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Abstract

A growing number of studies use deep neural networks (DNNs) to identify diseases from recordings of

brain activity. DNN studies of electroencephalography (EEG) typically use cross-validation to test how

accurately a model can predict the disease state of held-out test data. In these studies, segments of EEG

data are often randomly assigned to the training or test sets. As a consequence, data from individual

subjects appears in both training and test data. Could high test-set accuracy reflect leakage from

subject-specific representations, rather than patterns that identify a disease? We address this question

by testing the performance of DNN classifiers using segment-based holdout (where EEG segments from

one subject can appear in both the training and test sets), and comparing this to their performance

using subject-based holdout (where individual subjects’ data appears exclusively in either the training

set or the test set). We compare segment-based and subject-based holdout in two EEG datasets: one

classifying Alzheimer’s disease, and the other classifying epileptic seizures. In both datasets, we find

that performance on previously-unseen subjects is strongly overestimated when models are trained using

segment-based holdout. Next, we survey the literature and find that the majority of translational DNN-

EEG studies use segment-based holdout, and therefore overestimate model performance on new subjects.

In a hospital or doctor’s office, clinicians need to diagnose new patients whose data was not used in

training the model; segment-based holdout, therefore, does not reflect the real-world performance of a

translational DNN model. When evaluating how DNNs could be used for medical diagnosis, models must

be tested on subjects whose data was not included in the training set.

Keywords: Electroencephalography; deep neural networks; data leakage; Alzheimer’s disease; epilepsy

Introduction

Translational neuroscience studies increasingly turn to deep neural network (DNN) models to find structure

in neural data. The power of DNN models comes from their ability to discover patterns in the data that

researchers would not have been able to specify. In this literature, DNNs have been trained on a variety

of imaging techniques to identify a wide range of clinical conditions. Many of these studies use DNNs to

diagnose diseases based on anatomical neuroimaging. For example, DNN models can identify Alzheimer’s

disease (AD) using structural magnetic resonance imaging (MRI)74, and a variety of cancers and brain

injuries using CT scans29,35. In addition to anatomical data, a large number of studies have used DNNs

to identify diseases from functional neuroimaging data. For example, DNNs with functional MRI show

promise for identifying AD, Autism spectrum disorders, attention-deficit/hyperactivity disorder (ADHD),

and schizophrenia73. Furthermore, DNNs have been used with electroencephalography (EEG) to study a

variety of different neural and cognitive disorders17.
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Deep learning helps to reveal previously-unknown patterns in neuroimaging data, but it also presents

researchers with subtle pitfalls. One set of challenges concerns how the data are split into separate training

and test sets. The training set is used to fit the model’s parameters, and the test set is used to estimate

the model’s performance on new data. (A third subset of the data is often held aside as a validation set,

used to tune the model’s hyperparameters and to determine when to stop training the model.) In some

cases, researchers train their model on one subset of the available data, and then evaluate the model’s

performance on a separate test set. In other cases, researchers use cross-validation (CV) to train and test

models on multiple subsets of the data. Under both of these approaches, researchers must be careful to

avoid “data leakage” when splitting the data into training and test sets. Data leakage, which arises when

information about the test set is present in the training set, results in a positively-biased estimate of the

model’s performance36. For example, in a data-mining competition focused on identifying patients with

breast cancer, one team of researchers found that the patient ID number carried predictive information

about cancer risk59. These ID numbers may have appeared after compiling data from different medical

institutions. Because the ID number was assigned based on patients’ diagnosis, it constitutes a source of

data leakage59. In general, data leakage occurs when an experimenter handles the data in a way that

artificially introduces correlations between the training and test sets.

DNN models typically require a large amount of training data to perform well, but neural datasets are

usually expensive and difficult to obtain. To increase the number of observations available to train the

model, these studies often split a single neural recording into multiple samples, and use each sample as a

separate observation during training or testing. For example, a 3D structural MR volume could be split into

multiple 2D slices, and an fMRI time-series could be split into multiple segments of time74. When multiple

observations from a single subject are included in both the training and test sets, it constitutes data leakage:

Instead of learning a generalizable pattern, these models could learn characteristics of the individual subjects

in the training set, and then simply recognize those familiar subjects in the test set. As a result, these models

perform well in the study’s test set, leading the researchers to believe they have a robust classifier. In new

subjects, however, the model may fail to generalize. In fact, leakage of subject information does occur in a

number of published MRI studies74. Furthermore, leakage of subject-specific information is widespread in

translational studies using optical coherence tomography (OCT), and leads to strongly inflated estimates of

test accuracy65.

