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ABSTRACT

During infectious disease outbreaks, humans often base their decision to adhere to an intervention strategy on their personal
opinion towards the intervention, perceived risk of infection and intervention effectiveness. However, due to data limitations
and inference challenges, infectious disease models usually omit variables that may impact an individual’s decision to get
vaccinated and their awareness of the intervention’s effectiveness of disease control within their social contacts as well as
the overall population. We constructed a compartmental, deterministic Susceptible-Exposed-Infectious-Recovered (SEIR)
disease model that includes a behavioural function with parameters influencing intervention uptake. The behavioural function
accounted for an initial subpopulation opinion towards an intervention, their outbreak information awareness sensitivity and the
extent they are swayed by the real-time intervention effectiveness information (at a subpopulation- and population-level) —
the selected real-time response construct mimicked a situation of reductions in vaccine uptake due to a negative behavioural
response arising from imperfect vaccine protection resulting in breakthrough infections and deaths in vaccinated individuals.
Applying the model to vaccination uptake and three human pathogens - pandemic influenza, SARS-CoV-2 and Ebola virus - we
explored through model simulation how these intervention adherence decision parameters and behavioural heterogeneity in the
population impacted epidemiological outcomes. From our model simulations we found that differences in preference towards
outbreak information were pathogen-specific. In other words, in some pathogen systems, different types of outbreak information
awareness at different outbreak stages may be more informative to an information-sensitive population and lead to less severe
epidemic outcomes. In both behaviourally-homogeneous and behaviourally-heterogeneous populations, pandemic influenza
showed patterns distinct from SARS-CoV-2 and Ebola for cumulative epidemiological metrics of interest. Furthermore, there
was notable sensitivity in outbreak size under different assumptions regarding the population split in behavioural traits. Outbreak
information preference was sensitive to vaccine efficacy, which demonstrates the importance of considering human behaviour
during outbreaks in the context of the perceived effectiveness of the intervention. Incorporating behavioural functions that
modify infection control intervention adherence into epidemiological models can aid our understanding of adherence dynamics
during outbreaks. Ultimately, by parameterising models with what we know about human behaviour towards vaccination (and
other infection control interventions) adherence, such models can help assist decision makers during outbreaks. Such progress
will be particularly important for emerging infectious diseases when there is initially little information on the disease dynamics
and intervention effectiveness.

Introduction 1

Human behaviour is undoubtedly a driving force of pathogen spread during infectious disease outbreaks. Intervention adherence, 2

government policy, misinformation, travel restrictions and alterations to contact patterns can all impact how the outbreak 3

develops [1, 2, 3]. The COVID-19 pandemic provides a recent and notable example of the effects of behavioural heterogeneity. 4

Misinformation played a large role in many countries and amongst online social networks, especially in the early stages of the 5

pandemic and in individual-level decisions to vaccinate [4, 5, 6]. In an epidemiologically-ideal scenario lockdowns would have 6

perfect adherence, vaccines would be available on the first day of an emerging disease outbreak and the infections would die 7

out. However, this is not a reflection of reality. Our epidemiological reality is a reflection of the decisions and choices human 8

populations make, which may be based on a plethora of factors such as susceptibility to severe infection, vulnerable relatives 9
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or close contacts, moral beliefs, intervention accessibility and cost of infection. Its complex nature often requires models of 10

infectious disease dynamics to make assumptions about behaviour that can lead to appreciable differences between epidemic 11

models and what we observe in reality [7]. 12

Variation between individuals in their behavioural response to infections has been evident for several pathogens of human 13

health concern. For influenza, since many individuals and age-groups are not susceptible to severe infection, behaviours 14

that may be most pressing include lockdown fatigue and vaccination adherence [8, 9, 10]. In the context of Ebola outbreak 15

resurgences in the Democratic Republic of the Congo (DRC) in recent years, especially 2018, Vinck et al. 2019 identified low 16

trust in government institutions in the region and widespread belief in misinformation regarding Ebola virus [11]. Throughout 17

the COVID-19 pandemic, individuals have expressed their opinions, virtually and in-person, on intervention strategies such as 18

broad scale lockdown, mask mandates and vaccine campaigns [4, 12]. More generally, individuals can be influenced by ideas 19

such as vaccine hesitancy, the beliefs of social contacts or personal vulnerability due to existing health concerns [13, 14, 15]. 20

Given that intervention adherence is desirable, efforts towards influencing collective opinions are often a goal of public 21

health officials [4, 16, 17]. However, collective opinions can also be in opposition to the intervention strategy. For instance, 22

human behaviours and thought processes may vary drastically regarding vaccination campaigns compared with social distancing 23

requirements [18]. Understanding how and when these opinions and subsequent behaviours shift is essential in developing 24

impactful public health campaigns and interventions. 25

There is therefore a myriad of information that is being encountered amongst the population. A prior review by Funk et al. 26

2010 categorised the source of information into two types: ‘local’ information and ‘global’ information [19]. Local information 27

corresponds to information originating from an individual’s social neighbourhood (sub-population). Global information 28

corresponds to publicly available information. We note the information awareness process for a disease outbreak is independent 29

from the spatial awareness process for a disease outbreak (‘local spatial awareness’ can refer to awareness of disease spread in 30

your neighbourhood, whereas ‘global spatial awareness’ can refer to awareness of disease spread over a broad spatial extent - 31

e.g. regional, national and/or international). We stress that in this study when referring to ‘local’ or ‘global’ information, we are 32

specifically referring to the information awareness process (not the spatial awareness process). 33

A valuable methodological development in infectious disease modelling would be reliably capturing real-time changes 34

in opinions towards disease control strategies as well as real-time disease prevalence. It is anticipated these integrated 35

epidemiological-behavioural dynamics can help enhance the robustness of modelling findings provided to decision makers 36

in the public health sector [20, 21, 22]. Nonetheless, due to data limitations and inference challenges, behavioural dynamics 37

are often omitted or, when key aspects are included, they are usually simplified [19, 23, 24, 25, 26]. One such example is 38

intervention adherence, such as vaccine uptake rate for a vaccination programme. Modellers may make the assumption of a 39

fixed vaccine uptake rate, or allow for uptake rates to depend on health episode measures such as cases, hospitalisation or 40

deaths. However, such assumptions omit other variables that may impact an individual’s decision to get vaccinated; their initial 41

opinion on the intervention strategy, the cost to the individual to adopt the intervention and their awareness of the intervention’s 42

effectiveness of disease control within their social contacts as well as the greater population [27]. As these processes directly 43

impact decisions to adhere to public health intervention strategies, there is a need to develop mathematical models of infectious 44

disease dynamics that explicitly incorporate such mechanisms. 45

In this study, we highlight three key human behaviours relevant to decisions to adhere to intervention strategies: (i) their 46

initial preference towards the intervention (and perceived risk of infection); (ii) their outbreak information sensitivity; and (iii) 47

the extent they are swayed by real-time intervention effectiveness information (from both ‘local’ and ‘global’ information 48

perspectives), where poor health outcomes in vaccinated individuals could have detrimental impacts on the rate of vaccine 49

uptake amongst the population [28, 29]. We detail our construction of a compartmental, deterministic SEIR-type disease 50

model that explicitly features the three aforementioned intervention adherence decision making considerations. Applied to 51

vaccination uptake and three human pathogens - pandemic influenza, SARS-CoV-2 and Ebola virus - we explored through model 52

simulation how these intervention adherence decision parameters and behavioural heterogeneity in the population impacted 53

epidemiological outcomes. Our simulation-based study revealed how the data stream informing the real-time perception of 54

vaccine effectiveness (either cases- or deaths-based) that would result in minimising public health burden can differ between 55

pathogens. Furthermore, there was notable sensitivity in outbreak size under different assumptions regarding the population 56

split in behavioural traits. It is therefore important that consideration is given to behavioural heterogeneity to intervention 57

adherence in the population, and the explicit factors that influence intervention adherence, to enable improved insights into 58

potential epidemic impacts in future infectious disease outbreaks. 59

Methods 60

Our methodological approach involved developing a deterministic model of infectious disease dynamics that compartmentalised 61

the population (into subpopulations) by vaccination status and behavioural traits. We investigated the implications on infection 62

dynamics of varying levels of vaccine opinion and information sensitivity, for ‘local’ (subpopulation-level) and ‘global’ 63
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(population-level/public) information awareness about vaccine effectiveness; this construction for the behavioural modifier 64

captures the behavioural dynamic of a reduction in vaccine uptake caused by breakthrough infections and deaths in vaccinated 65

individuals. We applied our model to three pathogens of public health concern: pandemic influenza, SARS-CoV-2 and 66

Ebola. We selected these three pathogens as vaccines have been developed for each one, whilst they also exhibit distinctive 67

epidemiological traits with regards to spreading potential in an immunologically naïve population (i.e. basic reproduction 68

number) and infection fatality rate. It should be noted that we refer to pandemic influenza rather than seasonal influenza given 69

our assumption of a vaccine-naïve population. 70

By exploring underlying disease parameters representative of three different human pathogens, we sought to capture the 71

variability in epidemiological severity in different pathogen systems and behavioural structures. We felt this to be particularly 72

pertinent as studies that have previously explored human behaviour during outbreaks often focus on a single pathogen 73

system [4, 8, 30]. Our methodology comprised multiple aspects that we detail in turn: (i) the base mathematical model of 74

infectious disease transmission and pathogen disease history; (ii) definition of our behavioural functions that mechanistically 75

modulated the vaccine uptake rate; (iii) pathogen-specific model parameterisation; (iv) computational simulations to numerically 76

evaluate the scenarios of interest. 77

Mathematical model of pathogen disease history and transmission dynamics 78

Disease history 79

To simulate the infection dynamics and encapsulate the disease history of the three selected human pathogens (pandemic 80

influenza, SARS-CoV-2, Ebola), our model foundation was a deterministic, compartmental Susceptible-Exposed-Infectious- 81

