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Abstract— Objective: Machine learning methods hold
the promise of leveraging available data and generating
higher-quality data while alleviating the data collection
burden on healthcare professionals. International Classifi-
cation of Diseases (ICD) diagnoses data, collected globally
for billing and epidemiological purposes, represents a
valuable source of structured information. However, ICD
coding is a challenging task. While numerous previous
studies reported promising results in automatic ICD clas-
sification, they often describe input data specific model
architectures, that are heterogeneously evaluated with
different performance metrics and ICD code subsets.

This study aims to explore the evaluation and construc-
tion of more effective Computer Assisted Coding (CAC)
systems using generic approaches, focusing on the use of
ICD hierarchy, medication data and a feed forward neural
network architecture.

Methods: We conduct comprehensive experiments using
the MIMIC-III clinical database, mapped to the OMOP
data model. Our evaluations encompass various perfor-
mance metrics, alongside investigations into multitask,
hierarchical, and imbalanced learning for neural networks.

Results: We introduce a novel metric, RE@R, tailored
to the ICD coding task, which offers interpretable insights
for healthcare informatics practitioners, aiding them in
assessing the quality of assisted coding systems. Our
findings highlight that selectively cherry-picking ICD codes
diminish retrieval performance without performance im-
provement over the selected subset. We show that optimiz-
ing for metrics such as NDCG and AUPRC outperforms
traditional F1-based metrics in ranking performance. We
observe that Neural Network training on different ICD
levels simultaneously offers minor benefits for ranking
and significant runtime gains. However, our models do
not derive benefits from hierarchical or class imbalance
correction techniques for ICD code retrieval.

Conclusion: This study offers valuable insights for
researchers and healthcare practitioners interested in de-
veloping and evaluating CAC systems. Using a straightfor-
ward sequential neural network model, we confirm that
medical prescriptions are a rich data source for CAC

systems, providing competitive retrieval capabilities for a
fraction of the computational load compared to text-based
models. Our study underscores the importance of metric
selection and challenges existing practices related to ICD
code sub-setting for model training and evaluation.

Keywords: Recommender systems, International
Classification of Diseases (ICD), MIMIC-III, OMOP,
Medication, Hierarchical Multilabel Classification
(HMC).

I. INTRODUCTION

The different versions of the International Classifica-
tion of Diseases (ICD) have been used for annotating
clinical data in tens of countries for several decades.
While this annotation is primarily used for healthcare
billing and planning purposes, it should also constitute a
wealth of structured data for large-scale epidemiological
studies and personalized predictions [1].

However, accurate ICD coding is both difficult and
time consuming. This coding difficulty results in rather
low data quality, e.g., with inter-coder agreement be-
tween fair and poor for principal diagnostic coding at
the billing level, even for professional coders [2].

With the release of freely-available datasets such as
MIMIC [3], there has been an endeavor of computer
science and health informatics researchers to help the
medical community with this clinical coding burden. In
the last decade, many different approaches from rule-
based algorithms [4] to supervised learning algorithms
(such as Support Vector Machines (SVMs) [5, 6] or
Neural Networks (NNs)) have been explored. The NN
approach is the most prevalent nowadays. NNs are
particularly used for automated ICD coding based on
unstructured text (using Transformers [7–9], CNNs [10–
15] or RNNs [16–18]) but also more marginally for
ICD automated coding based on structured [19, 20] or
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multimodal [11, 21] data (see Table S1 for a quick
review of existing methods on the MIMIC-III database).
The utilization of medication information in ICD coding
has been relatively understudied with, to our knowledge,
only one published study on this topic [20]. Nevertheless,
medication information may present several assets: 1)
It is closely linked to actual diagnosis for medical
conditions; 2) Systematic recording by prescription soft-
wares; 3) It is language-insensitive and uses normalized
nomenclatures such as RxNorm; 4) Anonymization for
multi-center training is straightforward; 5) Medical treat-
ments follow strict recommendations, offering a priori
good generalizability; 6) Being represented as structured
data, decent performance could be expected even with a
simple model and limited preprocessing.

Despite promising results, a limited number of studies
document the use of such methods in a production
environment [22, 23]. The adoption of such systems by
the medical informatics community may be hindered by
several factors. For one, conscious of the limited quality
of training data and the difficulty of the coding task,
coders seem to expect Computer Assisted Coding (CAC)
systems, i.e., semi-automatic systems with human in the
loop systems, rather than fully automated coding sys-
tems [24, 25]. In turn, commonly reported performance
metrics such as F1 score and analysis on small code
subsets, such as top 50 billing codes (see Table S1),
may seem irrelevant for the clinical coding community.
Finally, while existing studies concentrate on optimizing
input-specific model architectures, a notable gap lies in
the underexplored territory of leveraging the inherent
properties of the ICD hierarchy, a feature inherent to
any ICD coding system and model architecture. Indeed,
albeit few studies using NNs leverage the ICD hierarchy
information using an attention mechanism in conjunction
with a graph NN [14, 15, 26, 27] or text labels [7, 11,
16] within their architecture, only SVMs based studies
[5, 28] have made use of generic, model architecture
agnostic, Hierarchical Multilabel Classification (HMC)
techniques. Similarly, class imbalance, though inherent
to HMC, is also seldom addressed.

In this paper, we present several significant model
architecture-agnostic contributions to ICD coding using
a CAC system through a systematic study of techniques
to exploit CAC systems and ICD properties. First, we
define a set of performance metrics, RE@R, tailored to
the ICD coding task, and ensuring interpretability by
clinical coders who may not be experts in machine
learning. Second, we investigate and compare various
performance metrics, revealing that optimizing NDCG or
precision-recall based metrics leads to improved ranking
performance compared to traditional F1 based metrics.

Third, we examine the impact of utilizing the entire set
of ICD codes instead of cherry-picked subsets, finding
that it maintains performance on selected codes and
enables more efficient recovery of additional codes from
seemingly limited medication input data. Fourth, we
conduct a systematic study of generic approaches with
low computational overhead to test whether exploiting
the hierarchical properties of the ICD classification can
improve CAC systems. This includes multitask learn-
ing scenarios, hierarchical multilabel classification tech-
niques, and class imbalance correction techniques. Our
findings suggest that NNs benefit from learning from
the whole hierarchy; however, neither HMC nor class
imbalance correction methods improved results upon the
simple multitask learning NNs. Finally, our study serves
as a valuable replication of predicting ICD-9 codes based
on medication information [20] using the MIMIC-III
dataset [3], achieving superior classification and rank-
ing results, as well as promoting broader applicability
through the use of the OMOP-CDM data-standard.

STATEMENT OF SIGNIFICANCE

Problem or Issue: Accurate ICD coding is chal-
lenging and time consuming, leading to low data
quality.

What is Already Known: Machine learning
algorithms, could improve ICD coding but their
use in production environments remains limited.
Existing work focuses on input data specificities and
automated classification on heterogeneous subsets
of ICD codes.

What this Paper Adds: We introduce inter-
pretable performance metrics tailored for computer
assisted coding, and identify target metrics to im-
prove ranking performance. We show that utilizing
the full set of ICD codes is beneficial even for input
data with seemingly low information. Furthermore,
we explore multitask, hierarchical and class imbal-
ance correction methods demonstrating their limited
benefits.

II. MATERIAL AND METHODS

A. Data

1) MIMIC-III OMOP: We performed all our exper-
iments on the MIMIC-III v1.4 clinical database [3], a
freely-available database of 58,976 ICU stays. The raw
database was mapped to the OMOP-OHDSI common
data model using scripts from [29], in order to exploit
the mapping of the non-standard drug prescription rep-
resentation in MIMIC-III to the RxNorm standard.
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ICD9-CM MIMIC III Cherry picked

Chapters 19 19 16
Subchapters 154 151 68
3 digits 1,234 1,070 312
4 digits 7,473 4,380 520
5 digits 8,846 3,716 318
Billing 12,167 5,871 613
All levels 17,726 9,336 1,234

TABLE I: Number of unique codes per level. The cherry
picked subset corresponds to a subset of codes filtered
on both frequency and a prior belief about the potential
amount of information contained in the input data, as
defined in Section II-A4.

Min Max Median Mean SD

Chapters 0 16 6 5.77 2.97
Subchapters 0 28 7 8.10 4.38
3 digits 0 39 9 10.18 5.70
4 digits 0 39 9 10.48 6.15
5 digits 0 28 4 5.02 3.64
Billing 0 39 8 9.13 5.83
All levels 0 137 34 39.54 21.95

TABLE II: Number of codes per stay for different ICD
levels on the complete MIMIC-III code set.

2) Medication prescription data: We then trans-
formed the resulting RxNorm codes into their corre-
sponding RxNorm ingredients, thereby discarding any
clinical form, dose or brand information. This process
resulted in a set of 1,164 unique RxNorm ingredients.
Subsequently, we further simplified the medication pre-
scription data by transforming it into one binary hot-
encoded vector per stay, indicating whether a particular
RxNorm ingredient had been prescribed at least once
during the patient’s stay.