Studies using DNNs with EEG are particularly susceptible to data leakage. In these studies, each sub-

ject’s full EEG time-series (lasting several minutes) is commonly divided up into brief segments (lasting

several seconds)17. Each segment is then used as a separate observation during training or testing. This

segmentation procedure is meant to ensure that DNN models have enough training data to learn robust rep-

3

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.16.24301366doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.16.24301366
http://creativecommons.org/licenses/by-nd/4.0/


resentations of the patterns that characterize a disease, and to prepare the data for commonly-used model

architectures. However, EEG segmentation leads to data leakage if the same subjects appear in both the

training and test sets. Segments of EEG from one subject are more similar to each other than to segments

from different subjects18. Instead of learning an abstract representation that would generalize to new sub-

jects, a DNN model could therefore achieve high classification accuracy by associating a label with each

subject’s idiosyncratic pattern of brain activity. As a consequence, randomly splitting EEG segments into

training and test sets results in data leakage, and a biased estimate of test performance: accuracy is high on

the researchers’ test set, but the classifier will generalize poorly to new subjects. In a clinical setting, this

leads to an apparently-promising diagnostic tool that fails when applied to new patients. To avoid this kind

of data leakage, all segments from a given subject must be assigned to only a single partition of the data

(i.e. train or validation or test).

How does leakage of subject-specific information bias the results of translational DNN-EEG studies? Here

we address this question by examining the effects of data leakage in two case studies, and then reviewing

the published literature to gauge the prevalence of this leakage. In the case studies, we reproduce two

convolutional neural network (CNN) architectures used by published studies – both of which used a train-

test split that introduced data leakage. First, we use a CNN to classify subjects as either healthy or as having

dementia due to Alzheimer’s disease. Second, we use a CNN to classify whether segments of time contain an

epileptic seizure. In both datasets, we find that real-world performance is dramatically overestimated when

data from individual subjects is included in both the training and test sets. In the literature review, we find

that the majority of translational DNN-EEG studies suffer from data leakage due to data from individual

subjects appearing in both the training and test sets.

Methods

Deep neural network analysis overview

To investigate how segment-based holdout leads to data leakage, we reproduced the model architectures

from two published studies56,58. The goal of these analyses was not to develop an optimal architecture, but

rather to evaluate the impact of different cross-validation choices on the estimated model performance. We

therefore re-used the published architectures and data processing pipelines without modification.
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Experiment 1: Alzheimer’s disease diagnosis

EEG data

EEG recordings were provided by the Pacific Neuroscience Institute25. All procedures were approved by

the St. John’s Cancer Institute Institutional Review Board (Protocol JWCI-19-1101) in accordance with

the Helsinki Declaration of 1975. Patients were evaluated by a dementia specialist as part of their visit

to a specialty memory clinic (Pacific Brain Health Center in Santa Monica, CA) for memory complaints.

This evaluations included behavioral testing as well as EEG recordings. After these evaluations, subjects

were selected by retrospectively reviewing charts for patients aged 55 and older seen between July 2018 and

February 2021.

Patients received a consensus diagnosis from a panel of board-certified dementia specialists. Diagnoses

were performed using standard clinical methods on the basis of neurological examinations, cognitive testing

(MMSE23 or MoCA54), clinical history (e.g. hypertension, diabetes, head injury, depression), and laboratory

results (e.g. vitamin B-12 levels, thyroid stimulating hormone levels, and rapid plasma regain testing). These

tests were used to rule out reversible causes of memory loss and to diagnose SCI, MCI, and dementia. EEG

data was not included in the diagnostic process. Cognitive impairment was diagnosed on the basis of MMSE

(or MoCA scores converted to MMSE8), with MCI diagnosed according to established criteria42. MCI was

distinguished from dementia on the basis of preserved independence in functional abilities, and a lack of

significant impairment in social or occupational functioning. SCI was diagnosed in patients with subjective

complaints but without evidence of MCI. Diagnostic categorization was based on the clinical syndromes42,

and did not consider disease etiology or subtypes within each stage.

EEG data were recorded at 250 Hz using the eVox System (Evoke Neuroscience), with a cap that included

19 electrodes following the International 10-20 system (FP1, FP2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8,

P7, P3, Pz, P4, P8, O1, and O2). The full EEG session included a 5-minute block of eyes-open rest, a

5-minute block of eyes-closed rest, and a 15-minute go/no-go task. In this study, we analyzed only the

eyes-open resting-state data. Recordings were low-pass filtered below 125 Hz, and split into non-overlapping

segments of 2 s (500 samples) for model training. Channels were stacked to produce matrices of shape (500,

19) as model inputs.