Recovered (SEIR) model. Infected individuals had a latent period, with a duration of σ−1 days, followed by an infectious 82

period, with a duration of γ−1 days. Infectious individuals could then die or recover, which in the absence of interventions were 83

allocated by proportions m and (1−m) respectively. Each of these parameters were pathogen-specific. For the purposes of this 84

study, we did not include demographic processes (births and natural deaths) in our model as the timescales of the simulated 85

outbreaks were short (less than a decade). With the behavioural complexities being the focus of our study, to simplify the model 86

we also chose not to include age-stratification. That being said, we acknowledge the inclusion of demographic processes and 87

age-stratification as viable extensions of the model. We give further remarks on the potential implications of the inclusion of 88

these processes and attributes in the Discussion. 89

Vaccination and behaviour stratification 90

We further stratified the population by two additional attributes. The first attribute was vaccination status, with u and v subscripts 91

denoting unvaccinated and vaccinated classes, respectively. The second attribute was behavioural grouping, with i subscripts 92

indicating a subgroup with unique behaviour-associated attributes — in our simulations, the subgroups represented vaccine- 93

resistant, vaccine-hesitant and vaccine-resistant subpopulations. As a modelling simplification, we assumed no movement 94

between behavioural subpopulations. We also assumed that no other control measures were used except for vaccination. These 95

model assumptions enabled us to focus on the epidemiological impacts of vaccine beliefs and sensitivity to outbreak information 96

within subgroups. We acknowledge these assumptions could be relaxed, with further remarks given in the Discussion. 97

Implementation of vaccination 98

Considering collectively disease status, vaccination status and behavioural group, within our model we defined the following 99

unvaccinated compartments (visualised in (Fig. 1)): susceptible (Su,i), exposed (Eu,i), infectious (Iu,i), recovered (Ru,i), 100

hospitalised (Hu,i) or deceased (Du,i). The vaccinated compartments were similarly defined: susceptible (Sv,i), exposed (Ev,i), 101

infectious (Iv,i), recovered (Rv,i), hospitalised (Hv,i) or deceased (Dv,i). Only unvaccinated individuals in the susceptible, exposed, 102

and recovered classes could move to the respective vaccinated classes. Note that the compartments corresponded to the absolute 103

numbers in each disease and vaccination state. 104

For intervention-adherent individuals who received the vaccination, we assumed a dual ‘leaky’ vaccination action of (i) 105

being infection blocking and, (ii) reducing severe outcomes conditional on being infected. For the purposes of this study, we 106

also assumed the vaccine had the same percentage efficacy for each action, ε ∈ [ 0,100] and that the effects were gained 107

instantaneously once vaccinated (i.e. there was no delay in the relevant level of protection being induced post the vaccine being 108

administered). Although we do not explore scenarios in which the vaccine efficacies of infection blocking and reduction of 109

severe disease have different values to one another, it is important to separate these actions in the case that real-world estimates 110

are used to parameterise this model. Such parameterisation is plausible, with SARS-CoV-2 being one example pathogen 111

where there has been reporting of vaccine efficacy estimates for infection blocking and preventing severe outcomes (e.g. 112

hospitalisations) [31]. Similarly, influenza vaccination has been found to reduce disease severity even without an appreciable 113

infection blocking action [32]. On each new day of the outbreak, the daily vaccine uptake rate, νi (t), was updated according to 114

the implementation of the behavioural function. We ceased vaccination when the number of individuals eligible for vaccination 115
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Table 1. Disease parameter estimates for pandemic influenza, SARS-CoV-2 and Ebola. Parameters without references
were assumptions made for the purposes of this study. β was derived from estimates of R0 and γ .

Parameter Description Estimate

Pandemic influenza SARS-CoV-2 Ebola

R0 Basic reproduction number 1.5 [33] 3 [34] 2 [35]
β Transmission 0.3 0.43 0.29
σ Rate of progression to infectious disease 0.5 [36] 0.2 [37] 0.5 [35]
γ Recovery rate (rate of recovery or death) 0.2 [36] 0.14 [37] 0.14 [35]

m
Probability of unvaccinated death due
to infection (instead of recovery) 1x10−4 [38] 6.38x10−3 [39] 3.9x10−1 [40]

was close to zero (below 10) for the purposes of reducing the time duration of simulations. See Table 1 for a summary of 116

parameter notation. 117

Mathematical model equations 118

Under these modelling assumptions, the dynamics were governed by a system of ODE equations: 119

dSu,i

dt
=−λSu,i −νi (t)Su,i

dEu,i

dt
= λSu,i −σEu,i −νi (t)Eu,i

dIu,i

dt
= σEu,i − γIu,i

dRu,i

dt
= (1−m)γIu,i −νi (t)Ru,i

dHu,i

dt
= mγIu,i

dSv,i

dt
=−(1− εs)λSv,i +νi (t)Su,i

dEv,i

dt
= (1− εs)λSv,i −σEv,i +νi (t)Eu,i

dIv,i

dt
= σEv,i − γIv,i

dRv,i

dt
= (1−m(1− εm))γIv,i +νi (t)Ru,i

dHv,i

dt
= m(1− εm)γIv,i

(1)

The force of infection, λ , was defined as: 120

λ =
β (∑n

i=1 (Iu,i + Iv,i))

∑
n
i=1 (Su,i +Eu,i + Iu,i +Ru,i +Sv,i +Ev,i + Iv,i +Rv,i)

(2)

where β was the transmission rate for the given pathogen. Here we assumed vaccination status did not impact the rate of 121

transmission. The denominator corresponded to the number of individuals who were alive and not hospitalised at time t in the 122

simulated outbreak. 123

From the time point of entering the hospitalised compartments, Hu,i and Hv,i , there was a time lag, tD, of seven days until 124

the individuals were considered deceased. This parameterisation was chosen as it reflected a plausible duration for all three 125

pathogens being studied given values from the scientific literature [41, 42, 43]. The total number of unvaccinated individuals in 126

each behavioural subpopulation was Nu,i = Su,i +Eu,i + Iu,i +Ru,i +Hu,i +Du,i and the total number of vaccinated individuals 127

in each behavioural subpopulation was Nv,i = Sv,i +Ev,i + Iv,i +Rv,i +Hv,i +Dv,i. The rate of vaccine uptake, νi (t), depended on 128

the behavioural function, with further details given in the following subsection. 129
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Sui Eui Iui Rui

Hui Dui

Svi Evi Ivi Rvi

Hvi Dvi

λ σ (1−m)γ

mγ

tD

(1− εs)λ σ (1−m(1− εm))γ

m(1− εm)γ

tD

νi (t) νi (t) νi (t)

Unvaccinated

Vaccinated

Figure 1. Representation of the underlying disease model with vaccination and time- and behaviour-dependent vaccine
uptake, ννν iii (ttt). Solid arrows show the flow of individuals between compartments. Dashed arrows indicates the time lags from
hospitalisation to reported death, tD. Boxes contain the transition rates between compartments. The subscript i denotes the
behavioural group, which in our case is determined by vaccine opinion ρ . The subscript u denotes unvaccinated individuals and
the subscript v denotes vaccinated individuals. λ is the force of infection, σ is the rate of progression from the exposed state to
the infectious state, γ is the rate of recovery from the infectious state and m is the infection fatality probability. εs represents the
vaccine efficacy for infection blocking and εm represents the vaccine efficacy for reducing severe disease outcomes. νi (t)
represents the daily vaccine uptake rate. More information about the model equations and parameter estimates can be found in
Equation (1) and Table 1.

Implementation of the behavioural function 130

In our model, we considered human behaviour related to vaccination by scaling a baseline daily vaccine uptake rate. We 131

assumed a baseline daily vaccine uptake, ν0, of 0.005 individuals per day, which was modified according to four factors (each 132

detailed below): vaccine opinion, information sharing, outbreak information awareness and memory window. 133

Vaccine opinion and information sharing 134

We outline here two parameters that correspond to key aspects of human behaviour that can introduce heterogeneity into vaccine 135

uptake. The first was vaccine opinion, ρ , corresponding to the initial opinion individuals had prior to the onset of the outbreak. 136

The second was information sensitivity, α , which accounted for the sensitivity individuals had to information throughout the 137

simulated outbreak. 138

We examined two population types in our study: homogeneous and heterogeneous. For scenarios where the population 139

was homogeneous, everyone in the population has the same values for vaccine opinion, ρ , and information sensitivity, α . For 140

scenarios where the population was heterogeneous, the heterogeneity was with respect to vaccine opinion, ρ . The population 141

was split into three subpopulations with different levels of ρ to represent vaccine-resistant (ρi = 0), vaccine-hesitant (ρi = 1) 142

and vaccine-accepting groups (ρi = 2). For the purposes of our study, everyone had the same information sensitivity α , however, 143

this variable could be explored in further simulation studies. 144

Outbreak information and memory window 145

As we were interested in the potentially negative behavioural response on vaccination uptake to vaccinated individuals suffering 146

infection and serious health episodes, recall that our selected dependency for vaccine behaviour modification was a measure of 147

real-time vaccine effectiveness. We had four forms for this outbreak information awareness dependency, whose computation 148

would require data on new cases or new deaths for both unvaccinated and vaccinated individuals (Eqs. (3) and (4)). 149
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These expressions incorporated a population-level memory window, µ , which we defined as the amount of time (days) prior 150

to time t from which outbreak information, θ , was computed. On each new day of a simulation, the daily vaccine uptake rate, 151

νi (t), was updated by considering the outbreak information, θ (t), of interest. In our case, we explored the number of new 152

cases or new deaths within the memory window, time t −1−µ to time t −1. For simplicity, we refer to time t −1−µ as tµ . 153

We then calculated the outbreak information for the respective unvaccinated and vaccinated sub-populations. The equations 154

for calculating new cases for each unvaccinated and vaccinated subpopulation, i, were given by: 155