3) ICD9-CM: MIMIC-III diagnoses use the ICD9-
CM nomenclature, which is hierarchical with a maximal
depth of 5 levels denoted, in increasing depth, as Chap-
ters, Subchapters, 3 digits, 4 digits, and 5 digits codes.
Stays are generally annotated only by leaf nodes, as only
leaf nodes are used for billing purposes. Notably, not all
branches have the same depth, resulting in Billing codes
of either 3, 4, or 5 digits.

In order to obtain complete annotations for each ICU
stay, we performed a roll-up of the ICD9 hierarchy. The
resulting numbers of unique codes and the numbers of
codes per ICU stay are shown in Table I and Table II,
respectively.

4) Cherry-picked ICD9 codes: As shown in Table S1
many studies investigating automatic ICD coding using
MIMIC-III focus on a cherry-picked subset of ICD9
codes. In particular in Hansen et al. [20] , the only

existing study focusing on the use of medication to
predict ICD diagnoses, codes were cherry-picked ac-
cording to both frequency and researchers’ prior belief
regarding medication’s information content about the
different diagnoses. Aiming to reproduce Hansen et al.
[20] ’s filters and construct our cherry-picked code set,
we discarded the following codes:

• codes with less than 100 occurrences in the com-
plete dataset;

• codes belonging to chapters Injury And Poisoning
(800-999), Supplementary Classification Of Exter-
nal Causes Of Injury And Poisoning (E000-E999),
and Supplementary Classification Of Factors In-
fluencing Health Status And Contact With Health
Services (V01-V91);

• codes belonging to Disorders relating to short ges-
tation and low birth-weight (765 3-digits code).

The resulting number of unique codes and number of
codes per ICU stay for the cherry-picked code set are
respectively shown in Table I and Table S2. Note that
despite our efforts to replicate their code filtering we
ended up retaining significantly more codes than reported
in Hansen et al. [20] .

B. Models

1) Architecture: As the emphasis of our study is
not to optimize a model structure specific to drug pre-
scriptions, but rather perform a systematic evaluation of
techniques making use of the ICD hierarchy properties,
we favored a computationally frugal approach and used
simple sequential NNs with hyperparameters described
in Table S3.

Our neural networks take as input a vector of length
1,166 containing:

• a binary indicator for patient’s sex;
• the age of the patient clipped and normalized by 89

years, the maximum age reported in MIMIC;
• 1,164 binary indicators for hot encoded RxNorm

ingredients prescribed at least once during the pa-
tient’s stay.

Unless specified otherwise, we use a sigmoid ac-
tivation for the last dense layer. During training, we
implement an early-stopping strategy by monitoring
the target performance metric evaluated on 5% of the
training set used as a development validation set. All
models were implemented using Tensorflow 2.9.1. We
performed hyperparameter optimization using 2 passes
of the Hyperband algorithm [30], an early-stopping
based hyperparameter tuning strategy implemented in the
Keras-Tuner package.
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We performed a three-fold Monte Carlo cross-
validation. For each fold, we sampled 5,000 random
visits without replacement for the test set, 5,000 for the
development set, and used the remaining 48,976 visits
as the training set. The same three cross-validation sets
were used for the different experiments. We used paired
statistical tests accordingly when necessary.

2) Dummy model: For the sake of comparison, we
introduce a dummy ranking model that ranks codes
solely based on their frequencies estimated from the
training set. Consequently, the predictions of this dummy
model remain constant for any input.

C. Performance metrics

Table S1 presents research conducted on ICD code
prediction using the MIMIC-III dataset, where various
performance metrics, primarily derived from the field of
automatic classification, have been employed. However,
these metrics might not be ideal for evaluating a recom-
mendation system designed to assist clinical coders in the
coding process. Their practical significance for clinical
coders, who are the primary users, could be particularly
challenging to grasp. In turn, this lack of clarity may
hinder the adoption of CAC systems. In this section,
we introduce a dedicated set of metrics of performance
quantifying ranking errors. We defer the definition of
other usual metrics that we will use as comparison to
Appendix C.

Our objective is to identify a performance metric that
possesses the following essential characteristics:

• it captures the idea that all relevant codes must be
retrieved by the clinical coder;

• it quantifies each non-relevant code mistakenly
ranked before a relevant one as one unit of lost time
for clinical coders;

• it allows for meaningful comparisons between dif-
ferent datasets or hospital wards;

• it can be easily understood and interpreted by
clinical coders and healthcare informatics staff who
may not have expertise in machine learning.

While widely used for assessing the performance of
recommender systems, Normalized Discounted Cumu-
lative Gain (NDCG) presents challenges in interpreta-
tion due to its nonlinear discounting, which assigns
different weights to errors based on label rank. Ad-
ditionally, its value is influenced by the number of
labels considered [31], making it difficult to compare
models trained on different code subsets or databases.
In contrast, Precision@Recall implicitly assigns dif-
ferent weights to errors based on the number of positive
labels per sample. Recall@K is more straightforward to

interpret, but the choice of the relevant K depends on
the average number of codes expected to be found in a
given patient stay. For example, a clinical coder may be
willing to a longer list of recommended codes annotating
an ICU stay than annotating a simple day clinic visit for
chemotherapy. Lastly, Coverage, a metric that measures
the number of labels that must be examined in a ranked
list to achieve 100% recall, is easily interpretable but also
influenced by the number of positive labels per stay.

We introduce a set of related metrics
RankErrors@Recall or RE@R. These metrics
represent the number of negative labels that are
mistakenly ranked above the positive labels until a
fraction R of the positive labels is recovered. This set
of metrics is a generalization of the notion of coverage
made independent of the number of positive labels per
example:

RE@R(y, ŷ) =
∑

{i|r(i)≤R}

1ỹi=0,

where r(k) is the recall at rank k, or Recall@K, and
ỹi the vector of ground truth labels sorted in decreasing
order according to the predicted score ŷ. Note that given
this definition:

RE@100(y, ŷ) = Coverage(y, ŷ)−
∑
i

yi,

meaning that the sample averaged RE@R is simply a
more granular version of coverage that is independent
of the average number of positive labels per sample in
the dataset.

D. Multitask learning

Multitask Learning (MTL) is the process of training
an algorithm to perform multiple related tasks simul-
taneously, with the aim to improve both performance
and generalization compared to isolated task training
[32]. In that sense, performing multilabel ranking or
classification for a single level of the ICD hierarchy,
already is an instance of multitask learning.

In the remaining of this paper, we will however refer
to the notion of multitask with the hierarchical nature
of the ICD in mind, where ranking or classification at
each level of the hierarchy corresponds to a different
task. We evaluate whether learning simultaneously on
different hierarchy levels is beneficial using three distinct
learning strategies:

• Learning per level: a different model is trained for
each level of interest in the hierarchy (Chapters,
Subchapters, 3-digits and Billing levels);
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• Naive multitask learning: a flat classifier is trained
with an output layer containing an output neuron
for each node of the hierarchy (9,336 labels);

• Re-weighted multitask learning: by construction,
there exist more labels at each level as we progress
towards the leaves of the hierarchy, resulting in
higher importance of finer grained levels of the hier-
archy in the cost function. To give equal importance
to each task, or level, we have re-weighted the cost
of each example such that each task have the same
weight in the cost function (Appendix E3).

E. Hierarchical Multilabel Classification (HMC)

While multitask learning leverages the ICD hierarchy
in an implicit manner, dedicated methods exist to ex-
plicitly exploit the known hierarchical links in multilabel
classification or ranking. In our study, we implemented
several of them, employing different approaches to in-
corporate hierarchical knowledge. These include the use
of simple logical rules (roll-down and roll-up) to enforce
hierarchical consistency of predictions, modifications of
the cost functions based on logical rules such as TreeMin
loss [33] and MCLoss [34], as well as hierarchical
regularization techniques [35] (Appendix F).

F. Class imbalance

Large scale hierarchical problems inherently exhibit
imbalanced label distributions, often following a power-
law like distributions for deep hierarchies [36] (Fig. S1).
Severe imbalance can lead an algorithm to ignore posi-
tive examples of the minority class to limit the amount
of false negative for the majority class, or lead to
poor generalization on a dataset with different class
frequencies. In classification settings, class imbalance
can be mitigated using regularization, cost function mod-
ifications or more frequently using resampling methods.
Despite being the most frequent, resampling approaches
increase computational load and impose constraints on
model types and learning objectives for HMC. Thus, we
focused on applying a regularization approach, using L2
regularization on the last classification layer, and three
cost sensitive approaches: two based on upweighting the
cost of positive examples by the imbalance ratio, namely
Imbalance Ratio Weighting (IRW) and Imbalance Ratio
Normalized Weighting (IRNW), and one variant of the
cross-entropy loss, initially used in computer vision, and
referred to as focal loss (Appendix G).

III. RESULTS

A. ICD code cherry picking degrades retrieval perfor-
mance

A distinctive aspect of medication data as input for
building a CAC system is that medication could be
expected to convey little to no information about some
diagnoses, such as, for example, diagnosis codes belong-
ing to the 3-digits node V50-V59 Persons Encountering
Health Services For Specific Procedures And Aftercare.
This has led some authors to design algorithms only
on cherry-picked subsets of codes filtered both by code
frequency and researchers’ prior beliefs about the in-
formation content of input data regarding ICD codes
[20] (see Section II-A4). Such filtering can be justified
assuming that 1) the input data conveys no information
about some diagnostics and/or 2) that data is too scarce
to allow any learning and/or 3) that the inclusion of
such codes in the model deteriorates predictions for the
selected cherry-picked codes.

