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(MetaSSA, MetaNONRES and MetaALL) must be consistent. Conditional analyses were performed 328 

between the genome-wide significant SNP(s) in CKD-Gen and lead SNP in our meta-analyses 329 

to confirm the replication.  330 

For replication, the findings from MetaSSA were compared to CKD-Gen-MA and CKD-Gen-331 

EA, and the findings from MetaNONRES and MetaALL were only compared to CKD-Gen-EA to 332 

avoid sample overlaps within the CKD-Gen datasets (as CKD-Gen-AA is contained within 333 

CKD-Gen-MA).  334 

Annotation and Expression Quantitative Trait Locus (eQTL) analysis 335 

Functional annotation of genome-wide significant SNPs found in MetaSSA, MetaNONRES and/or 336 

MetaALL was done using the ANNOVAR software (Wang et al., 2010). eQTL analysis was 337 

performed using the database of cis-eQTLs in both glomerular and tubulointerstitial tissues, 338 

derived from participants in the Nephrotic Syndrome Study Network (NEPTUNE) using SNPs 339 

with false discovery rate (FDR) < 0.05 ( Han et al. 2023). In this analysis a 1000kb window 340 

was defined around each genome-wide significant locus and an eQTL was considered 341 

significant if the LD (r2) was ≥0.01 between the lead SNP and significant eQTL, LD 342 

computation used the genetics data from the African populations from the 1000 Genomes 343 

Project (v5a, hg19)  (Auton et al., 2015; Sudmant et al., 2015).  344 

Polygenic Scores 345 

PGS were computed for each dataset independently (AWI-Agincourt, AWI- Dikgale, AWI-346 

Nanoro, AWI-Nairobi, AWI-Navrongo, AWI-Soweto ARK-Agincourt, UKB-African and 347 

UKB-Caribbean). The effect sizes from 3 previous studies were used: CKD-Gen-AA, CKD-348 

Gen-MA, and CKD-Gen-EA. PRS-CS (Ge et al., 2019), software that estimates posterior SNP 349 

effect sizes by implementing continuous shrinkage (CS) priors, was used to calculate the PGS. 350 

As external LD references are required for this analysis, the African LD data derived from the 351 

1000 Genomes Project by the PRScs project was used for this purpose (accessible at 352 

https://github.com/getian107/PRScs). The PGS values were regressed against the residualized 353 

UACR value in a linear regression model that adjusted for age, sex, and the first five principal 354 

components to assess the performance of PGS. 355 

 356 
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Results  357 

Study participants and phenotype data 358 

Genomic and phenotypic data were accessible for 7,959 individuals in the AWI-Gen datasets, 359 

1,011 individuals in the ARK dataset, and 2,916 individuals in the UK-Biobank dataset with 360 

1,205 individuals and 1,711 individuals in UKB-African and UKB-Caribbean respectively 361 

(Supplementary Figure S1). CKD-Gen AA was a meta-analysis of 7 studies including 6,795 362 

individuals in total. Overall, there was a higher prevalence of albuminuria (17.9%; median 363 

UACR 1.01mg/mmol) among individuals from the UKB with African and Caribbean ancestry 364 

compared to individuals residing in SSA, where notable regional differences were observed. 365 

The highest prevalence of albuminuria occurred in AWI-Agincourt, South Africa (14.1%; 366 

median UACR 0.59mg/mmol) while the lowest prevalence occurred in AWI-Nanoro, West 367 

Africa (prevalence of albuminuria 4.5%, median UACR 0.35 mg/mmol) (Table 1). 368 

Meta-analysis  369 

Meta-analyses were conducted to investigate the genetics of UACR in resident Sub-Saharan 370 

African datasets (MetaSSA) (Figure 2a), non-resident Sub-Saharan African datasets 371 

(MetaNONRES) (Figure 2b) and all African ancestry datasets (MetaALL) (Figure 2c).  372 

No genomic inflation was observed for the individual-dataset association testing performed on 373 

the 9 datasets. All genomic inflation factors (lambda) were below 1.1. This was visually 374 

confirmed on the dataset specific QQ-plots and Manhattan plots (Supplementary Figure S2 375 

and Figure S3(a-i)). Dataset-specific significant findings are reported in Supplementary 376 