∆Cu,i
(
tµ , t −1

)
= (Nu,i (t −1)−Su,i (t −1))−

(
Nu,i

(
tµ

)
−Su,i

(
tµ

))
∆Cv,i

(
tµ , t −1

)
= (Nv,i (t −1)−Sv,i (t −1))−

(
Nv,i

(
tµ

)
−Sv,i

(
tµ

)) (3)

The equations for calculating new deaths for each unvaccinated and vaccinated subpopulation, i, were given by: 156

∆Du,i
(
tµ , t −1

)
= Du,i (t −1)−Du,i

(
tµ

)
∆Dv,i

(
tµ , t −1

)
= Dv,i (t −1)−Dv,i

(
tµ

) (4)

We defined our local outbreak information awareness equations, θLC,i and θLD,i, to correspond to local (subpopulation-level) 157

cases or deaths in unvaccinated individuals relative to cases or deaths in all individuals in the subpopulation: 158

θLC,i
(
tµ , t −1

)
=

∆Cu,i
(
tµ , t −1

)
∆Cu,i

(
tµ , t −1

)
+∆Cv,i

(
tµ , t −1

)
θLD,i

(
tµ , t −1

)
=

∆Du,i
(
tµ , t −1

)
∆Du,i

(
tµ , t −1

)
+∆Dv,i

(
tµ , t −1

) (5)

Similarly, we defined our global outbreak information awareness equations, θGC and θGD, to correspond to global 159

(population-level) cases or deaths in unvaccinated individuals relative to cases or deaths in all individuals in the popula- 160

tion: 161

θGC
(
tµ , t −1

)
=

∑
n
i=1 ∆Cu,i

(
tµ , t −1

)
∑

n
i=1 ∆Cu,i

(
tµ , t −1

)
+∆Cu,i

(
tµ , t −1

)
θGD

(
tµ , t −1

)
=

∑
n
i=1 ∆Du,i

(
tµ , t −1

)
∑

n
i=1 ∆Du,i

(
tµ , t −1

)
+∆Dv,i

(
tµ , t −1

) (6)

By design, the outbreak information equations described above resulted in a decrease in the daily vaccine uptake rate for 162

non-fully effective vaccines. This embodies a situation where, due to vaccine effectiveness being less than 100%, breakthrough 163

infections and deaths in vaccinated individuals arise that cause a reduction in the daily vaccine uptake rate from its baseline 164

value. For a fully effective intervention (effectiveness of 100%), note that the daily vaccine uptake rate would be unchanged by 165

the outbreak information. 166

Modification of vaccine uptake rate due to behavioural attributes 167

We modified the daily vaccine uptake rate, νi (t), by the behavioural function, which accounted for a baseline vaccine uptake 168

rate, ν0, vaccine opinion, ρi, information sensitivity, αi, outbreak information awareness, θi
(
tµ , t −1

)
and memory window 169

duration, µ: 170

νi (t) = ν0
[
ρi +αiθi

(
tµ , t −1

)]
(7)

The equation above represents the behavioural function ννν iii (ttt) for a behaviourally-heterogeneous population (Eq. (7)). It 171

should be noted that information sensitivity α is notated with a subscript i — although we do not vary information sensitivity 172

within simulations for the purposes of this study, the behavioural subgroup notation is kept to show that this could be varied in 173

further studies. We also note that θi in the equation can be replaced by θLC,i, θLD,i, θGC or θGD. 174

For behaviourally-homogeneous populations, we have a simplified form of the vaccination uptake rate (Eq. (8)): 175

ν (t) = ν0
[
ρ +αθ

(
tµ , t −1

)]
(8)

Since the equation above is specific to behaviourally-homogeneous populations, only global outbreak information awareness 176

is explored leaving θ to be replaced by θGC or θGD. 177

Based on the range of behavioural parameters we considered in our simulations, our behavioural function νi (t) produced 178

daily vaccine uptake rates ranging from 0 to 0.02, or 0% to 2% of the sub-population being vaccinated per day (Fig. 2). Between 179

14 December 2020 and 07 April 2021 in the UK, the daily share of the population receiving a COVID-19 vaccine dose ranged 180

from approximately 0.1% to 0.9% [44]. Both extremes of this range of daily vaccine uptake rates are included within our 181

parameter space. 182

6/28

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.01.17.24301344doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.17.24301344
http://creativecommons.org/licenses/by/4.0/


Figure 2. Dependency of the daily vaccine uptake rate on the behavioural function ννν iii (ttt). We display three examples at
different levels of vaccine opinion, ρi, which we use to define our three behavioural groups in our heterogeneous simulations:
(A) vaccine-resistant (ρ = 0); (B) vaccine-hesitant (ρ = 1); and (C) vaccine-accepting (ρ = 2). The daily vaccine uptake rate
(colour) is shown for different values of information sensitivity, α , and outbreak information, θi

(
tµ , t −1

)
. The outbreak

information is calculated using the equations in Eqs. (5) and (6).

Table 2. Behavioural function ννν iii (ttt) parameter descriptions. Further information about the values used for each parameter
can be found in Table 3 and the formulations of θ (t) can be found in Equations (5) and (6).

Parameter description Range

ν (t) Daily vaccine uptake rate [0,0.02]
ν0 Baseline vaccine uptake rate 0.005
ρ Vaccine opinion [0,2]
α Information sensitivity [0,2]
θ (t) Outbreak information [0,1]
µ Memory window (days) (1, Full history]

Pathogen-specific model parameterisation 183

To disentangle how incorporating behaviour into our model might impact systems of varying transmission potential and rate of 184

infection fatality, we parameterised the model for three distinct human respiratory pathogen systems that differed in terms of 185

these attributes: pandemic influenza, SARS-CoV-2 and Ebola. We based the disease parameter values, including the basic 186

reproduction number, R0, latent and infectious periods and infection fatality risks on estimates from the existing scientific 187

literature (Table 1). Pandemic influenza has an R0 of approximately 1.5 [33], with relatively short latent and infectious periods 188

of 2 and 5 days [36] (Table 1). In contrast, the SARS-CoV-2 wild-type variant has an estimated R0 of approximately 3 [34] 189

with longer latent and infectious periods (relative to our parameter estimates for pandemic influenza) of 5 and 7 days [37] 190

(Table 1). Lastly, Ebola has an R0 around 2 with latent and infectious periods of 2 and 7 days [35]. Compared with the other 191

two pathogens, Ebola has a much larger probability of death due to infection (m) at 0.39 [40], with probability of death due to 192

infection with SARS-CoV-2 at 6.38x10−3 [39] and pandemic influenza at 1x10−4 [38]. 193

Simulation overview 194

For all model simulations we used an overall population size of 100,000 individuals. We initialised infection with one 195

unvaccinated infectious individual on day 0. For the heterogeneous simulations described below, the one initial infection 196

was distributed according to the proportion assigned to each behavioural subpopulation. We ran the simulations until the 197

number of active infections was fewer than one. Each sub-analysis had a bespoke simulation set, summarised in Table 3 198

and with further details below. We wrote the model code in Python 3.11.7, with the model code available at https: 199

//github.com/rachelseibel/outbreak_information_model. 200
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Homogeneous population scenarios 201

In these two homogeneous scenarios, within each simulation the entire population had the same behavioural parameter values. 202

We considered the sensitivity of epidemiological outcomes for 6 unique combinations of pathogen (pandemic influenza, 203

SARS-CoV-2 and Ebola) and outbreak information (global cases, global deaths) - we refer to each of these combinations as a 204

‘batch’. We expand below on the behavioural parameter values considered under each scenario. 205

Homogeneous scenario 1: Influence of vaccine opinion and information sensitivity in a homogeneous population. 206

In our initial analysis, for each of the six batches (combination of pathogen and outbreak information) we considered the 207

sensitivity of cumulative cases, cumulative deaths and epidemic duration to vaccine opinion and information sensitivity. We 208

performed 40,401 simulations per batch, one simulation for each combination of vaccine opinion, ρ , ranging from 0 to 2 (with 209

an increment of 0.01), and information sensitivity, α , ranging from 0 to 2 (with an increment of 0.01). This resulted in a total of 210

242,406 simulations. 211

Homogeneous scenario 2: Influence of memory window and vaccine efficacy in a homogeneous population. We 212

next considered the sensitivity of cumulative cases and cumulative deaths to memory window and vaccine efficacy, across 213

different levels of pathogen, outbreak information, vaccine opinion and information sensitivity. Within each batch, we had 15 214

combinations of vaccine opinion (ρ ∈ {0,1,2}), information sensitivity (α ∈ {0,0.5,1,1.5,2}). We selected these parameter 215

values to reasonably span the range of parameter space when considering the two parameters. Furthermore, to then assess 216

sensitivity of modelled epidemiological outcomes to memory window and vaccine efficacy, for each of these 15 combinations 217

we also considered 12 combinations of memory window length (µ ∈ {1 day,7 day,28 day, full outbreak history}) and vaccine 218

efficacy (ε ∈ {25%,50%,90%}). This gave a total of 1,080 simulations for this scenario. 219

Heterogeneous population scenarios 220

In these two heterogeneous scenarios, within each simulation the population was split between three subpopulations that each 221

had a unique vaccine opinion to represent vaccine-resistant (ρ = 0), vaccine-hesitant (ρ = 1) and vaccine-accepting (ρ = 2) 222

subpopulations. We stratified group occupancy to a resolution of 5% - a subjective choice that ensured the total required 223

computational time for running the collection of scenarios was manageable, whilst providing a resolution that would be capable 224

of revealing trends between vaccine opinion group composition and epidemiological outcomes. Unique combinations of 225

occupancy (population split) across the three groups that summed to unity resulted in 231 heterogeneous vaccine opinion group 226

configurations. We considered the sensitivity of epidemiological outcomes for each of 6 combinations of pathogen (pandemic 227

influenza, SARS-CoV-2 and Ebola) and outbreak information (local cases, local deaths). Overall, we considered 1,386 unique 228

combinations of pathogen, outbreak information and population split. We expand below on the behavioural parameter values 229

considered under each scenario. 230

Heterogeneous scenario 1: Influence of vaccine opinion and information sensitivity in a heterogeneous population. In 231

this scenario, we considered the effect of information sensitivity on cumulative cases and cumulative deaths across different 232

levels of pathogen, outbreak information and population split. For each of the 1,386 combinations of pathogen, outbreak 233

information and population split, we explored sensitivity of epidemiological outcomes to 3 specific information sensitivity 234

values, with α ∈ {0,1,2}. We therefore carried out a total of 4,158 simulations for this scenario. 235