We challenged the validity of these first two assump-
tions by training models on the complete code set and
quantifying the amount of information a model, using
a naive multitask architecture and trained to maximize
µF1, extracted for different code subsets. Figure 1a
shows the resulting cumulative distribution of per-code
entropy reduction, i.e., the reduction in uncertainty re-
garding the presence or absence of a code once the
model’s output is known. We find that, despite a gen-
erally lower information content, the model was still
able to extract some information for more than 75% of
low frequency codes with ≤100 occurrences in the entire
MIMIC dataset, with a reduction of entropy of at least
10% for 31.8% of such codes. In fact, the algorithm
was able to extract some information even for some
codes with less than 5 occurrences in the whole dataset
(see Fig. S2). Strikingly, Figure 1a also suggests that
codes filtered out based on researcher’s prior beliefs
about information content are not harder to predict than
cherry-picked codes. We performed a Mann-Whitney U
test and found that the entropy reduction distribution was
comparable for both code sets (p=.155).

Figure 1b illustrates how this extracted information
content translates into ranking capabilities by comparing
ranks for positive examples versus ranks for negative
examples for a given code. 89.2% of codes were better
ranked for positive examples than negative examples,
59.3% of codes had their rank at least halved on positive
examples and 13.5% had their rank on positive examples
being less than a tenth of their rank on negative exam-
ples. Every code in the cherry-picked subsets or filtered
out codes based on researcher’s prior beliefs had better
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Fig. 1: a. Cumulative distribution of the entropy reduction, or information gain, per ICD code at any level of
the hierarchy by performing soft classification using our naive multitask neural network model. Low frequency
codes designate labels with ≤ 100 occurrences in the complete dataset. Filtered out roots designate codes excluded
based prior beliefs (Section II-A4) b. Cumulative distribution of the relative difference of median ranks between
positive and negative examples for each ICD code. ICD codes that are, as expected, better ranked on positive than
on negative examples exhibit negative values, while codes with worse ranking on positive examples have positive
values. For legibility, we added a horizontal black line at y=1. c. Recall@K on the cherry picked code subset using
a dummy model (green), or neural networks models trained respectively on the cherry picked subset only (blue)
or the complete code subset (orange). Shades around the lines show the standard error on the estimated sample
averaged Recall@K computed via three-fold Monte-Carlo cross-validation. d. Recall@K on the complete code set
using the same models. ICD codes not seen at training time by the model trained on the cherry picked subset only
were assigned 0 probability at inference time. The four sub-figures were made using models built to optimize µF1.

ranks on positive examples, and 83.65% of them had a
rank more than halved on positive examples.

Then, we challenged the assumption that adding codes
on which the algorithm would fail to extract information
could worsen the algorithm’s predictions on cherry-
picked codes. To that end, we carried hyperparameter op-
timization and training both using the complete code set
and the cherry-picked code subset. Fig. 1c, displaying the
Recall@K on the cherry-picked code subset, shows that
both models had equivalent code retrieval performance

on that subset. Similar conclusions could be drawn for
automatic coding systems, relying on hard classification
as shown by the µF1 scores in Table S4.

Finally, one might still wonder whether cherry-picking
codes actually matters from a clinical coder perspective.
Fig. 1d shows that using a model trained on the complete
code set does improve Recall@K on billing codes even
for K as low as 9, the average number of billing codes
per stay (see Table II), with for instance 4.16% of added
recall for K=30.
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Fig. 2: Relative improvement in ranking performance,
measured by RE@R, for different values of R achieved
by optimizing various scalar performance metrics instead
of the commonly reported µF1. Error bars represent
the standard error of the mean computed over cross-
validation runs. We indicate, as reference, the abso-
lute RE@R values, averaged over cross validation runs,
achieved by the baseline model optimizing the µF1.

B. NDCG and AUPRC variants are better target metrics
than F1

ICD codes prediction can be viewed as two differ-
ent tasks: fully automatic coding or building a coding
assistant system. The latter can be seen as a learning
to rank problem with the specificity that all codes that
must be coded should be found in the recommendations.
While building a perfect classifier for automatic coding
entails building a perfect recommender system, classi-
cal classification metrics may not convey complete or
intuitive information on how useful an imperfect soft
classification algorithm is as a coding assistant.

Having this hybrid system between multi-label classi-
fication and recommender or learning to rank system in
mind, we defined the RE@R set of metrics in Section II-C.
This metric denotes the average number of non relevant
codes that have to be seen by a clinical coder browsing
the ranked list of codes before achieving a recall of R.

While achieving the minimal RE@100 of 0 would
mean achieving a perfect recommender system, RE@100
alone is insufficient to describe the performance of an
imperfect recommender system, and RE@R for different
values of R is of interest. Trying to minimize RE@R for
different values of R at the same time would, however,
be impractical. We thus searched for a more traditional
scalar performance metric that by optimizing, we would
also minimize RE@R for different values of R. With that
aim, we performed hyperparameter search and training
on the complete code set targeting various widely used

ranking and classification metrics. The results are shown
in Fig. 2, as relative RE@R improvement over a model
selected and trained trying to optimize the µF1 score.

Despite being by far the most reported performance
metric for automated ICD coding on MIMIC (see Ta-
ble S1), Fig. 2 shows that optimizing F1 based metrics
leads to lower ranking performance, and that optimizing
either NDCG or a micro averaged AUC variant leads to
ranking performance improved by ∼5% for any recall.
In general, macro-averaged metrics seem to lead to lower
ranking performance compared to their micro averaging
counterparts. Similar conclusions can be drawn on a per
hierarchy level basis from Fig. S3. To further strengthen
these points, without extra model training computations,
we show in Fig. S4 taking into account all models we
have trained, that NDCG has highest correlation with
RE@R for all values of R, closely followed by Precision-
Recall based metrics.

Unsurprisingly, the NDCG, a dedicated ranking met-
ric, seemed to be the most effective target metric to
optimize ranks. However, because the computation of
NDCG only relies on rank, it may not always prioritize
models whose predictions can be readily interpreted
as probabilities. Interestingly, our best NDCG models
already demonstrated strong calibration. Nevertheless,
our models chosen to maximize Area Under the Preci-
sion Recall Curve (AUPRC) exhibited notably enhanced
calibration, reflected in significantly improved Expected
Calibration Error (ECE) and Maximum Calibration Error
(MCE) values (Table S5).

C. Multitask learning improves ranking and runtime

In this section, we investigate whether a naive use of
the hierarchy information, by training a NN to rank (or
classify) simultaneously codes from different levels of
the hierarchy, can impact performance. Using multitask
learning a NN may discover and exploit hierarchical
relationships between tasks in hidden layers [32].

We employed three distinct training methodologies:
per-level training, which yielded four separate models;
a naive multitask approach; and a re-weighted multitask
strategy, where equal weight was assigned to each hier-
archy level in the loss function (see details in Section
II-D). As depicted in Figure 3, when using NDCG as a
ranking performance indicator, the re-weighted multitask
approach led to a significant degradation in performance
across all levels of the ICD hierarchy. In contrast, while
the average NDCG per level was generally higher for
the naive multitask approach compared to the per-level
strategy, the observed differences remained within error
bounds (refer to Figure 3). Similarly, looking at RE@R
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Fig. 3: Relative improvement in ranking performance,
measured by NDCG, across different levels of the ICD
hierarchy using various multitask learning strategies
compared to the baseline naive multitask model. Abso-
lute NDCG values, averaged over cross-validation runs,
for the baseline naive multitask model are provided as
reference.

(Fig. S5), the estimated performance was greater for the
naive multitask model across various values of R and all
hierarchy levels when compared to the per level models.
These estimated differences, performing a paired t-test,
were however deemed statistically significant only at the
Billing level and for recalls higher than 75%. Notably,
hyperparameters selected for the per-level models closely
resembled those obtained for the naive multitask model
(see Table S10). This observation indicate a runtime
advantage associated with the naive multitask approach,
which scales linearly with the number of hierarchy
levels.

D. Hierarchical learning methods do not improve ICD
code retrieval

In the previous section, we have shown that simply
adding hierarchy levels as complementary tasks only
marginally improves performance. In this section, we
investigate whether explicit use of known hierarchical
relationships, at learning and/or inference time, can fur-
ther improve performance. We compared a flat classifier
(naive multitask) with a diverse set of global hierarchical
approaches using logical constraints (roll-up and roll-
down), special cost functions (MCLoss, TreeMin), or
regularization (HierL2) (see Section II-E).