Table 2 and Supplementary Figure S4(a-c). 377 

One genome-wide significant locus with the lead SNP rs9505286 (p=4.3.10-08) was identified 378 

in MetaSSA on chromosome 6. (Figure 3a). One genome wide significant locus with the lead 379 

SNP rs73404549 was identified on chromosome 11 in MetaNONRES (p=5.6.10-11) and MetaALL 380 

(p=7.7 10-13) (Table 2, Figure 3b and 3c) 381 

SNP rs9505286 (chr6:7820353) is located in the intronic regions of BMP6. Two SNPs were 382 

identified in the 95% credible set using FINEMAP (Figure 3a, Supplementary Table 4). 383 

eQTLs in the region were found to be associated with the expression of two genes RREB1 and 384 

BMP6 (Table 2; Supplementary Figure S5; Supplementary Table 3, Supplementary Table 385 

5). 386 

SNP rs73404549 (chr11:5320654) is located near the HBE1, OR51B4, and HBB genes. This 387 

signal is primarily driven by results from West African ancestry datasets in the MetaNONRES and 388 

MetaALL (Figure 3b and 3c, Supplementary Figure S6). Notably, this SNP is monomorphic 389 
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in the Southern African and East African datasets. Furthermore, rs73404549 is in LD with 390 

rs334 (r2=0.52; 72,422 bp apart), the SNP that defines the sickle cell mutation (HbS). SNP 391 

rs334 was also significant in MetaALL (PALL=8.55x10-9). 392 

 393 

In the window of 1000kb around rs73404549, SNPs in the region colocalized with gene 394 

expression of TRIM6 and STIM1 in glomerular and tubulointerstitial tissues (Table 2, 395 

Supplementary Table 5). 396 

 397 

Seven and two SNPs were identified in the 95 % credible set using FINEMAP in MetaNONRES 398 

and MetaALL results respectively (Supplementary Table 3; Supplementary Figure S6).  399 

Replication of previous findings 400 

Replication analysis confirmed associations in three previously identified regions in THBS3, 401 

SPATA5L1/GATM, and ARL15 (Supplementary Table 3). 402 

In the THBS3 region, the MetaALL meta-analysis rs370545 was the lead SNP in our dataset, 403 

with a P-value of 1x10-04. However, a conditional analysis using rs2974937 (lead SNP in CKD-404 

Gen-EA) resulted in a decrease in significance level (Pconditional_analysis=0.85). This suggests that 405 

the association in the THBS3 region was driven by rs2974937 in MetaALL even though it was 406 

not the lead SNP in this region (Supplementary Table 4; Supplementary Figure 7). 407 

In the ARL15 region, a statistically significant association signal was observed in MetaSSA 408 

(rs1664781, P=1.8x10-04). Conditional analysis using rs1694068 (lead SNP in CDK-Gen-EA) 409 

revealed a reduction in P-value for rs1664781 (Pconditional_analysis=0.87), suggesting that 410 

rs1694068 and rs1664781 are in LD thus confirming the association in this region 411 

(Supplementary Table 4, Supplementary Figure 8). 412 

In the SPATA5L1/GATM region, the MetaALL meta-analysis identified rs1694067 as the lead 413 

SNP in this region with a P-value of 7.0x10-05. Furthermore, the lead SNP rs1153847 identified 414 

in CKD-Gen-EA, rs1153847, was present in our dataset, and its association was replicated 415 

(PBonferoni_adjusted=0.04). For the window-based replication, a conditional analysis using 416 

rs2467858 (genome-wide significant SNP in CKD-Gen-EA), a reduced P-value was observed 417 

(Pconditional_analysis=0.87) confirming rs1694067 and rs2467858 are in LD and replicated the 418 

CKD-Gen signal. (Supplementary Table 4; Supplementary Figure 9). 419 

Polygenic score analyses 420 

The variance explained by the PGS for UACR residuals was between 0% and 0.82%. PGS 421 

constructed using the betas from CKD-Gen-EA and CKD-Gen-MA performed better for the 422 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.01.17.24301398doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.17.24301398