Heterogeneous scenario 2: Influence of memory window and vaccine efficacy in a heterogeneous population. We 236

lastly considered how memory window and vaccine efficacy impacted cumulative cases and cumulative deaths across 120 237

different combinations of pathogen, outbreak information, population split and information sensitivity (α ∈ {0,0.5,1,1.5,2}). 238

We specifically explored four population splits or behavioural configurations of interest: (i) 50% vaccine-resistant and 239

50% vaccine-hesitant; (ii) 50% vaccine-resistant and 50% vaccine-accepting; (iii) 50% vaccine-hesitant and 50% vaccine- 240

accepting; and (iv) equal population split between vaccine-resistant, vaccine-hesitant and vaccine-accepting groups. We then 241

considered 6 combinations combinations of memory window length (µ ∈ {1 day, full outbreak history}) and vaccine efficacy 242

(ε ∈ {25%,50%,90%}). This gave a total of 720 simulations for this scenario. In the homogeneous scenarios, we found a weak 243

effect of memory window across the 1-day, 7-day, 28-day and full outbreak history values, therefore, we decided to present the 244

extremes of this range for this heterogeneous scenario. 245

Results 246

Homogeneous scenario 1: Preference for a cases- or deaths-driven behavioural reaction for improved 247

epidemiological outcomes are pathogen-dependent 248

We first studied the influence of vaccine opinion (ρ) and information sensitivity (α) in a homogeneous population on cumulative 249

cases, cumulative deaths and epidemic duration. These analyses were done with consideration to our three selected human 250

pathogens: pandemic influenza, SARS-CoV-2 and Ebola, and two types of global outbreak information: global cases (θGC) and 251

global deaths (θGD). 252
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Across all pathogens and types of global outbreak information, cumulative cases and cumulative deaths decreased as 253

vaccine opinion and information sensitivity increased (Figures 3 and 4). In other words, cumulative epidemiological metrics 254

were worse when behavioural parameters were turned off. When outbreak information was based on global cases, cumulative 255

cases ranged from approximately 72 to 94,000 cases across all pathogens whilst cumulative deaths ranged from approximately 256

0.005 to 35,000 deaths. When outbreak information was based on global deaths, cumulative cases ranged from approximately 257

91 to 94,000 cases across all pathogens whilst cumulative deaths ranged from approximately 0.006 to 35,000 deaths. For 258

SARS-CoV-2 and Ebola, the epidemic duration in days increased as vaccine opinion and information sensitivity increased. For 259

pandemic influenza, epidemic duration did not follow a linear relationship with the behavioural variables of interest. Instead, 260

very low and high levels (0-0.1, 1.7-2) of vaccine opinion and information sensitivity led to shorter epidemic durations (less 261

than 300 days) whilst mid-range levels (0.1-1.7) of vaccine opinion and information sensitivity led to longer epidemic durations 262

(300-980 days) (Figures 3 and 4). 263

We then considered the percent difference in cumulative outbreak measures between simulations with outbreak information 264

based on global cases (θGC) when compared to simulations with outbreak information based on global deaths (θGD). For 265

cumulative cases and cumulative deaths, pandemic influenza showed patterns distinct from SARS-CoV-2 and Ebola; for 266

pandemic influenza the percent difference in cumulative cases and cumulative deaths was negative across all levels of vaccine 267

opinion and information sensitivity, which showed a benefit of outbreak information based on global cases (θGC) (Figure 4A,B). 268

For SARS-CoV-2 and Ebola, the percent difference in cumulative cases and cumulative deaths was negative for low levels of 269

vaccine opinion and information sensitivity (0-1.5) and positive for high levels of vaccine opinion and information sensitivity 270

(1.6-2). Therefore, for low levels of vaccine opinion and information sensitivity, we observed a benefit of outbreak information 271

based on global cases (θGC). Similarly, for high levels of vaccine opinion and information sensitivity, we observed a benefit 272

of outbreak information based on global deaths (θGD) (Figure 4A,B). For all pathogens, the percent differences in epidemic 273

duration were positive (i.e. a benefit of outbreak information based on global cases (θGC)) for low levels of vaccine opinion and 274

information sensitivity (0-1.5) and negative (i.e. a benefit of outbreak information based on global deaths (θGD)) for high levels 275

of vaccine opinion and information sensitivity (1.5-2) (Figure 4C). 276

Given that the cumulative outbreak measures differed in pattern by pathogen, we examined temporal dynamics showing 277

the cumulative cases, cumulative deaths and cumulative vaccinations across time in days for a vaccine opinion (ρ) of 2 and 278

information sensitivity (α) of 2 (Figure 5). These behavioural parameters were highlighted since the greatest differences between 279

outbreak information types fell in this parameter combination. For pandemic influenza, cumulative cases and cumulative 280

deaths were consistently lower when outbreak information was based on global cases (θGC) compared with global deaths (θGD) 281

(Figure 5A,B). This contrasted with SARS-CoV-2 and Ebola, where cumulative cases and cumulative deaths were instead 282

lower for global cases (θGC) at earlier time points, but higher at later time points compared with global deaths (θGD). Across 283

all pathogens, due to reported deaths being a lagged measure compared with reported cases, having outbreak information 284

based on global deaths resulted in cumulative vaccinations also being lagged at the start of the outbreak relative to cumulative 285

vaccinations under outbreak information based on global cases (Figure 5C). 286
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Figure 3. Homogeneous scenario 1. Summary epidemiological metrics by pathogen when outbreak information was
based on global cases (θθθ GGGCCC). Each panel shows a given epidemiological statistic across different levels of information
sensitivity (α) (x-axis, ranging from 0 to 2) and different levels of vaccine opinion (ρ) (y-axis, ranging from 0 to 2). Each
column corresponds to a different pathogen: pandemic influenza (column one), SARS-CoV-2 (column two) and Ebola (column
three). Each row displays one of the three summary epidemiological measures with a shared colour bar: (A) cumulative cases;
(B) cumulative deaths; (C) epidemic duration (days). Darker shading corresponds to higher values for each epidemiological
metric. The cumulative outcomes vary between pathogen systems, with pandemic influenza being particularly distinct from the
other two pathogens.
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Figure 4. Homogeneous scenario 1. Percent difference in summary epidemiological metrics between simulations with
outbreak information based on global cases (θθθ GGGCCC) and global deaths (θθθ GGGDDD). Each panel shows a given epidemiological
statistic across different levels of information sensitivity (α) (x-axis, ranging from 0 to 2) and vaccine opinion (ρ) (y-axis,
ranging from 0 to 2). Each column corresponds to a different pathogen: pandemic influenza (column one), SARS-CoV-2
(column two) and Ebola (column three). Each row shows the percent difference between simulations where the global cases
(θGC) and global deaths (θGD) behavioural functions were used: (A) cumulative cases; (B) cumulative deaths; (C) epidemic
duration (days). The shared colour bar is on a log scale. Red shading corresponds to scenarios where outbreak information
based on global cases led to lower values in the corresponding epidemiological metric compared with global cases. In other
words, red shading corresponds to a benefit of global cases and blue shading corresponds to a benefit of global deaths as
outbreak information (θ ). The striations at certain values of ρ are a numerical artefact, arising due to the behavioural function
structure (Equation (8)) causing slight shifts in behaviour at early outbreak stages.
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Figure 5. Homogeneous scenario 1. Temporal outbreak measures between simulations with outbreak information based
on global cases (θθθ GGGCCC) and global deaths (θθθ GGGDDD). For a vaccine opinion (ρ) of 2 and information sensitivity (α) of 2, we
display our epidemiological metrics across time (x-axis): (A) cumulative cases, (B) cumulative deaths and (C) cumulative
vaccinations. Each line indicates a different level of outbreak information (θ ): global cases (pink dashed line) and global deaths
(purple solid line). Note the differences in cumulative metrics through time by the underlying outbreak information considered.
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Table 3. Simulation outline specifying levels of behavioural variables for four scenarios. For each scenario, we specify the
population type (homogeneous or heterogeneous), the variables of interest and the levels we simulated of these variables. Each
scenario simulation can be thought of as a unique combination of the variables of interest and their respective levels. It should
be emphasised that the value for vaccine efficacy, ε , is the same for the two different vaccine actions – infection blocking (εs)
and reduction of severe disease (εm). More information regarding the simulation parameters and variables can be found in
Tables 1 and 2 and Eqs. (5) and (6).