The NDCG achieved by these different models are
illustrated in Fig. 4.We find that, analyzing performance
based on NDCG, none of the hierarchical methods tested
significantly change ranking performance. In fact judging
by rank errors statistics, the two cost based methods,
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Fig. 4: Relative improvement in ranking performance,
measured by NDCG, across different levels of the ICD
hierarchy using various hierarchical multilabel classifica-
tion strategies compared to the baseline naive multitask
model. Absolute NDCG values, averaged over cross-
validation runs, for the baseline naive multitask model
are provided as reference.
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Fig. 5: Relative improvement in ranking performance,
measured by NDCG, across different levels of the ICD
hierarchy using various class imbalance handling strate-
gies compared to the baseline naive multitask model.
Absolute NDCG values, averaged over cross-validation
runs, for the baseline naive multitask model are provided
as reference.

TreeMin and MCLoss, even seem to degrade ranking
performance on billing codes below 50% recall (Fig. S5).

E. Class imbalance correction does not benefit ICD
codes retrieval

As illustrated in Fig. S1, the breadth and depth of
the ICD classification result in highly imbalanced la-
bels. Taking into account class imbalance has proven
beneficial for some classification tasks, but has been less
studied for recommender systems.
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We have implemented and applied several cost sen-
sitive and regularization based methods used for imbal-
anced classification (see Section II-F) to assess whether
addressing class imbalance could improve our recom-
mending system. Our results, shown in Fig. 5, suggest
that these different methods either did not improve or
even worsened the global ranking performance at every
level of the ICD hierarchy. In fact, our baseline naive
multitask model seem to exploit jointly code frequency
(Fig. S6) and input data information (Fig. 1) for rank pre-
dictions, while still being able to output high ranks (e.g.,
top-10) for some very low frequency codes (Fig. S6).

Still, relying on code frequency for ranking pur-
poses raises questions about the models generalization
and equity in performance, especially across different
wards within the same hospital. To assess the latter,
we divided the MIMIC dataset into 3 categories of
patients based on patients’ visit details: 8,096 newborn
patients, 23,947 surgical patients, and 26,883 medical pa-
tients (see Appendix I). Subsequently, we evaluated our
model’s performance on each of these patient categories
(Table S9). Overall we found that, despite being a mi-
nority class, newborn stays exhibited significantly better
ranking performance. Moreover, despite the categories
having similar frequencies, which may not translate
directly into ICD code frequencies, significantly better
ranking performance were obtained on the medical stays
compared to the surgical ones.

F. Overall performance summary

1) Predictions: Taken altogether we show in Fig. 6
that our proposed model, with naive multitask learning
selected to maximize NDCG, improves the sample aver-
aged Recall@K at all values of K when compared to the
strategy similar to the one presented in Hansen et al. [20]
, the only existing study predicting ICD codes based on
medications only. On billing codes average sample recall
was increased by 5.22% for K=30 to reach a Recall@30
of 57.05%. On 3-digits codes, the improvement was
even greater with 14.77% extra codes retrieved with a
Recall@30 of 70.66% (Fig. S7). Beyond ranking, we
found that by fine-tuning a model initially optimized
for µAUPRC and adjusting the probability threshold at
each hierarchy level to maximize µF1 (see Appendix J)
we achieved superior µF1 than by direct maximization
of µF1 as a target metric (Table S4). Detailed tables
presenting ranking and soft classification performance
of our models can be found as Table S7 and Table S8.

2) Runtime: In our extensive experiments and across
various cross-validation runs, we consistently observed
the emergence of models with similar hyperparameters.
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Fig. 6: Comparison of ICD code retrieval performance,
focused on billing level, between our top-performing
model (shown in purple) and a model employing a
strategy similar to the state-of-the-art for ICD code
prediction using medication data as described in Hansen
et al. [20] (represented in orange). Shades around the
lines show the standard error on the estimated sample
averaged Recall@K computed via three-fold Monte-
Carlo cross-validation.

Notably, the top-performing models tended to be rela-
tively shallow yet wide networks, featuring 2 to 3 hidden
layers, each containing approximately 2-3k units and a
dropout rate of approximately 60% (details available in
Table S10).

Our model, achieving the best NDCG performance,
demonstrated remarkable efficiency in processing the
comprehensive MIMIC-III dataset, encompassing 58,976
hospital stays, in 1.92 ± 0.19 seconds employing an
inference batch size of 1024 samples on a T4 NVIDIA
GPU.

IV. DISCUSSION

A. Choice of an evaluation metric

The first, model-agnostic step towards developing im-
proved CAC systems and encouraging their adoption
is the thoughtful selection or definition of a suitable
and interpretable performance evaluation metric. To this
end, we introduced the RE@R set of evaluation metrics
based on existing literature [24, 25] and discussions
with health informatics professionals. A previous real-
world study [23] showed that a text-based automatic
classification model optimized for µF1 improved coding
quality but failed to reduce coding time for medical
coders. While our proposed evaluation metric fulfills all
identified usability and interpretability criteria, further
research is needed to validate its usage by studying its
correlation with both coding quality and coding time.
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B. Code cherry picking and choice of a target metric

In Section III-A and Section III-B, we demonstrated
that filtering ICD codes was detrimental to code retrieval
without yielding any positive effects on the model’s
performance within the cherry-picked subset. Addition-
ally, using ranking-based metrics, such as NDCG or
Precision-Recall curve-derived metrics as proxies to
optimize RE@R, proved more effective in selecting
superior models compared µF1 . These findings mark
a second step toward enhancing ICD CAC systems in
a model-agnostic manner. Beyond its adverse impact on
code retrieval, code cherry-picking posed challenges for
reproducibility, as illustrated by our struggles to replicate
filtered code sets across different studies [19, 20, 28].
Although the ranking-based metric NDCG demonstrated
the highest correlation with RE@R, our results indicate
that AUPRC-based metrics selects better-calibrated mod-
els, offering enhanced interpretability for clinical coders.
While the observed difference in calibration remained
marginal with shallow NN, this distinction might become
critical with deep networks, such as text models, which
have shown poor calibration without additional correc-
tion [37].

C. Exploiting the ICD hierarchical properties

Our results suggest that minor ranking improvements
can be obtained using a naive multitask design (Sec-
tion III-C). Because the per-level approach requires
building one model per hierarchy level, impacting both
training and inference time, our result suggest that the
naive multitask approach is the most efficient alternative
to obtain predictions for different levels of the hierarchy.
These results may seem to contradict previous results
reporting significant improvement on ICD classification
with a multimodal SVM adapted for hierarchical mul-
titask learning [28]. However, the proposed SVM only
shares information between explicitly hierarchy-related
tasks, while our neural network approach enables multi-
task learning even using a single hierarchy level through
common hidden features [32]. This difference already
makes it more akin to explicit HMC methods. Second,
the small training set size (3,750 MIMIC-III patients,
compared to our 48,976 stays) used in Malakouti and
Hauskrecht [28] may have placed their algorithm in a
more challenging learning situation where hierarchical
multitask learning would be more beneficial. Overall,
using our naive multitask neural network approach we
obtained much higher classification performances, with
11,64% macro AUROC and 11.72% macro AUPRC
differences on comparable code subsets, using only
medication information compared to the best reported

multimodal SVM in Malakouti and Hauskrecht [28] (see
Table S6).

In evaluating the explicit use of the ICD hierarchy
(Section III-D), our results indicate that HMC methods
did not yield improvements.This contrasts with reports
of substantial gains using HMC methods with neural
networks [33, 34], in particular for ICD classification
using medication data [20]. For the latter, we found that
our model’s classification performance was generally
superior to results reported by Hansen et al. [20] , as
discussed in the next subsection. Moreover, their hierar-
chical strategy, where parent node predictions are set to
be the average of children nodes’ predicted probabilities,
inherently creates hierarchical violations. This design
forces parent node probabilities to be inferior to the most
probable child node. We hypothesize that their hierarchi-
cal loss formulation promoted a compensatory inflation
of leaf node probabilities, resulting in higher recall at the
expense of precision and possibly calibration, ultimately
contributing to a generally improved µF1 . Regarding
other proper HMC methods, Giunchglia and Lukasiewicz
[34] reported positive results over several dataset with
structured input. However the training set size in their
experiments was generally much lower than our setting,
on the order of ∼1.5K examples compared to our ∼50k
examples. We hypothesize that while HMC methods
could show benefits on small datasets, this advantage
might diminish with increasing dataset size. Through
multitask learning NN are able to learn implicit hier-
archical representations [32]. This implicit hierarchical
learning could lead to an implicit hierarchy rewiring
and ultimately compensate for hierarchical ontological
inconsistencies, that would be enforced by an explicit
HMC method [36]. The quality of the ICD9 ontology
could thus constitute an alternative hypothesis for this
lack of improvement using HMC methods.

Regarding class imbalance (Section III-E), our results
suggest that our neural network models exploit both in-
put information and code frequency to build predictions
without negative impact on minority classes. Further-
more, we observed no added performance gains, from a
ranking perspective, when attempting to correct for label
imbalance through various approaches with low compu-
tational overhead. While class imbalance correction tech-
niques are frequently applied for classification purposes,
their exploration within the recommender system domain
has been limited. In general, these correction techniques
might only alter the position of the decision plane,
leaving the embedding space unaffected and resulting in
identical ranking performance. The absence of improve-
ment in ranking performance may also stem from the
intrinsic multitask nature of recommender systems when
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utilizing neural networks, which could be particularly
beneficial for rare labels.