 14 

non-SSA resident datasets, particularly in the UKB-African, showing the best predictivity (% 423 

variance: 0.82, p=1x10-04) and statistically significant correlation between the PGS and the 424 

UACR residual (Figure 4, Supplementary Table S6).  425 

Using the PGS constructed from CKD-Gen-MA, ARK-Agincourt (% variance: 0.61, P=0.01) 426 

and AWI-Agincourt (%variance: 0.58, P=0.002) demonstrated better predictivity in SSA 427 

populations. PGS constructed from CKD-Gen-AA did not improve the variance explained. 428 

Variance explained was lower using PGS constructed from CKD-GEN-AA than CKD-Gen-429 

MA or CKD-Gen-EA.  430 

 431 

Discussion  432 

This study is the first GWAS for UACR conducted in Sub-Saharan African populations. Two 433 

genomic regions were identified to be significantly associated with UACR among 8,970 434 

participants from West, East, and Southern Africa and among 9,705 non-resident African-435 

ancestry participants from the UK Biobank and CKD-Gen Consortium.  436 

For the first locus, the SNP rs9505286, reached genome-wide significance in resident African 437 

individuals (MetaSSA) and is located in the intronic region of BMP6. eQTLs in LD with 438 

rs9505286 were found to be associated with expression of two genes, namely bone 439 

morphogenetic protein 6 (BMP6) and ras-responsive element binding protein 1 (RREB1). Both 440 

genes are plausibly linked with kidney disease. BMP6 encodes a secreted ligand of the 441 

transforming growth factor (TGF-beta) superfamily of proteins, of which TGF-B1 is one of the 442 

most important regulators of kidney fibrosis, the pathological hallmark of irreversible loss of 443 

kidney function in CKD (Dendooven et al., 2011; Jenkins and Fraser, 2011). TGF-B1 is highly 444 

expressed in various fibrotic kidney diseases, including diabetic nephropathy (DN), 445 

hypertensive nephropathy, obstructive kidney disease, autosomal dominant polycystic kidney 446 

disease, immunoglobulin A nephropathy, crescentic glomerulonephritis, and focal segmental 447 

glomerulosclerosis. Because of its pivotal role in mediating kidney fibrosis, TGF-B1 is a 448 

potential target for drug discovery, and these results point towards similar potential in African 449 

populations for further exploration. RREB1, initially identified as a repressor of the 450 

angiotensinogen gene, is associated with type 2 diabetes in African Americans with end stage 451 

kidney disease(Bonomo et al., 2014). RREB1 polymorphisms have been shown to interact with 452 

APOL1, and are implicated in fat distribution and fasting glucose, a potential explanation for 453 

the association with type 2 diabetes. As obesity and type 2 diabetes prevalence emerge in many 454 

African communities undergoing rapid sociodemographic transition, these findings must 455 
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inform future work  (Bonomo et al., 2014). Unfortunately, neither of the eQTLs has strong 456 

linkage disequilibrium (LD) support with the lead SNP rs9505286 (see Supplementary Table 457 

5). 458 

Variability of kidney function, confounding factors and allele frequency differences between 459 

datasets may explain why the rs9505286 signal was not replicated in MetaALL or MetaNONRES 460 

(Marigorta et al., 2018). 461 

For the second locus, the SNP rs73404549 was found to be statistically significant in non-462 

resident individuals with African Ancestry (MetaNONRES) and overall (MetaALL), but not in Sub-463 

Saharan African individuals (MetaSSA). This can be explained by the fact that the variant allele 464 

of rs73404549 is extremely rare or absent in East and South African populations. This SNP 465 

was found to be in linkage disequilibrium with rs334, the sickle cell trait (HbS) in the HBB 466 

gene. The HbS mutation has been linked to malaria resistance among heterozygotes, with 467 

differences in allele frequency attributed to variations in selection pressures between Bantu-468 

speaking populations in West and South/East Africa (Gurdasani et al., 2019; Choudhury et al., 469 

2020). Notably, sickle cell trait and rs334 had been associated with various kidney function 470 

(eGFR) and kidney disease traits, including albuminuria, and chronic and end-stage kidney 471 

disease in African, African American and US Hispanic/Latino populations (Naik et al., 2014; 472 