Scenario # Variables of interest Levels

Homogeneous population

Homogeneous scenario 1:
Information sensitivity
and vaccine opinion

Pathogen {Pandemic influenza, SARS-CoV-2, Ebola}
Outbreak information, θ {θGC,θGD}
Information sensitivity, α {0.00,0.01,0.02, . . . ,1.98,1.99,2.00}
Vaccine opinion, ρ {0.00,0.01,0.02, . . . ,1.98,1.99,2.00}
Memory window (days), µ {Full history}
Vaccine efficacy (%) ,ε {50}

Homogeneous scenario 2:
Memory window
and vaccine efficacy

Pathogen {Pandemic influenza, SARS-CoV-2, Ebola}
Outbreak information, θ {θGC,θGD}
Information sensitivity, α {0.0,0.5,1.0,1.5,2.0}
Vaccine opinion, ρ {0,1,2}
Memory window (days), µ {1,7,28,Full history}
Vaccine efficacy (%) ,ε {25,50,90}

Heterogeneous population: three subpopulations each with a unique vaccine opinion, ρ ∈ {0,1,2}

Heterogeneous scenario 1:
Information sensitivity
and vaccine opinion

Pathogen {Pandemic influenza, SARS-CoV-2, Ebola}
Outbreak information, θ {θLC,i,θLD,i}
Information sensitivity, α {0.1,1,2}
Memory window (days), µ {Full history}
Vaccine efficacy (%) ,ε {50}

Heterogeneous scenario 2:
Memory window
and vaccine efficacy

Pathogen {Pandemic influenza, SARS-CoV-2, Ebola}
Outbreak information, θ {θLC,i,θLD,i}
Information sensitivity, α {0.0,0.5,1.0,1.5,2.0}
Memory window (days), µ {1,Full history}
Vaccine efficacy (%) ,ε {25,50,90}
Population split {50% vaccine-resistant and 50% vaccine-hesitant;

50% vaccine-resistant and 50% vaccine-accepting;
50% vaccine-accepting and 50% vaccine-hesitant;
Equal population split between behavioural groups.}
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Homogeneous scenario 2: Preference for a cases- or deaths-driven behavioural reaction for improved 287

epidemiological outcomes are vaccine efficacy-dependent 288

We next considered the sensitivity of cumulative cases and cumulative deaths to memory window and vaccine efficacy in 289

a behaviourally homogeneous population. The important takeaway from these simulations was that outbreak information 290

preference was sensitive to vaccine efficacy alongside the underlying pathogen-specific parameters identified in the homogeneous 291

scenario 1 simulations. 292

For all pathogens at a full history memory window (µ), we found that cumulative cases decreased as vaccine efficacy (ε) 293

increased (Figure 6A). At a vaccine efficacy of 25%, the percent difference in cumulative cases between global cases and global 294

deaths was small (0-2%) across all pathogens (Figure 6B). For pandemic influenza, the percent difference in cumulative cases 295

between global cases and global deaths was negative (benefit of global cases) for a vaccine efficacy of 50% (ranging from 0% 296

to -26%) and 90% (ranging from 0% to -61%). For SARS-CoV-2 and Ebola at a vaccine efficacy of 50%, the percent difference 297

in cumulative cases was negative («-1%) when vaccine opinion was 0 and information sensitivity was 1 (benefit of global cases) 298

and zero or positive (0-8%) for all other combinations of vaccine opinion and information sensitivity. Across all pathogens at a 299

vaccine efficacy of 90%, the percent difference in cumulative cases was zero or negative: 0 to -61% for pandemic influenza, 300

0 to -39% for SARS-CoV-2 and 0 to -65% for Ebola. The trends in epidemiological metrics were similar when considering 301

cumulative deaths (Figures S2 and S4). 302

We then considered a memory window (µ) of 1 day and found that the benefits of outbreak information types remained the 303

same across different levels of vaccine opinion and information sensitivity. However, the magnitude of the percent differences 304

in cumulative epidemiological metrics differed. For pandemic influenza at a vaccine efficacy of 90%, the percent difference in 305

cumulative cases between global cases and global deaths ranged from 0 to -89% compared with 0 to -61% at a full history 306

memory window (Figure 7B). Despite this variation, the cumulative case numbers are below 500 for both memory windows 307

and therefore the percent differences in cumulative cases are not greatly meaningful. The same is true for 7-day and 28-day 308

memory window values (Figures S6 and S7). 309

However, for Ebola at a vaccine efficacy of 50% and global cases as outbreak information, a 1-day memory window (23,000 310

cases) led to approximately 3,000 more cases compared with a full-history memory window (26,000 cases) (Figures 6 and 7). 311

The percent difference in cumulative cases between global cases and global deaths increased from 8 to 11% for Ebola with the 312

1-day memory window compared with the full-history memory window (Figure 7). 313

Inspecting the sensitivity of cumulative cases to vaccine efficacy (ε) in a behaviourally homogeneous population, with global 314

cases as outbreak information, for all pathogens we found that cumulative cases decreased as vaccine efficacy (ε) increased 315

(Figure 8). With respect to increasing vaccine efficacy (ε), cumulative cases decreased more rapidly for pandemic influenza and 316

decreased slowest for SARS-CoV-2. The trends in epidemiological metrics were similar when outbreak information was based 317

on global deaths (θGD) (Figure 8). 318
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Figure 6. Homogeneous scenario 2. Sensitivity of cumulative cases to vaccine efficacy across pathogens and type of
outbreak information for a full history memory window. For each panel, cumulative cases are presented across the three
pathogens of interest (pandemic influenza, SARS-CoV-2, Ebola) alongside three vaccine efficacies (ε ∈ 25%,50%,90%) of
interest. Panel (A) shows simulations where the outbreak information was global cases as well as the corresponding cumulative
cases in thousands for each unique combination of pathogen, vaccine efficacy (ε), vaccine opinion (ρ) and information
sensitivity (α). Dark purple hues correspond to more cumulative cases whilst light orange hues correspond to fewer cumulative
cases. Panel (B) shows the percent difference in cumulative cases between simulations where the outbreak information was
global cases (θGC) and global deaths (θGD) for each unique combination of pathogen, vaccine efficacy (ε), vaccine opinion (ρ)
and information sensitivity (α). Blue hues correspond to positive percent differences in cumulative cases (representing a
benefit of global deaths) whilst red hues correspond to negative percent differences in cumulative cases (representing a benefit
of global cases).
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Figure 7. Homogeneous scenario 2. Sensitivity of vaccine efficacy across pathogens and type of outbreak information for
a 1-day memory window. For each panel, cumulative cases are presented across the three pathogens of interest (pandemic
influenza, SARS-CoV-2, Ebola) alongside three vaccine efficacies (ε ∈ 25%,50%,90%) of interest. Panel (A) shows
simulations where the outbreak information was global cases as well as the corresponding cumulative cases in thousands for
each unique combination of pathogen, vaccine efficacy (ε), vaccine opinion (ρ) and information sensitivity (α). Dark purple
hues correspond to more cumulative cases whilst light orange hues correspond to fewer cumulative cases. Panel (B) shows the
percent difference in cumulative cases between simulations where the outbreak information was global cases (θGC) and global
deaths (θGD) for each unique combination of pathogen, vaccine efficacy (ε), vaccine opinion (ρ) and information sensitivity
(α). Blue hues correspond to positive percent differences in cumulative cases (representing a benefit of global deaths) whilst
red hues correspond to negative percent differences in cumulative cases (representing a benefit of global cases).
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Figure 8. Homogeneous scenario 2. Cumulative cases across pathogen systems and vaccine efficacy for homogeneous
behavioural configurations and outbreak information based on global cases. Each row shows cumulative cases for a given
pathogen system: (A) pandemic influenza, (B) SARS-CoV-2 and (C) Ebola. Each column shows a different vaccine efficacy (ε):
25% (first column), 50% (second column) and 90% (third column). Different line types, colours and markers indicate different
homogeneous behavioural configurations: vaccine-resistant (ρ = 0,purple solid line with circle markers), vaccine-hesitant
(ρ = 1,pink dashed line with square markers) and vaccine-accepting (ρ = 2,orange dotted line with triangle markers). The
memory window (µ) was fixed at a full history and outbreak information was based on global cases (θGC).
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Heterogeneous scenario 1: Preference for a cases- or deaths-driven behavioural reaction for improved 319

epidemiological outcomes are pathogen-dependent 320

To relax our previous assumption of the population being homogeneous with respect to both behavioural-associated parameters 321

α and ρ , we studied the impact of population splits with multiple levels of vaccine opinion (ρ). Similar to the homogeneous 322

scenario 1 outcomes, we found that pandemic influenza exhibited patterns distinct from SARS-CoV-2 and Ebola. We also 323

found that behavioural configuration was important in explaining variations in outbreak severity. For all pathogens, cumulative 324

cases decreased as vaccine opinion and information sensitivity increased (Figure 9). 325

We then considered the percent difference in cumulative cases between simulations with outbreak information based on local 326

cases (θLC) when compared with simulations with outbreak information based on local deaths (θLD). For pandemic influenza, 327

the percent difference in cumulative cases was negative across all levels of information sensitivity and behavioural configuration 328

(ranging from -0.5% to -37.0%), which showed a benefit of outbreak information based on local cases (θLC) (Figure 10A). For 329

Figure 9. Heterogeneous scenario 1. Cumulative cases across pathogen systems and information sensitivity, with
outbreak information based on local cases and vaccine efficacy of 50%. For each panel, the ternary plot axes show the
percentage of the population assigned to each of three behavioural groups: vaccine-resistant (ρ = 0), vaccine-hesitant (ρ = 1)
and vaccine-accepting (ρ = 2). Each row shows cumulative cases for a given pathogen: (A) pandemic influenza, (B)
SARS-CoV-2, (C) Ebola. Each column corresponds to a different level of information sensitivity: α = 0.1 (first column),
α = 1 (second column), α = 2 (third column). Darker colour hues indicate more severe outcomes in terms of cumulative cases.
SARS-CoV-2 shows less variable outcomes across information sensitivity compared with the other two pathogens.
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Figure 10. Heterogeneous scenario 1. Percent difference in cumulative cases between local cases and local deaths across
pathogen systems and information sensitivity with a vaccine efficacy of 50%. For each panel, the ternary plot axes show the
percentage of the population assigned to each of three behavioural groups: vaccine-resistant (ρ = 0), vaccine-hesitant (ρ = 1)
and vaccine-accepting (ρ = 2). Each row shows percent difference in cumulative cases between outbreak information
scenarios based on local cases and local deaths for a given pathogen: (A) pandemic influenza, (B) SARS-CoV-2, (C) Ebola.
Each column corresponds to a different level of information sensitivity: α = 0.1 (first column), α = 1 (second column), α = 2
(third column). Darker colour hues indicate more severe outcomes in terms of percent difference in cumulative cases.