D. Runtimes and performance of simple medication
based models on MIMIC-III

Our sequential NN model can process medication data
with a very high throughput (Section III-F2). Compara-
tively, Gao et al. [10] reported runtimes for Convolution-
nal Neural Network (CNN) and Transformer text models.
These models processed 1000 samples in 8.40 and 75.86
seconds, respectively, using a comparable V100 NVIDIA
GPU, and focusing on a single level of the hierarchy. In
the same experimental conditions, our model exhibited
a considerable speed advantage, completing predictions
for 1000 samples in 0.077± 0.001 seconds. In addition
to being faster by several orders of magnitude, our
model output predictions for the entire hierarchy of ICD
codes. This runtime difference underscores the signifi-
cance of utilizing a simple feed-forward NN architecture
for conducting our systematic assessment of multitask,
hierarchical, and class imbalance correction techniques.
Employing more computationally intensive architectures
could have rendered this systematic evaluation computa-
tionally intractable.

Regarding classification performance using medica-
tion data alone, our naive multitask model surpassed the
classification results on the cherry-picked code subset
reported in Hansen et al. [20] at every level of the
hierarchy, except for the 3-digit level (refer to Table S4).

Our results also have to be put in perspective with
other approaches using different input data. For instance,
Rodrigues-Jr et al. [19] report a 58% Recall@20 using
ICD codes history. However this result was obtained
on a subset of 855 ICD codes which we were unable
to replicate. Additionally, their method is limited to
patients who have been previously hospitalized in the
database. Our model seemed to be generally surpassed
by deep Natural Language Processing (NLP) models
that leveraged medical text data [10, 12, 13, 27] on
F1 and AUROC based metrics. It’s worth noting that
these NLP models were typically evaluated on a broader
range of ICD data, encompassing both diagnoses and
procedures, making direct comparisons with our work
challenging. However, in a noteworthy exception, Gao
et al. [10] reported significantly higher µF1 scores using
a CNN text model for 3 and 5-digit codes compared to
our adaptive threshold model (Table S1 and Table S4).
From a computational intensity perspective, though, our
feed forward NN aligns more closely with a text-based
SVM model employing a bag of words as input [5]. In

that study, the SVM achieved a reported µF1 of 29.3%
on billing codes. In contrast, our adaptive threshold
model exhibits a considerably superior hard classifica-
tion performance with a 38.04% µF1 on billing codes.
This performance difference, with a similarly complex
model, underscores the valuable information contained in
medication data for ICD coding and encourages further
exploration of enhanced model architectures.

We conducted our systematic analysis of plug-in
methods to enhance ICD coding using the MIMIC-
III database, a widely utilized real-world ICU clinical
dataset. This choice was motivated by its availability,
extensive benchmarks against other algorithms, and the
facilitation of reproducibility in our work. Although the
reliance on a single dataset might initially seem to restrict
the generalization of our results, particularly given its use
of ICD-9 labels instead of the more contemporary ICD-
10, prior studies employing text-based models [17, 23],
diagnosis history [19], and even medication data [20]
have demonstrated generalization with similar perfor-
mance across ICD-10[17, 20, 23] variants and other clin-
ical ontologies [19], both on national databases [20] and
hospital wide settings [17, 19, 23], when compared to
identical architectures trained and evaluated on MIMIC-
III. Moreover, we utilized the OMOP-CDM represen-
tation of MIMIC-III data to enhance transferability to
a real hospital context. Still, it’s important to note that
MIMIC-III and other retrospective real-world databases
likely contain numerous ICD labeling errors, which may
in turn impact our model’s performance evaluation.

V. CONCLUSIONS

In this study, we have explored the construction of
more effective CAC systems using generic approaches,
with medication data and a simple neural network ar-
chitecture as our illustrative example. We demonstrated
that the practice of ICD code cherry-picking tends to
reduce retrieval performance without significant gains
in the cherry-picked subset. This not only compromises
performance but also poses challenges for reproducibility
in research. Our investigation, introducing a novel metric
RE@R tailored for the ICD coding task, revealed that
optimizing for metrics like NDCG and AUPRC leads
to superior ranking performance compared to the com-
monly used F1-based metrics. We found that multitask
learning, by training NNs simultaneously on different
ICD hierarchy levels, provides minor benefits for ranking
as well as runtime gains. Surprisingly, our sequential NN
models did not draw benefits from HMC methods or
class imbalance correction techniques.

Our generic experiments offer valuable insights for
researchers and healthcare practitioners interested in de-
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veloping or evaluating CAC systems. Despite employing
a straightforward sequential NN model, we confirmed
that medical prescriptions represent a rich data source
for CAC systems, providing competitive ICD codes
retrieval capabilities for a fraction of the computational
load compared to text-based models. Our conclusions
however, bear the limitations inherent to the dataset. First
and foremost, our conclusions regarding the use of the
ICD hierarchy are based on ICD9, while ICD10 is the
current standard, featuring extensive reorganization and
an increased number of labels. Furthermore, MIMIC-III
contains only ICU stays, which might not fully represent
the diversity of medical practices, and potential ward
balance issues could arise on a hospital level despite
our reassuring initial experiments. Our study employed
a straightforward sequential neural network model to
demonstrate the potential of medication data for CAC
systems. Future work could explore more sophisticated
architectures that leverage additional information, such
as dosage, route of administration, and temporal patterns
in medication intake, to further enhance the prediction
quality.
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ing Characteristic Curve.

BCE Binary Cross-Entropy.
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CNN Convolutionnal Neural Network.
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ICD International Classification of
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IRNW Imbalance Ratio Normalized
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IRW Imbalance Ratio Weighting.

MCE Maximum Calibration Error.
MTL Multitask Learning.

NDCG Normalized Discounted Cumula-
tive Gain.

NLP Natural Language Processing.
NN Neural Network.

RNN Recurrent Neural Network.

SVM Support Vector Machine.
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APPENDIX

A. Notations

• N the number of training examples
• M the number of labels, or nodes, in the hierarchy
• y the vector of true labels
• yi the true value of label i
• ŷ the vector of predictions
• ŷ+ the vector of predictions for positive labels
• ŷ− the vector of predictions for negative labels
• Di the set of descendants of node i
• Ai the set of ancestors of node i
• π(i) the parent of node i

B. Usual performance metrics and averaging strategies

We report the following standard metrics based on confusion matrices: namely Precision, Recall, and some
variants of their harmonic mean the F1 score, as well as areas under the Precision-Recall curve (AUPRC) and area
under the Receiver Operating Characteristic curve (AUROC).

Micro-averaged metrics denote metrics computed discarding class and sample belonging information, meaning
each prediction-value pair is treated equally. Sample-averaged metrics denote metrics computed first on a per
example basis and then averaged over examples.Macro metrics on the other hand denote metrics computed first
on a per label basis and then averaged over labels. Macro metrics will penalize more severely models with good
performance on some frequent labels but poor performance on less frequent or more difficult labels.

All the performance metrics that we report throughout the paper are ill-defined when no positive example is
present in the evaluated dataset. This problem arises upon performing sample or macro averaging. For sample
averaging, some hospital stays have no associated ICD codes. For macro averaging, several rare codes are too rare
to be seen in a test set subsample, the number of such codes per test set is dependent on the chosen test set size.
In order to minimize the bias that could be introduced by assigning a default value (such as 0 or 1) to a metric
when no positive example is in the dataset, we ignored stays or codes without positive example during sample or
macro averaging. Note however that for macro averaging this strategy tends to leave out very rare labels if the test
set size is too small, and thus results in an optimistic bias.

C. Rank-based metrics

1) Normalized Discounted Cumulative Gain (NDCG): NDCG is the normalized version of Discounted Cumu-
lative Gain (DCG) and is a widely used ranking metric. NDCG is defined as:

NDCG(y, ŷ) =
DCG(y, ŷ)

DCG(y,y)

where DCG(y,y) is the DCG value for an ideal ranking.
DCG exists in several versions with different gain and rank discount functions. We chose the most common

DCG fomulation, with 1
log(r) discount. [S1]. Within our binary relevance framework, we thus formulate DCG as:

DCG(y, ŷ) =
∑
i

yi
log(rank(ŷi))

.

We did not restrict NDCG computation to a range of top K predictions (NDCG@K) in order to capture differences
in models performances, even for incorrectly ranked positive labels. Unless stated otherwise we computed the NDCG
using the set of codes appearing at least once in MIMIC-III, or one of its hierarchical subsets. Note that due intrisic
properties of NDCG, computing NDCG using the complete ICD-9, thus including codes that did not appear in the
MIMIC-III database, would tend to produce values closer to 1 [S2].

2) Coverage: Coverage measures how far on the ranked predictions list ones has to go to find back every positive
label:

Coverage(y, ŷ) = max
{i|yi=1}

rank(ŷi).
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D. Calibration Error

The expected calibration error measures the adequacy between the confidence of the model in its prediction and
the accuracy of predictions for that level of confidence [S3]. We computed the ECE and MCE using an adaptive
binning strategy with 500 bins.