Gurdasani et al., 2019; Fatumo et al., 2020; Masimango et al., 2022). Furthermore, an 473 

interaction between APOL1 high-risk genotypes and the sickle cell trait enhances the risk for 474 

low eGFR(Masimango et al., 2022). 475 

In addition to the HBB region, our GWAS revealed transferability of three previously identified 476 

signals. Of the 60 UACR-associated loci identified in European and Multi-Ancestry studies, 477 

only three were replicated, including variants in GATM. This region was also associated with 478 

eGFR in a Ugandan population (Fatumo et al., 2020). We also replicated the association with 479 

ARL15 in the region of chromosome 1. ARL15 is a regulator of Mg2+ transport thereby 480 

promoting the complex N-glycosylation of cyclin M proteins (CNNM 1-4) and could play a 481 

role in the pathogenesis of hypertension mediated via altered tubular handling of magnesium 482 

in the kidney (Zolotarov et al., 2021). 483 

Allelic heterogeneity is high in African ancestry populations, as demonstrated by the high 484 

genetic diversity in our study (Supplementary Fig. 1). However, analysis of regional 485 

subgroups using meta-analysis (residents of South, West, or East Africa) did not reveal 486 

significant population-specific signatures (p<5e-8), likely due to small sample sizes within 487 

these subgroups (Supplementary Fig. 10a, 10b, 3i). Interestingly, meta-analysis under a 488 

random-effects model that allows for heterogeneity in allelic effects between regions 489 
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(MetaALL
RE) did not improve the detection of specific signals already observed with the fixed-490 

effects methods for HBB (Supplementary Figure S11). Consequently, the heterogeneity 491 

observed might be explained primarily by variations in linkage disequilibrium or 492 

environmental factors rather than by the effect of a specific allele, such as the presence or 493 

absence of sickle cell trait   (Adriani Nikolakopoulou et al., 2014; Kuchenbaecker et al., 2019; 494 

Choudhury et al., 2020). 495 

The transferability of PGS developed using the effect sizes quantified in three previous 496 

association studies in European ancestry, African ancestry and multi-ancestry populations 497 

showed limited predictability, explaining less than 1% of the variability in UACR. PGS in 498 

resident African populations (AWI-Gen and ARK) explained between 0.58% and 0.60% of the 499 

variance of UACR compared to UKB-African, where best prediction was observed (0.80%). 500 

The poor predictability of UACR using summary statistics derived from African Americans 501 

was likely due to the small sample size of the discovery dataset. Unfortunately, there have been 502 

few studies on PGS approaches to compare findings with, and the genetic heritability of UACR 503 

is relatively low, estimated at 4.3% (Teumer et al., 2019). 504 

The limited transferability of PGS and previous GWAS signals across ancestral groups could 505 

be due to differences in genetic architecture and/or pleiotropic effects. Different demographic 506 

histories and genetic selection pressures between European and African populations could 507 

modify the ability to replicate previous GWAS results due to differences in allele frequencies 508 

between non-African and African populations, with generally lower LDs in African genomes. 509 

Environmental factors and variability in the prevalence and aetiology of kidney - and disease-510 

related risk factors such as diabetes and hypertension (Fatumo et al., 2020) could also influence 511 

the genetic architecture of kidney disease in Africans populations (Limou et al., 2014; Teumer 512 

et al., 2019; Brandenburg et al., 2022b). Selection pressures have increased the frequencies 513 

APOL1 kidney risk variants and HbS due to their protective properties in areas of Africa where 514 

trypanosomiasis and malaria are endemic. This may have contributed to shaping genetic 515 

susceptibility to kidney disease in African individuals. In our study, the APOL1 gene region 516 

did not exhibit significant associations with UACR. The indel rs71785313 was not imputed 517 

using the African Sanger reference for imputation, and a specific study had previously been 518 

published to describe APOL1 variant distribution in the AWI-Gen dataset using other 519 

imputation panels, but the locus did not reach genomic significance (5e-8) for association with 520 

eGFR and UACR (Brandenburg et al., 2022b). 521 

While the burden of CKD in SSA is high, it is noteworthy that no prior GWAS on UACR has 522 

been conducted on the continent. Despite its uniqueness, our study is limited by its relatively 523 
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modest sample size, which impacts statistical power to detect small-effect associations 524 

reaching genome-wide significance thresholds. Kidney and disease markers were measured at 525 

a single time point, and spot urine albumin and creatine levels are sensitive to incident 526 

infections and other environmental factors that could affect the prevalence of albuminuria. 527 