SARS-CoV-2 and Ebola, the percent difference in cumulative cases was negative for mostly resistant populations and positive 330

for mostly accepting populations (SARS-CoV-2: ranging from -0.3% to 1.0%; Ebola: ranging from -0.3% to 9.3%). This 331

indicated a benefit of outbreak information based on local cases (θLC) for mostly resistant populations and a benefit of outbreak 332

information based on local deaths (θLD) for mostly accepting populations (Figure 10B,C). 333

19/28

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.01.17.24301344doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.17.24301344
http://creativecommons.org/licenses/by/4.0/


Heterogeneous scenario 2: Preference for a cases- or deaths-driven behavioural reaction for improved 334

epidemiological outcomes are vaccine efficacy-dependent 335

Our last scenario considered the sensitivity of cumulative cases to memory window (µ) and vaccine efficacy (ε) in a be- 336

haviourally heterogeneous population with respect to vaccine opinion (ρ), across different pathogens, outbreak information 337

types (θ ) and information sensitivities (α). 338

For all pathogens, we found that cumulative cases decreased as vaccine efficacy (ε) and information sensitivity (α) increased 339

in behaviourally heterogeneous populations (Figure 11). Cumulative cases for pandemic influenza decreased most rapidly as 340

vaccine efficacy (ε) increased compared with SARS-CoV-2 and Ebola. Cumulative cases for SARS-CoV-2 decreased most 341

slowly as vaccine efficacy (ε) increased. Across all pathogens, the resistant/hesitant configuration led to the most cumulative 342

cases, followed by the resistant/accepting configuration, the accepting/hesitant configuration and lastly by the equally-split 343

configuration (Figure 11). Overall, SARS-CoV-2 scenarios had the highest cumulative cases (approximately 95,000 cases), 344

followed by Ebola (approximately 85,000 cases) and then pandemic influenza (approximately 50,000 cases). The trends in 345

epidemiological metrics were similar when outbreak information was based on local deaths (θLD) (Figure S40) as well as when 346

considering cumulative deaths (Figures S38 and S41). 347

In terms of epidemic duration, across all pathogens and outbreak information types for a vaccine efficacy of 50% and full- 348

history memory window, the accepting/hesitant configurations led to the longest epidemic durations (> 600 days for pandemic 349

influenza), followed by the equal split configuration, then the resistant/accepting configuration and lastly the resistant/hesitant 350

configuration (approximately 225 days for SARS-CoV-2) (Figure 11). As vaccine efficacy increased, some behavioural 351

configurations resulted in longer epidemics for mid-range levels of information sensitivity (0.5-1.5). Taking SARS-CoV-2 352

for instance, with the equal split configuration and a 50% vaccine efficacy, epidemic duration was longest at an information 353

sensitivity of 1 (approximately 320 days) and shortest at an information sensitivity of 2 (approximately 260 days) (Figure S39B). 354

We then considered the temporal dynamics of cases for different levels of vaccine efficacy (ε), pathogen system and four 355

behavioural configurations of interest: 50% resistant (ρ = 0) and 50% accepting (ρ = 2); 50% resistant (ρ = 0) and 50% 356

hesitant (ρ = 1); 50% accepting (ρ = 2) and 50% hesitant (ρ = 1); and equal split in vaccine opinion (ρ ∈ 0,1,2). 357

For pandemic influenza and across all 50% split configurations, we found that the least accepting subpopulation con- 358

tributed to more cumulative cases as the outbreak progressed (Figure 12A). For SARS-CoV-2 and Ebola, the least accepting 359

subpopulation contributed to more cumulative cases between 30 and 150-200 days into the outbreak (54% of cumulative 360

cases), but this contribution decreased at later outbreak stages (52% of cumulative cases) (Figure 12B,C). Overall, behavioural 361

configuration had little impact on the percent contribution of each subpopulation to cumulative cases for pandemic influenza 362

and SARS-CoV-2. For Ebola, the 50% accepting, 50% hesitant configuration led to the most even contribution of each 363

subpopulation to cumulative cases by the end of the outbreak (Figure 12C). For the equal split configurations, there was very 364

little variation in the vaccine-hesitant subpopulation contribution to cumulative cases through time, while the magnitudes of 365

contribution to cases in the vaccine-resistant and vaccine-accepting subpopulations were similar to those in the 50% split 366

configurations (Figure 12D). 367
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Figure 11. Heterogeneous scenario 2. Cumulative cases across pathogen systems, vaccine efficacy for heterogeneous
behavioural configurations with local cases as outbreak information. Each row shows cumulative cases for a given
pathogen system: (A) pandemic influenza, (B) SARS-CoV-2 and (C) Ebola. Each column shows a different vaccine efficacy
(ε): 25% (first column), 50% (second column) and 90% (third column). Different line types, colours and markers indicate
different mixed behavioural configurations: 50% resistant (ρ = 0) and 50% hesitant (ρ = 1) (solid purple line with circle
markers); 50% resistant (ρ = 0) and 50% accepting (ρ = 2) (dashed pink line with square markers); 50% accepting (ρ = 2)
and 50% hesitant (ρ = 1) (orange dotted line with triangle markers); and equal split in vaccine opinion (ρ ∈ 0,1,2, grey
dashed-dotted line with x markers). The memory window (µ) was fixed at the full history.
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Figure 12. Heterogeneous scenario 2. Subpopulation-level percent contribution to cumulative cases over time across
pathogen systems and vaccine efficacy for heterogeneous behavioural configurations and outbreak information based on
local cases. Each row shows percent contribution for each subpopulation towards cumulative cases across time in days for a
unique behavioural configuration: (A) 50% resistant (ρ = 0) and 50% hesitant (ρ = 1); (B) 50% resistant (ρ = 0) and 50%
accepting (ρ = 2); (C) 50% hesitant (ρ = 1) and 50% accepting (ρ = 2); and (D) equal split in vaccine opinion (ρ ∈ 0,1,2).
Each column represents a different pathogen system: pandemic influenza (first column), SARS-CoV-2 (second column) and
Ebola (third column). For each behavioural configuration, heatmaps are shown for each behavioural subpopulation present:
vaccine-resistant (ρ = 0), vaccine-hesitant (ρ = 1) and/or vaccine-accepting (ρ = 2). The colour bars are the same across the
rows. Red hues represent a contribution to cumulative cases which is greater than 50% (for two subpopulations) or 33.3% (for
three subpopulations) of the given population at time (t) whilst blue hues represent a contribution which is less than 50% (for
two subpopulations) or 33.3% (for three subpopulations). Information sensitivity (α) was fixed at 2, memory window (µ) was
fixed at the full history and vaccine efficacy (ε) was fixed at 50%.
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Discussion 368

Mathematical models of infectious disease dynamics can contribute to public health response efforts against infectious disease 369

outbreaks. Nonetheless, heterogeneity in human behaviour has typically not been considered in such models. Despite the 370

numerous studies that explore human behaviour during outbreaks in sociological and psychological contexts, there are few 371

which examine how human behaviour affects disease dynamics [19]. By improving existing disease models by considering 372

heterogeneity in human behaviour, modellers can therefore help better inform public health officials and policymakers [19, 20, 373

45]. 374

To contribute to this existing literature, we have presented a SEIR-type disease model that incorporates a subpopulation-level 375

intervention adherence behavioural function modifier. The behavioural modifier considered an initial intervention opinion, 376

real-time response to local and global outbreak information - in our case capturing a reduction in vaccine uptake as a result of 377

imperfect protection resulting in breakthrough infections and deaths in vaccinated individuals - and sensitivity to such outbreak 378

information. Using vaccination as an example intervention application and three different pathogens of public health concern 379

(pandemic influenza, SARS-CoV-2 and Ebola), through computational simulation we have shown how subpopulation-level 380

behavioural heterogeneity can result in disparate epidemic impacts on public health. In the current literature, behavioural 381

parameters related to vaccine uptake are not generally explored in mathematical models. We found that these behavioural 382

elements are necessary to explore in future models of infectious disease, since epidemic outcomes vary drastically under 383

different conditions within our parameter space of interest. 384

We found that differences in preference towards outbreak information were pathogen-specific. Consequently, in some 385

pathogen systems, outbreak information types at different outbreak stages may be more informative to an information-sensitive 386

population and lead to less severe epidemic outcomes. It has been found that local spread of disease awareness during an 387

outbreak can stop a disease from spreading [46]. Similarly, we found that sensitivity to local outbreak information can lead to 388

mild outbreaks, however, this less-severe outcome is dependent on the pathogen system and the behavioural configuration of 389

the population. As emphasised by Funk et al. 2010, information individuals use in decision-making during outbreaks may be 390

based on disease prevalence or information independent of prevalence, such as prior beliefs about vaccination [19]. We have 391

aimed to capture these two types of information in this study by considering subpopulation-level vaccine opinion, information 392

sensitivity and type of outbreak information (i.e. local cases, local deaths). 393

In this study, outbreak information preference was sensitive to vaccine efficacy, demonstrating the importance of considering 394

human behaviour during outbreaks in the context of the perceived effectiveness of the intervention. In situations where 395

individuals may perceive low infection risk, their perceived risk of adhering to the intervention may play a more significant role 396

in decision making [47]. 397

During an emerging infectious disease outbreak, it is important to consider how real-time outbreak information is dissemi- 398

nated to the public and the heterogeneity that may exist in data reporting by various sources (e.g. government websites, social 399

media, news media) [21, 48, 49]. 400

We also found that behavioural configuration was important in explaining variations in outbreak severity, drawing attention 401

to the relevance of behavioural heterogeneity when planning in the public health sector. Whilst our study was an exploratory 402

modelling investigation into how epidemiological impacts depended on vaccine beliefs and sensitivity to outbreak information 403

amongst the population, prospectively the behavioural elements of the model can be parameterised from behavioural data. 404

Information can be garnered from historical outbreaks, such as the 2018-2019 Ebola outbreak in DR Congo where the spread of 405

misinformation has been studied [11]. Unifying the novel components of our model structure with this model of misinformation 406

spread would be an interesting direction to explore, for instance. We also recommend reflecting on the plausibility of applying 407

such models as part of real-time response efforts, which will require timely availability of relevant data on behavioural 408

characteristics. There may be groups of people underrepresented in a given data set given limitations in sampling and data 409

privacy regulations, requiring further validation [16]. We therefore encourage reflection on the forms of data collected during 410

the COVID-19 pandemic and development of appropriate data management procedures to assist data availability. 411