E. Loss function

1) Cross entropy loss: We treat the multilabel classification by treating each label as a separate binary
classification task in a final dense layer, while using a common set of layers performing feature extraction. This
can be done using the Binary cross-entropy or logistic loss function:

Li = −yi log(ŷi)− (yi − 1) log(1− ŷi)

2) Focal loss: The Binary Cross-Entropy (BCE) can be altered to put more emphasis on "difficult" classification
samples, resulting in the focal loss [S4]:

Li = −yi(1− ŷi)
γ log(ŷi)− (yi − 1)ŷγi log(1− ŷi)

where γ is a tunable hyperparameter.
3) Re-weighted multitask: In order to give equal weight to each hierarchy level in the loss function, we can

reweight each label by the inverse proportion of labels of that level in the hierarchy:

L̂i = w̃iLi;

where L̂i is our modified loss function and w̃i a weighting factor. We defined wi, the inverse proportion of labels
in the hierarchy in the same level as label i as:

wi =
M

Mli

;

and its normalized version w̃i, such that the average level weight is 1:

w̃i =
wi.M∑

j wj
=

M

Mli .L
;

where Mli is the number of nodes in the hierarchy level li and L the number of levels in the hierarchy.
For our experiment we considered 4 different levels: Chapters, Subchapters, 3 digits and a final level grouping

both 4 and 5 digits levels, to reflect the fact that Billing codes of interest can be either 3, 4 or 5 digits codes.

F. Hierarchical multilabel classification methods

Hierarchical classification is by nature multilabel (since a label from a leaf entails the parent label). Here by
HMC we denote the fact that each example can be labeled by several labels from the same level in the hierarchy.
HMC can be tackled with 3 different approaches: flat classifier (that we refer to as naive multitask model in main
text), local classifiers and global classifier [S5]. Flat classification is the simplest approach and simply ignores the
hierarchy information thus training an ensemble of binary classifiers (possibly including non leaf nodes) to perform
a simple multilabel classification.

The local classifier approach consists in training different classifiers for different levels in the hierarchy. The
resulting number of classifier can vary according to the chosen approach (Local classifier per node, local classifier
per parent, local classifier per level). In the local classifier approach, one uses the prediction from the parent
classifier to interpret the result from the child classifier. The intuitive advantage of building several classifiers being
that it could, in theory, allow the algorithm to pick different features scales for decision making. On the contrary
the obvious drawback is in the need to build many classifiers, meaning longer training time, harder evaluation, and
longer inference time.

Finally the global classifier approach aims at building a single classifier for all hierarchy levels, and exploit the
hierarchy information via a dedicated algorithm structure, regularization [S6] enforcing similarity between parent
and child nodes (and thus implicitly among siblings) or by introducing a penalty based on tree distance inside
the cost function [S7]. Some recent papers enforce logical constraints on hierarchical coherence of predictions at
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learning time inside the cost function [S8, S9] Finally in some recent work [S10] tried to bridge the gap and propose
a hybrid approach, between the global and the local one, based on neural networks.

Hierarchy inconsistencies in predictions of global classifiers (predicting a lower probability for a parent node
than for one of its children) can be limited by a regularization [S10] or cost [S8, S9] approach at learning time,
and can be further enforced through imposing logical constraints at inference time [S8].

In our work, we focused on global approaches, that are model architecture agnostic, since most existing work
on ICD assignment use a simple multilabel framework.

1) Hierarchical logical constraints: Upon training a flat or global classifier some output predictions may violate
the hierarchy. Such violations can be reduced at inference time by introducing simple logical constraints such as
roll-up:

ŷi = max
j∈Di∪{i}

ŷj ,

or roll-down:
ŷi = min

j∈Ai∪{i}
ŷj ,

of the hierarchy predictions. As discussed in [S8], the choice of the correct strategy will depend on the actual
problem at hand and the topological structure of label ensembles in the feature space. However, by imposing such
constraints at inference time only, the hierarchy may only be used for hyper-parameter tuning, but not for the actual
training of the model. To alleviate this limitation some recent works introduce such logical constraints into the
loss function. In [S8] the authors introduce the MCLoss (Maximum Constraint Loss),a variant of the binary cross
entropy:

LMC
i = −yi log(max

j∈Di

yj ŷj)− (yi − 1) log(1−max
j∈Di

ŷj).

This choice of logical constraint, together with a roll-up at inference time, is motivated by a discussion on
the optimal hierarchical classification strategy according to the topology of labels in the feature space. Using the
MCLoss and roll-up, the classifier should self adapt to the actual topology of labels in the feature space and always
behave like the best classifying strategy [S8].

In [S9] introduce the TreeMin loss:

LTM
i = −yi log(min

j∈Ai

ŷj)− (yi − 1) log(1−max
j∈Di

ŷj).

This loss can be intuitively understood as always penalizing according to the worst relevant prediction in the
hierarchy. One advantage of these logical constraint approaches is that they do not require to introduce new
hyperparameters to be tuned.

2) Hierarchical regularization: Another way to use the hierarchical relationships is to use the notion that labels
close in the hierarchy should also be close in the feature space.

A simple way to leverage this idea is to introduce a regularization term in the loss function enforcing similarity
of the parameters between children and parent nodes [S6]:

L′ = L+ λ

M−1∑
i=0

||wL
i − wL

π(i)||
2
2,

where λ is a tunable hyperparameter.

G. Class imbalance

In general methods to handle class imbalance can be decomposed in three families: cost-sensitive or classifier
adaptation, ensemble learning, and resampling, with the latter one being predominant due to its applicability to
any classifier type [S11]. Multilabel classification already adds complexity to the imbalance problem by the fact
that by resampling one might also change the frequency of some associated labels, and specific methods have been
designed to address this issue. [S11, S12].
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HMC adds a related problem: each time a leaf is sampled the corresponding parent will be sampled too, making
it difficult to control balance for each node in the hierarchy tree. Only a small number of studies try to address
the imbalance problem for hierarchical classification. The proposed approaches, however, rely on local classifiers
[S13] or transformation to label sets [S14] to perform this resampling. As explained earlier we chose to focus on
global classifier approaches using binary relevance such that our results are most easily transferable to existing
work on ICD classification. Because some of the models used in ICD codings, such as Transformers, are already
computationally demanding we decided to focus on exploring some plug in cost sensitive methods, and leave out
ensemble methods.

One of the simplest ways to address imbalance using a cost sensitive approach without an expert pre-specified
cost matrix is by increasing the weight of mistakes on positive samples according to each label imbalance ratio
(IR):

IRi =
1− fi
fi

Using the BCE loss function, we can define the IRW loss:

Li = −c(IRi)yi log(ŷi)− (yi − 1) log(1− ŷi)

where c(IRi) can be any increasing function of IR such that c(IRi) ≤ IRi. By strongly penalizing mistakes
on positive examples of some labels, we increase their importance during training. This strategy aims at pushing
decision boundaries away from the positive instances, and in theory leads to an improved generalization on these
labels. The extreme case c(IRi) = IRi can be seen as an extreme upsampling like procedure where the total weight
of positive examples is equal to the total weight of negative examples. However, because of the limited amount
of positive examples for some labels, their importance might be blown up and result in poor generalization and
ultimately lead to degradation of performances on negative examples.

In this study, for the IRW method, we defined c to be a simple ceiling function:

c(IRi) = min(IRi, IRmax)

where IRmax is a tunable hyperparameter
One caveat of such a re-weighting in the multilabel context is that labels end up with different weights in the

total loss according to the label frequency. If we consider an adversarial classifier always giving the worst prediction
up to ϵ, the total loss for a given label i is:

Li = −N [1 + fi(c(IRi)− 1)] log(ϵ)

To alleviate this we simply rescale each label contribution:

Li = − 1

zi
[c(IRi)yi log(ŷi) + (yi − 1) log(1− ŷi)]

by the normalizing factor zi = 1 + fi(c(IRi) − 1). In the remainder of the text, we refer to this normalized
re-weighting as IRNW.

H. Entropy reduction

We calculate the entropy reduction, also known as information gain, by analyzing the predictions made by our
model on the test set. Initially, we compute the mutual information between the model’s predictions and the ground
truth of the test set using the ’mutual_info_classif’ function from the ’sklearn’ library, considering continuous
predictions for each cross-validation run. Due to the limited size of the test sets, we encounter some codes for
which no positive examples were observed in some or all test sets; in such cases, the mutual information is set to
NaN.

To obtain the entropy reduction, we normalize the mutual information by the entropy of the code, which is
estimated using the entire dataset. For 36 codes, the resulting entropy reduction values exceeded 1.0; we capped
these values to 1.0 to ensure consistency.
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I. Stay types categorization

In Section III-E, we assess our model’s performance across distinct stay categories: newborn, surgical, and
medical.

To categorize each stay, we utilized the visit_detail table within MIMIC-OMOP and classified stays based on the
visit_detail_concept_id field. Stays containing at least one entry corresponding to the newborn category (concept
4237225) were assigned to that group. Similarly, stays lacking newborn category assignment but having at least
one surgical detail entry (concept 4149152) were categorized as surgical stays. For the remaining stays, they were
considered medical stays provided they had the corresponding entry (concept 45763735).

Notably, 50 stays from the entire database could not be assigned to any of these categories and were consequently
excluded from this analysis, provided they appeared in a test set.