It is important to note that our study populations are mainly treatment naïve in relation to 528 

kidney disease and other cardiometabolic conditions, which may be an advantage in detecting 529 

genetic associations (Pereira et al., 2021). Other studies, based on lipid-associated loci, 530 

attributed non-transferability of associated loci to pleiotropic effects, gene-environment 531 

interactions, and also to variability in allele frequencies and LD patterns (Kuchenbaecker et al., 532 

2019; Choudhury et al., 2022), as we hypothesize for UACR.  533 

In conclusion, this study describes genetic associations with UACR in a unique SSA cohort 534 

and non-resident individuals with African ancestry. CKD in African populations remains 535 

understudied but from available data, hypertension, rather than diabetes is the most commonly 536 

associated risk factor and in some regions, up to 60% of people with CKD do not have an 537 

associated “traditional” risk factor common to high-income settings, suggesting alternate 538 

underlying molecular pathways or aetiologies for CKD (Kalyesubula et al., 2018; Nakanga et 539 

al., 2019; Muiru et al., 2020).  Our study identified two novel SNPs associated with UACR in 540 

populations of African ancestry. We further replicated three known UACR-associated loci. 541 

Regional genetic diversity due to different selection pressures appear to play a role in the 542 

genetic aetiology of CKD across the African continent. These factors likely contribute to the 543 

limited transferability of previous association signals and the poor transfer of polygenic scores 544 

developed in non-African populations to African populations. Larger genomic studies are 545 

necessary to better understand the genetic architecture of kidney function and chronic kidney 546 

disease across different African populations and inform region-specific kidney risk profiles.  547 

As demonstrated in this study, the low genetic heritability of UACR limits the predictive power 548 

of genetic risk scores (GRS) for kidney disease in our setting. It is critical for future research 549 

to address these gaps by modelling integrative risk scores that incorporate locally relevant 550 

clinical risk factors that are powerful predictors of kidney disease, multiple kidney phenotypes 551 

(eGFRcystatin C, eGFRcreatinine, eGFRcreatinine + cystatin C, albuminuria, Blood urea nitrogen), using 552 

multi-omics (Eddy et al., 2020), and the impacts of African-specific genetic risk for kidney 553 

disease, such as APOL1 high-risk genotypes and sickle cell trait or disease(Naik et al., 2014; 554 

Friedman and Pollak, 2016; Brandenburg et al., 2022b) . 555 

 556 
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Tables 622 

 623 

Table 1: Study participants and phenotype data.  Participant characteristics for each AWI-624 

Gen study site, ARK-Agincourt and UKB-African and UKB-Caribbean, with phenotype 625 

distributions of UACR (median) and covariables used in the study.  626 

 627 
Dataset Sample size Country of 

residence 

1Age (years) Males (%) 2UACR 3Albuminuria 

(%) 