In addition, although we aimed to capture many aspects of disease spread and behaviour, the following points are limitations 412

of the model framework and addressing these are future avenues of research: (i) we considered one form of behavioural 413

function and outbreak information input; (ii) subpopulation-level behavioural traits were representative of social groups and 414

subpopulation sizes were fixed during the simulated outbreak; (iii) we did not include spatial heterogeneity, demographic 415

processes or age-structure; and (iv) vaccination had no capacity constraints and was a standalone intervention. 416

First, we recommend expanding upon the behavioural function, νi (t), by incorporating additional variables or different 417

function types. Additional variables could include differentiating between individual cost of infection and cost of adherence. 418

The outbreak information can also be generalised to account for different epidemiological metrics, such as a dependency 419

on disease incidence and/or prevalence. It is also the case that opinions of individuals on interventions can change over 420

the course of infectious disease outbreaks due to new scientific findings, government regulations or changes in perceived 421

risk [50]. One possibility for incorporating such temporal dependencies is the use of objective and cost functions to demonstrate 422
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individual-based or government-based choices over time (a commonly used strategy in opinion dynamics) [20, 51]. 423

Second, we assumed that subpopulation sizes were fixed during the simulated outbreaks, as opposed to allowing movement 424

between subpopulations during the outbreak, and that the three vaccine opinion groups (resistant, hesitant, accepting) were 425

representative of social groups. Allowing for individuals to change their preexisting beliefs on the intervention strategy based 426

on dynamics such as conformity and new information presented in the media would be a reasonable direction to explore. When 427

considering local outbreak information, the vaccine uptake rate for a given subpopulation accounted for outbreak information 428

within the subpopulation alone. By incorporating local and global information concurrently, we anticipate more variable 429

outcomes in outbreak severity. 430

Thirdly, the model did not account for spatial heterogeneity, demographic processes or age-structure. Vaccine-related 431

behaviour, and infection intervention-related behaviour mode generally, can be highly correlated with spatial location, especially 432

in social networks with few close contacts or in areas with a high representation of susceptible groups. Spatial variations in 433

behavioural traits would be important when considering long-distance dispersal of pathogens [52, 53] and for disease outbreaks 434

occurring in active conflict zones that impact the ability to enact infection control strategies [35]. We chose not to include 435

demographic processes given the relatively short time scales (a few years) of the simulated outbreaks. If considering the 436

possibility of multiple variants of a pathogen and waning immunity, then due consideration should be given to population-level 437

processes that can alter the immunity structure. With regard to age-structure, the pathogens that we considered tend to have 438

disproportionate susceptibility to severe infection in young children, the elderly and individuals with preexisting medical 439

conditions. Given the similarity across the three pathogens of interest, we anticipate the inclusion of age-structure would not 440

qualitatively alter our findings. 441

Lastly, we assumed that vaccination had no capacity constraints and was a standalone intervention. We made the simplifying 442

assumption that resources were always available regardless of vaccine uptake, but could consider intervention availability 443

to demonstrate situations with limited public health and hospital resources [54]. Exploring human behaviour in the context 444

of varied resources available during outbreaks would be essential to investigate likely differences in disease and behaviour 445

dynamics in resource-limited scenarios. Vaccination also served as a sole intervention, in order to focus on the epidemiological 446

impacts of vaccine beliefs and sensitivity to outbreak information within subgroups. For the purposes of this work, we 447

considered vaccination as the intervention strategy used to combat disease spread. However, it is important to recognise that 448

other intervention strategies are often used in conjunction such as social distancing and mask-usage in various geographic 449

and social contexts [21, 55]. For instance, antivirals have been used to combat pandemic influenza [56]. For SARS-CoV-2, 450

non-pharmaceutical interventions such as self-quarantining or disinfecting frequently-used surfaces were used [4]. Ebola is 451

transmitted differently than the previous two pathogens, which have made safe burials, contact tracing and case management 452

reasonable measures to combat disease [35]. The inclusion of such intervention strategies in conjunction with vaccination 453

would provide further insights into pathogen-specific preferences towards outbreak information in resource-limited scenarios. 454

In conclusion, this work contributes to the existing literature by encapsulating awareness of population and subpopulation- 455

level intervention effectiveness in real-time within a human infectious disease model. We demonstrated the need for exploring 456

different behavioural functions, with variability exhibited in epidemic impacts given different behavioural assumptions. Public 457

health officials should consider expanding upon current data collections to include behavioural insights into individual opinions 458

on vaccination and propensity to vaccinate given new information from the government or social circles. With this data available, 459

disease modellers can use such data within model frameworks such as the one we have presented in this study, enabling us to 460

better understand behavioural implications on epidemic outcomes. We encourage researchers to continue enhancing the body 461

of work in the behavioural epidemiology field, which will be integral in combating future infectious disease outbreaks. 462
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6. Nowak, B. M., Miedziarek, C., Pełczyński, S. & Rzymski, P. Misinformation, fears and adherence to preventive measures
during the early phase of COVID-19 pandemic: A cross-sectional study in Poland. Int. J. Environ. Res. Public Heal. 18,
DOI: 10.3390/ijerph182212266 (2021).

7. Ferguson, N. Capturing human behaviour. Nature 446, 733, DOI: 10.1038/446733a (2007).

8. Kok, G. et al. Behavioural intentions in response to an influenza pandemic. BMC Public Heal. 10, 174, DOI: 10.1186/
1471-2458-10-174 (2010).

9. Balinska, M. & Rizzo, C. Behavioural responses to influenza pandemics. PLoS Curr. 1, RRN1037, DOI: 10.1371/currents.
RRN1037 (2009).

10. Van, D., McLaws, M.-L., Crimmins, J., MacIntyre, C. R. & Seale, H. University life and pandemic influenza: Attitudes
and intended behaviour of staff and students towards pandemic (H1N1) 2009. BMC Public Heal. 10, 130, DOI: 10.1186/
1471-2458-10-130 (2010).

11. Vinck, P., Pham, P. N., Bindu, K. K., Bedford, J. & Nilles, E. J. Institutional trust and misinformation in the response to the
2018–19 Ebola outbreak in North Kivu, DR Congo: A population-based survey. The Lancet Infect. Dis. 19, 529–536, DOI:
10.1016/S1473-3099(19)30063-5 (2019).

12. Brooks-Pollock, E. et al. Voluntary risk mitigation behaviour can reduce impact of SARS-CoV-2: a real-time modelling
study of the January 2022 Omicron wave in England. BMC medicine 21, 25, DOI: 10.1186/s12916-022-02714-5 (2023).

13. Verelst, F., Willem, L. & Beutels, P. Behavioural change models for infectious disease transmission: a systematic review
(2010–2015). J. The Royal Soc. Interface 13, 20160820, DOI: 10.1098/rsif.2016.0820 (2016).

14. Jackson, T., Steed, L., Pedruzzi, R., Beyene, K. & Chan, A. H. Y. Editorial: COVID-19 and behavioral sciences. Front.
Public Heal. 9, DOI: 10.3389/fpubh.2021.830797 (2022).

15. Liu, Y. & Wu, B. Coevolution of vaccination behavior and perceived vaccination risk can lead to a stag-hunt-like game.
Phys. Rev. E 106, 034308, DOI: 10.1103/PhysRevE.106.034308 (2022).

16. Buckee, C., Noor, A. & Sattenspiel, L. Thinking clearly about social aspects of infectious disease transmission. Nature
595, 205–213, DOI: 10.1038/s41586-021-03694-x (2021).

17. Peralta, A. F., Kertész, J. & Iñiguez, G. Opinion dynamics in social networks: From models to data. arXiv 2201.01322,
DOI: 10.48550/arXiv.2201.01322 (2022).

18. Michie, S., van Stralen, M. M. & West, R. The behaviour change wheel: A new method for characterising and designing
behaviour change interventions. Implementation Sci. 6, 42, DOI: 10.1186/1748-5908-6-42 (2011).

19. Funk, S., Salathe, M. & Jansen, V. A. A. Modelling the influence of human behaviour on the spread of infectious diseases:
A review. J. The Royal Soc. Interface 7, 1247–1256, DOI: 10.1098/rsif.2010.0142 (2010).

26/28

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.01.17.24301344doi: medRxiv preprint 

10.1101/2020.02.16.20023754
10.1371/journal.pmed.1003907
10.1038/s41467-022-31991-0
10.1007/s10389-021-01658-z/Published
10.3390/ijerph182212266
10.1038/446733a
10.1186/1471-2458-10-174
10.1186/1471-2458-10-174
10.1371/currents.RRN1037
10.1371/currents.RRN1037
10.1186/1471-2458-10-130
10.1186/1471-2458-10-130
10.1016/S1473-3099(19)30063-5
10.1186/s12916-022-02714-5
10.1098/rsif.2016.0820
10.3389/fpubh.2021.830797
10.1103/PhysRevE.106.034308
10.1038/s41586-021-03694-x
10.48550/arXiv.2201.01322
10.1186/1748-5908-6-42
10.1098/rsif.2010.0142
https://doi.org/10.1101/2024.01.17.24301344
http://creativecommons.org/licenses/by/4.0/


20. Shea, K., Tildesley, M. J., Runge, M. C., Fonnesbeck, C. J. & Ferrari, M. J. Adaptive management and the value of
information: Learning via intervention in epidemiology. PLoS Biol. 12, DOI: 10.1371/journal.pbio.1001970 (2014).

21. Nita Bharti. Linking human behaviors and infectious disease. Proc. Natl. Acad. Sci. United States Am. 118, DOI:
10.1073/pnas.2005241118 (2021).