J. Adaptive threshold model

Since the cross-entropy loss is not a direct optimizer for µF1 , models selected based solely on µF1 via
hyperparameter search and early stopping may not deliver the optimal results in terms of hard classification. To
enhance the hard classification results, as measured by µF1 , we adopted models initially optimized for µAUPRC.
We then fine-tuned these models by adjusting the probability threshold for each hierarchy level to classify examples
as positive or negative. These thresholds were carefully chosen to maximize µF1 on the 5,000 stays from the
development dataset. Results on the cherry-picked code set are given in Table S4.

K. Runtime evaluation

To evaluate runtime we used the best model optimizing NDCG on the first cross validation dataset. We conducted
evaluations across multiple batch sizes, ranging from 32 to 16,296, aiming to enhance inference efficiency on the
complete dataset comprising 58,976 stays. In order to eliminate the compilation time overhead of the model, we
initially conducted inference on a single batch. Subsequently, we performed inference on both the complete dataset
and a random subset of 1,000 stays, timing the process over five repetitions. Our reported results represent the
average runtime, based on these five runs, along with the corresponding standard error. For achieving the best
performance on the complete dataset, we selected a batch size of 4,096. This experiment was executed on Google
Colab, utilizing a T4 GPU

L. Supplementary tables
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Ref. Input data
(Method)

Code Filter Code Level micro
pre-
ci-
sion

micro
re-
call

micro
F1

macro
F1

micro
AUPRC

macro
AUPRC

micro
AU-
ROC

macro
AU-
ROC

NDCG

Chapter 68.46% 69.27% 66.86% - - - - - -
Subchapter 58.05% 57.21% 57.63% - - - - - -
3 digits 48.45% 47.19% 47.81% - - - - - -[S15] Drugs (NN)

>100
occurrences,
remove some
subchapters Billing 36.98% 36.26% 36.62% - - - - - -

[S16] Multimodal
(SVM, no text),
training on
3750 MIMIC
MetaVision

≥1% diagnostic
prevalence

All codes - - - - - 18.5%1 - 75.1%1 -

[S17] Multimodal
(SVM)

>30 occurrences All codes - - - 13.5%1 - - - 77.8%1 -

top50 Diagnoses
+ Procedures

@5:
61.8%

- 63.3% 57.6% - - 91.6% 88.4% -

[S18] Text (CNN) All Diagnoses +
Procedures

Billing5
@8:
69.0%

- 52.9% 5.29% - - 98.5% 89.7% -

>10 occurrences Chapters - - 81% 74% - - - - -
Subchapters - - 65% 41% - - - - -[S19] Text (Transformer) 3 digits - - 53% 16% - - - - -

[S20] Previous
Diagnostics
(RNN)

Patients with ≥
2 stays, subset
of 855 ICD-
9 codes that
could be mapped
to the CCS
nomenclature

Unknown @3:
70%

@20:
58%

48.0% - - - - - -

Billing 39.4% 23.3% 29.3% - - - - - -[S21] Text (SVM) None All levels 57.7% 30.0% 39.5% - - - - - -
[S22] Text

(Transformer)
None Billing - - - - - - - - @15:

55.2%
- 3 digits ∼71% ∼57% ∼63% - - - - - -[S23]4 Text (CNN) 5 digits ∼68% ∼36% ∼47.5% - - - - - -

[S24] Text (NN) 6 diseases (all
>2% prevalence)

- - - - - - - - - -

[S25] Text (CNN) None Billing 48.6% 35.1% 40.8% - - - - - -
[S26] Laboratory

(GNN)
Subsample of
3800 patients,
2922 diagnostics,
>1% diagnostic
prevalence.

Billing - - 75.1%1 - 83.4%2 - - - -

[S27] Text (RNN) top 50 Billing @5:
68.4%

- 74.4% 69.4% - - 94.6% 92.2% -

[S28]3 Text (RNN) - - - - - - - - - - -
[S29] Multimodal

(CNN + RNN)
top 50 mapped to
ICD10 (32 final
codes)

Billing5 - - 76.33% 68.67% - - 95.41% 93.37% -

All Diagnoses +
Procedures

@8:
72.2%

- 55.1% 9.0% - - 98.9% 93.0% -

[S30] Text (CNN) top 50 Diagnoses
+ Procedures

Billing5
@5:
63.2%

- 66.3% 60.9% - - 92.9% 89.5% -

All Diagnoses +
Procedures

@8:
74.1%

- 55.2% 8.5% - - 98.6% 91.0% -

[S31] Text (CNN) top 50 Diagnoses
+ Procedures

Billing5
@5:
63.8%

- 67.0% 60.6% - - 92.8% 89.9% -

1 The metric definition given in the article does not allow to know precisely the type of averaging (micro, macro or sample), we tried to
make an educated guess based on text formulation and reported values compared to the rest of the literature.

2 AUC is reported without precision of the curve (PR or ROC). We tried to make an educated guess based on text formulation and reported
values compared to the rest of the literature.

3 The authors only provided performance metrics averaged with a weighting by class frequency.
4 Performances were estimated by eye from a bar chart in the absence of written numbers.
5 The authors have used all codes contained in the MIMIC-III database. The raw database contains mostly billing codes, and a minority

of codes higher in the hierarchy.

TABLE S1: Summary of existing work on ICD9 prediction on MIMICIII.
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Min Max Median Mean SD

Chapters 0 14 4 4.52 2.61
Subchapters 0 24 6 6.12 3.91
3 digits 0 32 7 7.83 4.98
4 digits 0 34 7 7.43 5.17
5 digits 0 22 3 3.18 2.72
Billing 0 34 7 7.43 5.23
All levels 0 112 27 29.07 18.57

TABLE S2: Number of codes per stay for different ICD levels on the cherry picked code subset.

Hyperparameter Value Allowed values
Global parameters

Test set size 5000
Dev set size 5000

Network parameters
Batch size 64
Number of layers [1, 8]
Layers size [256, 6144]
Hidden layers activation ReLU
Dropout rate [0, 80%]
BatchNorm {True, False}

Optimization parameters
ADAM: β1 0.9
ADAM: β2 0.999
ADAM: ϵ 10−7

ADAM: Learning rate 2× 10−4

Earlystopping: patience 3
Earlystopping: min ∆ 0.0
Earlystopping: restore best weights True
Earlystopping: validation split 5%

Hyperparameter search parameters
Hyperband: Iterations 2
Hyperband: Execution per trial 3
Hyperband: Factor 3
Hyperband: Max epochs 150

Method specific parameters
Imbal: Class weight cap [1, 200]
Focal: γ [1, 4]
HierL2: λ [10−15, 5−6]
OutL2: λ [10−8, 10−2]

TABLE S3: Models’ Hyperparameters space.
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Experiment All codes learning Filtered codes learning Adaptive Threshold Hansen et al.
Code level Metric

Chapter
Precision 73.65 ± 0.32 73.58 ± 0.37 68.15 ± 0.61 68.46
Recall 68.03 ± 0.19 67.98 ± 0.60 75.61 ± 0.54 69.27
µF1 70.73 ± 0.04 70.66 ± 0.16 71.67 ± 0.11 68.86

Subchapter
Precision 66.51 ± 0.49 67.24 ± 0.02 57.39 ± 0.47 58.05
Recall 49.36 ± 0.11 49.10 ± 0.49 60.80 ± 0.07 57.21
µF1 56.66 ± 0.12 56.75 ± 0.32 59.04 ± 0.22 57.63

3 digits
Precision 60.55 ± 0.44 61.73 ± 0.48 46.82 ± 1.00 48.45
Recall 33.13 ± 0.05 32.39 ± 0.47 47.65 ± 1.08 47.19
µF1 42.83 ± 0.06 42.48 ± 0.30 47.18 ± 0.07 47.81

Billing (raw)
Precision 54.39 ± 0.58 55.67 ± 0.59 37.90 ± 0.54 36.98
Recall 22.06 ± 0.11 21.50 ± 0.34 38.22 ± 0.59 36.26
µF1 31.39 ± 0.05 31.02 ± 0.28 38.04 ± 0.01 36.62

TABLE S4: Models classification performance comparison on the cherry picked codes. All codes learning and
Filtered code learning designate models that were selected to maximize µF1 and were trained using the complete
code set or using only cherry picked codes. The Adaptive threshold model is a model initially trained and selected
to maximize µAUPRC, for which a different probability threshold for each level of the hierarchy in order to
maximize µF1 (see Appendix J). For comparison we report the performance from Hansen et al. [S15] which we
tried to emulate. For our experiment we report the standard error on the mean over the 3 cross-validation runs.
Despite our efforts we could not exactly replicate the filters from Hansen et al. [S15] , and our cherry picked code
set contains ∼100 more codes at the 3-digits and billing levels than that reported in their article.

Calibration Metric Brier score ECE MCE
Optimized Metric

AUPRC 0.282 ± 0.00% 0.039 ± 0.00% 1.171 ± 0.23%
NDCG 0.284 ± 0.00% 0.055 ± 0.00% 2.297 ± 0.33%

TABLE S5: Calibration metrics for models selected to optimize respectively the AUPRC and NDCG. The table
reports mean and standard error on the mean evaluated using 3 cross-validation runs.