Non-resident in 4SSA 9,705      

5CKD-Gen-AA 6,795 USA     

6UKB-African 1,205 UK 51.8 48.5 1.10 (1.70) 20.0 

7UKB-Caribbean 1,711 UK 52.8 59.6 0.93 (1.44) 16.4 

8UKB-All 2,916 UK 52.4 55.0 1.01 (1.55) 17.9 

Resident in SSA 8,970      

9AWI-Nanoro 1,702 Burkina Faso 49.6 50.8 0.35 (0.44) 4.9 

10AWI-Navrongo 1,548 Ghana 51.1 54.4 0.41(0.48) 6.7 

11AWI-Nairobi 1,481 Kenya 48.8 54.0 0.63 (0.67) 11.4 

12AWI-Agincourt 1,545 South Africa 54.3 59.8 0.59 (0.99) 14.1 

13AWI-Dikgale 917 South Africa

14AWI-Soweto 766 South Africa 49.5 100.0 0.36 (0.57) 11.4 

AWI-All 7,959  50.9 51.0 0.48 (0.51) 9.5 

15ARK-Agincourt 1,011 South Africa 38.8 58.0 0.57 (0.94) 13.4 

Total 17,664  50.3 52.6 0.59 (0.85) 11.9 

1data reported as the mean. 628 
2UACR: urine albumin: creatinine ratio: mg/mmol; reported as median (interquartile range). 629 
3Albuminuria: UACR>3.0mg/mmol. 630 
4SSA: Sub-Saharan Africa. 631 
5CKD-Gen Consortium: African American Ancestry individuals. CKD-GEN-AA data are summary statistics of meta-analysis from Teumer 632 
et al. downloadable at the CKD-GEN consortium website (http://ckdgen.imbi.uni-freiburg.de/), information relative to samples had been 633 
reported in relevant papers. 634 
6UKB Biobank: Individuals of self-reported African Ancestry; 7self-reported Caribbean Ancestry; 8self-reported African and Caribbean 635 
Ancestry. 636 
9Africa Wits -INDEPTH partnership for Genomic Studies (AWI): individuals of African Ancestry from 9,10West Africa; 11East Africa; 12-637 
14South Africa. 638 
15African Research on Kidney Disease (ARK) Study: South Africa  639 
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Table 2: Lead genome-wide significantly associated SNPs for sub-Saharan African population meta-analysis (MetaSSA), non-resident African 640 

ancestry population meta-analysis (MetaNONRES) and the combined African ancestry population meta-analysis (MetaALL).  641 
 642 

        MetaSSA MetaNONRES MetaALL 

Chr bp rsID Genes 
eQTL  

(genes) 
EA NEA 

 

beta (se) 
P EAF beta (se) P  EAF beta (se) 

P 

(beta, se) 
EAF 

6 7820353 rs9505286 
intronic: 

BMP6 

 
RREB1,BM

P6 

T C 
 0.19 

(0.03) 

4.3e-

08 

 

0.95 -0.05 (0.07) 0.17  0.96 -0.13 (0.03) 7.2e-07  0.96 

11 5320654 rs73404549 
intergenic:  

HBE1, 

OR51B4 

TRIM6,TRI

M5,STIM1,

OR51E2,A
C104389.2

8,PRKCDB

P,UBQLNL
,OR51E1,H

BE1,AC087
380.14,OR5

2K3P,RP11

-
23F23.3,TR

IM6-

TRIM34,TR
IM34,RP11

-290F24.6 

T C 
 0.17 

(0.06) 

3.2e-
03 

 

0.05 0.21 (0.06) 5.6e-11  0.05 0.2 (0.04) 7.7e-13  0.05 

Chr: chromosome (hg19)  643 
bp: position coordinates 644 
rsID: SNPs identification  645 
Genes: genes annotation using ANNOVAR 646 
eQTL: gene’s transcript is significantly associated with nearby SNP positions (1000kb and LD>0.01)  647 
EA: Effect allele 648 
NEA : non effect allele 649 
beta (se): effect size and standard error  650 
P: significance of association 651 
EAF: Effect allele frequency 652 
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 653 

 654 

 655 

Figure Legends 656 

 657 

Figure 1: Study design showing data sources, the analysis strategy and post-GWAS analysis 658 

approach. 659 

 660 

Figure 2: Manhattan plot - GWAS of UACR in the (a) MetaSSA (b) MetaNONRES (c) MetaALL 661 

datasets using the fixed effect model. Lead genome-wide significant SNPs (P<5x10-08) and 662 

gene annotations are highlighted.  663 

 664 

Figure 3: Regional plot using LocusZoom of genome-wide significant SNPs found in meta-665 

analyses using the fixed effect model, (a) rs9505286 from the result of MetaSSA, (b) rs9966824 666 

from the result MetaNONRES (c) rs9966824 from the result MetaALL. 667 

 668 

Figure 4. Percent variance explained between PGS and residual phenotypes computed using 669 

age, sex and 5 PCs. Key: The negative relationship between PGS and the phenotype in the 670 

result of the linear model, * P<0.05, ** P<0.01 and ** P<0.001. Details in Supplementary 671 

Table 6 672 

 673 
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