22. Smaldino, P. E. & Jones, J. H. Coupled dynamics of behaviour and disease contagion among antagonistic groups. Evol.
Hum. Sci. 3, e28, DOI: 10.1017/ehs.2021.22 (2021).

23. Bedson, J. et al. A review and agenda for integrated disease models including social and behavioural factors. Nat. Hum.
Behav. 5, 834–846, DOI: 10.1038/s41562-021-01136-2 (2021).

24. Verelst, F., Willem, L. & Beutels, P. Behavioural change models for infectious disease transmission: A systematic review
(2010–2015). J. The Royal Soc. Interface 13, 20160820, DOI: 10.1098/rsif.2016.0820 (2016).

25. Kiss, I. Z. Incorporating human behaviour in epidemic dynamics: A modelling perspective. In Manfredi, P. & D’Onofrio,
A. (eds.) Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, 125–137, DOI:
10.1007/978-1-4614-5474-8_8 (Springer, New York, NY, 2013).

26. Weston, D., Hauck, K. & Amlôt, R. Infection prevention behaviour and infectious disease modelling: A review of the
literature and recommendations for the future. BMC Public Heal. 18, 336, DOI: 10.1186/s12889-018-5223-1 (2018).

27. Haensch, A., Dragovic, N., Börgers, C. & Boghosian, B. COVID-19 vaccine hesitancy and mega-influencers. arXiv
2202.00630, DOI: 10.48550/arXiv.2202.00630 (2022).

28. Troiano, G. & Nardi, A. Vaccine hesitancy in the era of COVID-19. Public Health 194, 245–251, DOI: 10.1016/j.puhe.
2021.02.025 (2021).

29. Robertson, E. et al. Predictors of COVID-19 vaccine hesitancy in the UK household longitudinal study. Brain, Behavior,
and Immunity 94, 41–50, DOI: 10.1016/j.bbi.2021.03.008 (2021).

30. Vinck, P., Pham, P. N., Bindu, K. K., Bedford, J. & Nilles, E. J. Institutional trust and misinformation in the response to the
2018–19 Ebola outbreak in North Kivu, DR Congo: A population-based survey. The Lancet Infect. Dis. 19, 529–536, DOI:
10.1016/S1473-3099(19)30063-5 (2019).

31. Wu, N. et al. Long-term effectiveness of COVID-19 vaccines against infections, hospitalisations, and mortality in adults:
findings from a rapid living systematic evidence synthesis and meta-analysis up to December, 2022. The Lancet Respiratory
Medicine 11, 439–452, DOI: 10.1016/S2213-2600(23)00015-2 (2023).

32. Pere, G. et al. Influenza vaccine effectiveness in reducing severe outcomes over six influenza seasons, a case-case analysis,
Spain, 2010/11 to 2015/16. Euro Surveill 23, DOI: 10.2807/1560-7917.ES.2018.23.43.1700732 (2018).

33. Biggerstaff, M., Cauchemez, S., Reed, C., Gambhir, M. & Finelli, L. Estimates of the reproduction number for seasonal, pan-
demic, and zoonotic influenza: A systematic review of the literature. BMC Infect. Dis. 14, DOI: 10.1186/1471-2334-14-480
(2014).

34. D’Arienzo, M. & Coniglio, A. Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase
of COVID-19 outbreak in Italy. Biosaf. Heal. 2, 57–59, DOI: 10.1016/j.bsheal.2020.03.004 (2020).

35. Wong, Z. S. Y., Bui, C. M., Chughtai, A. A. & Macintyre, C. R. A systematic review of early modelling studies of Ebola
virus disease in West Africa. Epidemiol. Infect. 145, 1069–1094, DOI: 10.1017/S0950268817000164 (2017).

36. Edlund, S. et al. Comparing three basic models for seasonal influenza. Epidemics 3, 135–142, DOI: 10.1016/j.epidem.
2011.04.002 (2011).

37. Johansson, M. A. et al. SARS-CoV-2 transmission from people without COVID-19 symptoms. JAMA Netw. Open 4, DOI:
10.1001/jamanetworkopen.2020.35057 (2021).

38. Wong, J. Y. et al. Infection fatality risk of the pandemic A(H1N1)2009 virus in Hong Kong. Am. J. Epidemiol. 177,
834–840, DOI: 10.1093/aje/kws314 (2013).

39. Forecasting Team, C.-. Variation in the COVID-19 infection–fatality ratio by age, time, and geography during the
pre-vaccine era: A systematic analysis. The Lancet 399, 1469–1488, DOI: 10.1016/S0140-6736(21)02867-1 (2022).

27/28

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.01.17.24301344doi: medRxiv preprint 

10.1371/journal.pbio.1001970
10.1073/pnas.2005241118
10.1017/ehs.2021.22
10.1038/s41562-021-01136-2
10.1098/rsif.2016.0820
10.1007/978-1-4614-5474-8_8
10.1186/s12889-018-5223-1
10.48550/arXiv.2202.00630
10.1016/j.puhe.2021.02.025
10.1016/j.puhe.2021.02.025
10.1016/j.bbi.2021.03.008
10.1016/S1473-3099(19)30063-5
10.1016/S2213-2600(23)00015-2
10.2807/1560-7917.ES.2018.23.43.1700732
10.1186/1471-2334-14-480
10.1016/j.bsheal.2020.03.004
10.1017/S0950268817000164
10.1016/j.epidem.2011.04.002
10.1016/j.epidem.2011.04.002
10.1001/jamanetworkopen.2020.35057
10.1093/aje/kws314
10.1016/S0140-6736(21)02867-1
https://doi.org/10.1101/2024.01.17.24301344
http://creativecommons.org/licenses/by/4.0/


40. Althaus, C. L., Low, N., Musa, E. O., Shuaib, F. & Gsteiger, S. Ebola virus disease outbreak in Nigeria: Transmission
dynamics and rapid control. Epidemics 11, 80–84 (2015).

41. Campbell, A. et al. Risk of severe outcomes among patients admitted to hospital with pandemic (H1N1) influenza. Can.
Med. Assoc. J. 182 (2010).

42. Faes, C. et al. Time between symptom onset, hospitalisation and recovery or death: Statistical analysis of Belgian
COVID-19 patients. Int. J. Environ. Res. Public Heal. 17, DOI: 10.3390/ijerph17207560 (2020).

43. Ji, Y.-J. et al. Clinical presentations and outcomes of patients with Ebola virus disease in Freetown, Sierra Leone. Infect.
Dis. Poverty 5 (2016).

44. Mathieu, E. et al. A global database of COVID-19 vaccinations. Nature Human Behaviour 5, 947–953, DOI: 10.1038/
s41562-021-01122-8 (2021).

45. Funk, S. et al. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics 10,
21–25, DOI: 10.1016/j.epidem.2014.09.005 (2015).

46. Funk, S., Gilad, E., Watkins, C. & Jansen, V. A. A. The spread of awareness and its impact on epidemic outbreaks. Proc.
Natl. Acad. Sci. 106, 6872–6877, DOI: 10.1073/pnas.0810762106 (2009).

47. Manfredi, P. & D’Onofrio, A. (eds.) Modeling the Interplay Between Human Behavior and the Spread of Infectious
Diseases (Springer New York, New York, NY, 2013).

48. Lawson, B. & Lugo-Ocando, J. Political communication, press coverage and public interpretation of public health statistics
during the coronavirus pandemic in the UK. Eur. J. Commun. 37, 646–662, DOI: 10.1177/02673231221099407 (2022).

49. Polonsky, J. A. et al. Outbreak analytics: A developing data science for informing the response to emerging pathogens.
Philos. Transactions Royal Soc. B: Biol. Sci. 374, DOI: 10.1098/rstb.2018.0276 (2019).

50. Wajid, S. et al. What has changed in the behaviors of the public after the COVID-19 pandemic? A cross-sectional study
from the Saudi community perspective. Front. Public Heal. 10, 723229, DOI: 10.3389/fpubh.2022.723229 (2022).

51. Probert, W. J. et al. Decision-making for foot-and-mouth disease control: Objectives matter. Epidemics 15, 10–19, DOI:
10.1016/j.epidem.2015.11.002 (2016).

52. Keeling, M. J. et al. Dynamics of the 2001 UK foot and mouth epidemic: Stochastic dispersal in a heterogeneous landscape.
Science 294, 813–817, DOI: 10.1126/science.1065973 (2001).

53. Severns, P. M., Sackett, K. E., Farber, D. H. & Mundt, C. C. Consequences of long-distance dispersal for epidemic spread:
Patterns, scaling, and mitigation. Plant Dis. 103, 177–191, DOI: 10.1094/PDIS-03-18-0505-FE (2019).

54. Coelho, F. C. & Codeço, C. T. Dynamic modeling of vaccinating behavior as a function of individual beliefs. PLoS
Comput. Biol. 5, DOI: 10.1371/journal.pcbi.1000425 (2009).

55. de Bruin, M. et al. Behavioural insights and the evolving COVID-19 pandemic. Eurosurveillance 27, pii=2100615, DOI:
https://doi.org/10.2807/1560-7917.ES.2022.27.18.2100615 (2022).

56. Donaldson, L. J. et al. Mortality from pandemic A/H1N1 2009 influenza in England: Public health surveillance study.
BMJ 339, b5213–b5213, DOI: 10.1136/bmj.b5213 (2009).

28/28

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.01.17.24301344doi: medRxiv preprint 

10.3390/ijerph17207560
10.1038/s41562-021-01122-8
10.1038/s41562-021-01122-8
10.1016/j.epidem.2014.09.005
10.1073/pnas.0810762106
10.1177/02673231221099407
10.1098/rstb.2018.0276
10.3389/fpubh.2022.723229
10.1016/j.epidem.2015.11.002
10.1126/science.1065973
10.1094/PDIS-03-18-0505-FE
10.1371/journal.pcbi.1000425
https://doi.org/10.2807/1560-7917.ES.2022.27.18.2100615
10.1136/bmj.b5213
https://doi.org/10.1101/2024.01.17.24301344
http://creativecommons.org/licenses/by/4.0/