Naive multitask (592 codes) Malakouti and Hauskrecht (696 codes)
Metric

macro AUPRC 30.22 ± 0.15 18.5
macro AUROC 86.74 ± 0.05 75.1

TABLE S6: Models classification performance comparison between our naive multitask neural network and results
from a multimodal multitask SVM reported in [S16]. Our neural network model was trained and selected to
maximize the macro Area Under the Receiver Operating Characteristic Curve (AUROC) on the complete code set
using split sizes given in Section II-B1. The reported macro AUROC and AUPRC were evaluated on a subset of
592 codes with frequency ≥1% on the complete MIMIC-III dataset. In turn, the SVM results given in [S16] were
obtained after training on a 3750 patients subset of the Metavision MIMIC subset, with the same code frequency
threshold however resulting in 692 codes. For our experiment we report the standard error on the mean over the 3
cross-validation runs.
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Metric NDCG NDCG@15 RE@25 RE@50 RE@75 RE@100
Filter Hierarchy level

None

Chapter 92.33 ± 0.07 91.71 ± 0.11 0.404 ± 0.00 0.987 ± 0.01 2.134 ± 0.01 4.094 ± 0.01
Subchapter 83.98 ± 0.05 73.81 ± 0.07 1.719 ± 0.04 4.196 ± 0.09 9.977 ± 0.12 26.47 ± 0.22
3 digits 75.52 ± 0.07 59.61 ± 0.05 5.516 ± 0.16 15.07 ± 0.25 39.99 ± 0.30 148.4 ± 1.54
Billing 61.23 ± 0.18 43.96 ± 0.11 19.35 ± 0.26 52.29 ± 1.09 155.4 ± 2.85 813.3 ± 13.0
All 83.09 ± 0.07 74.68 ± 0.11 8.185 ± 0.28 37.30 ± 0.53 146.4 ± 1.68 1696. ± 24.2

Top50
3 digits 78.88 ± 0.14 71.27 ± 0.11 1.716 ± 0.00 3.602 ± 0.01 7.218 ± 0.04 14.02 ± 0.07
Billing 63.95 ± 0.42 58.20 ± 0.44 2.279 ± 0.06 4.423 ± 0.09 8.454 ± 0.10 15.38 ± 0.12
All 90.60 ± 0.06 80.32 ± 0.04 1.311 ± 0.02 3.536 ± 0.04 7.819 ± 0.03 17.22 ± 0.05

TABLE S7: Average ranking or retrieval performance, along with its standard error, estimated on diverse code
subsets using three-fold Monte-Carlo cross-validation. These metrics were computed using our top-performing
models selected to optimize NDCG.

Metric µAUROC macro AUROC µAUPRC macro AUPRC
Filter Hierarchy level

None

Chapter 89.29 ± 0.06 84.67 ± 0.07 80.48 ± 0.10 68.37 ± 0.67
Subchapter 94.87 ± 0.04 85.57 ± 0.16 62.07 ± 0.14 28.90 ± 0.41
3 digits 96.95 ± 0.01 85.21 ± 0.24 45.22 ± 0.15 13.46 ± 0.04
Billing 97.59 ± 0.01 84.48 ± 0.20 29.84 ± 0.01 7.303 ± 0.07
All 98.30 ± 0.00 84.61 ± 0.19 49.92 ± 0.12 9.493 ± 0.12

Top50
3 digits 89.20 ± 0.08 85.66 ± 0.08 59.77 ± 0.25 49.26 ± 0.17
Billing 88.99 ± 0.09 85.24 ± 0.12 49.25 ± 0.27 37.29 ± 0.23
All 87.03 ± 0.04 84.82 ± 0.05 75.28 ± 0.04 68.76 ± 0.15

TABLE S8: Average (soft) classification performance, along with its standard error, estimated on diverse code
subsets using three-fold Monte-Carlo cross-validation. These metrics were computed using our top-performing
models selected to optimize each of the corresponding metric.

Metric NDCG NDCG@15 RE@25 RE@50 RE@75 RE@100
Filter Hierarchy level

Medical

Chapter 92.78 ± 0.11 92.13 ± 0.13 0.367 ± 0.00 0.973 ± 0.00 2.137 ± 0.02 4.281 ± 0.01
Subchapter 84.41 ± 0.17 72.63 ± 0.16 1.474 ± 0.03 4.045 ± 0.04 10.43 ± 0.09 29.68 ± 0.30
3 digits 75.80 ± 0.17 57.94 ± 0.14 4.631 ± 0.09 14.24 ± 0.08 40.78 ± 0.24 171.8 ± 1.67
Billing 66.40 ± 0.13 46.54 ± 0.10 12.19 ± 0.24 39.96 ± 0.25 131.6 ± 1.88 848.1 ± 9.76
All 83.36 ± 0.14 76.24 ± 0.29 6.689 ± 0.21 33.94 ± 0.44 143.1 ± 0.59 1827. ± 20.0

Newborns

Chapter 97.10 ± 0.35 96.59 ± 0.45 0.105 ± 0.02 0.217 ± 0.04 0.635 ± 0.04 1.157 ± 0.06
Subchapter 94.70 ± 0.38 93.55 ± 0.44 0.354 ± 0.06 0.645 ± 0.09 1.450 ± 0.09 3.350 ± 0.18
3 digits 88.48 ± 0.59 84.74 ± 0.67 2.019 ± 0.58 3.805 ± 0.88 7.805 ± 1.14 23.68 ± 0.33
Billing 41.05 ± 0.31 34.62 ± 0.38 25.20 ± 6.54 46.08 ± 11.9 89.73 ± 17.8 280.6 ± 13.5
All 91.91 ± 0.43 84.36 ± 0.70 4.354 ± 0.96 12.46 ± 2.50 37.46 ± 6.99 383.0 ± 23.7

Surgical

Chapter 90.28 ± 0.01 89.65 ± 0.07 0.516 ± 0.00 1.189 ± 0.01 2.496 ± 0.02 4.677 ± 0.03
Subchapter 79.96 ± 0.06 68.50 ± 0.02 2.438 ± 0.04 5.533 ± 0.12 12.29 ± 0.11 30.95 ± 0.01
3 digits 70.91 ± 0.20 53.03 ± 0.14 7.640 ± 0.20 19.71 ± 0.23 49.83 ± 0.26 169.3 ± 1.39
Billing 62.44 ± 0.30 44.31 ± 0.25 26.08 ± 1.07 66.98 ± 2.00 194.0 ± 3.44 893.6 ± 18.2
All 79.87 ± 0.07 69.78 ± 0.14 11.08 ± 0.80 49.25 ± 1.13 186.6 ± 3.95 1965. ± 44.1

TABLE S9: Ranking or retrieval performance across various stay categories. The reported values are averages taken
from the test sets of the three cross-validation runs, utilizing models selected to optimize NDCG.

Batch Normalization Number of Layers Number of Units Dropout Rate
Cross-validation ID

0 False 3 2048 0.66
1 False 3 4608 0.63
2 False 3 2560 0.64

TABLE S10: Best models hyper-parameters on the three cross validation runs aiming to optimize NDCG.
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M. Supplementary figures
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Fig. S1: Rank versus frequency plot (Zipf plot) for the different code levels in MIMIC-III.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.16.24301382doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.16.24301382
http://creativecommons.org/licenses/by-nc/4.0/


26

0 20 40 60 80 100
Entropy reduction (%)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

fre
qu

en
cy

Code occurrences
1 < n 5
5 < n 15
15 < n 100
100 < n 300
300 < n 1000
n > 1000

Fig. S2: Cumulative distribution of the entropy reduction, or information gain, for different subsets of low frequency
codes at any level of the ICD9 hierarchy. Each subset contains respectively, by increasing number of code
occurrences, 1350, 1598, 2061, 783, 510 and 410 codes. The results shown were obtained using predictions from
a model with hyperparameters selected to achieve best µF1.
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Fig. S3: Relative improvement in ranking performance, measured by RE@R, for different hierarchy levels and various
values of R achieved by optimizing various scalar performance metrics instead of the commonly reported µF1. Error
bars represent the standard error of the mean computed over cross-validation runs. We indicate, as reference, the
absolute RE@R values, averaged over cross validation runs, achieved by the baseline model optimizing the µF1.
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Fig. S4: Spearman rank correlation between different metrics values and rank errors for different recall values
evaluated on the complete code set and all code levels. Aiming to minimize ranking errors, the lower the correlation
the better (except for coverage which we also aim to minimize). The metrics were sorted according to the average
correlation value across RE@R for easier interpretation. To compute the different metrics we used the predictions
from all 50 models trained on the complete code set presented in this paper and evaluated each metric on the
complete code set.
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values of R, achieved by models chosen to maximize global NDCG.
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Fig. S6: Relationship between ranks and code frequency. The lines and shaded areas were generated using LOWESS
(Locally Weighted Scatterplot Smoothing) based on predictions from our top-performing NDCG-focused naive
multitask model. The shaded regions represent the 95% confidence intervals. The presence of orange dots in the
lower-left area demonstrates the algorithm’s capability to assign high ranks even to low-frequency codes.
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on the 3-digits level.
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