We selected all 49 subjects in the dataset who were diagnosed with dementia due to Alzheimer’s disease

(18 male, 31 female; age 73.9 ± 6.8 years). As a comparison, we selected an equal number of subjects with

subjective cognitive impairment (SCI; n = 49, 18 male, 31 female; age 63.9± 11.4 years).
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Architecture

Based on previous work56, a basic 1D convolutional neural network was used to classify segments of time-

series data as SCI or AD. Because our goal was to evaluate the effects of different cross-validation strategies,

we re-used the published architecture without modification. This model learns temporal filters that are

applied equivalently across each EEG channel. Progressing through the network, subsequent layers build

more complex features that take into account a larger temporal receptive field, and some invariance is achieved

through pooling over time. The model consisted of 4 convolutional layers, each followed by rectification, max

pooling, and batch normalization; convolutional layers were followed by 2 dense fully-connected layers of 20

and 10 hidden units, respectively, each rectified, and finally a dense connectivity to the output layer with

2 units representing AD yes/no probability logits. All deep learning models were trained with Keras and

Tensorflow. The exact Keras code used to specify the architecture can be found in the Appendix.

Training

Models were trained for 70 epochs without any early stopping or hyperparameter tuning. A batch size of 32,

initial learning rate of 0.0001, and the Adam optimizer were used to optimize models. Training accuracy was

computed and stored online during each epoch, and averaged across batches to report the training accuracy

for each epoch. To visualize how quickly the models reached their final performance, test set accuracy was

also computed after each epoch, averaged across batches. Since we reused the model architecture from prior

published work, no model selection was performed; performing ongoing validation on the test is therefore

not a source of data leakage. For segment-based holdout, data were split using 10-fold cross-validation (see

‘Cross-validation’ for details).

Experiment 2: seizure detection

EEG data

We analyzed data from the Siena Scalp EEG Database19,20 hosted on PhysioNet28. These recordings were

collected in accordance with the Declaration of Helsinki, and approved by the Ethical Committee of the

University of Siena. Participants provided written informed consent before beginning data collection. This

dataset includes recordings from 14 epilepsy patients (age 20-71 years, 9 male) digitized at 512 Hz with

electrodes arranged following the International 10-20 system. Seizures in the data were labeled by an expert

clinician. This dataset contains 47 seizures in approximately 128 hours of recorded EEG. To ensure that the

data were balanced between seizure and non-seizure epochs, we selected non-seizure data from the beginning

of each subject’s recordings to match the duration of their seizure-labeled data. This led to 47 min 21 s of
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data in each condition (1:34:42 s in total).

In contrast to the previous section where raw time series were used, EEG data were prepared for the clas-

sifier analysis in the frequency domain, following the approach used by Rashed-Al-Mahfouz and colleagues58.

Spectrograms were computed with a window length of 256 samples (0.5 s) overlapping by 128 samples (0.25

s), using a Hann taper. Spectrograms were then divided into segments of 1.5 s. As in the original study, we

used the RGB representation of the spectrogram (viridis color-map), and exported as 224 x 224 x 3 images

for training and testing with the CNN models.

Architecture

The goal of the simulations was primarily to evaluate the impact of different cross-validation choices, not to

evaluate the architecture. Thus, the architecture of Rashed-Al-Mahfouz and colleagues58 was used without

modification. To handle 3D spectrogram data (vs. 2D time-series used in the previous section), a 2D

convolutional neural network was used. This model learns 2D spectrotemporal features that are applied

equivalently across the spectrogram. The model contains 4 convolutional layers, each followed by rectification,

pooling, and batch normalization, followed by 2 hidden fully-connected layers of 256 and 512 units each,

dropout, and a final classification layer of 2 units corresponding to seizure yes/no. The exact Keras code

used to specify the architecture can be found in the Appendix.

Training

Models were trained for 70 epochs with no early stopping. We used the RMSProp optimimzer with a batch

size of 32 and a learning rate of 0.00001. Training accuracy was computed and stored online during each

epoch, and averaged across batches to report the training accuracy for each epoch. To visualize how quickly

the models reached their final performance, test set accuracy was also computed after each epoch, averaged

across batches. Since we reused the model architecture from prior published work, no model selection was

performed; performing ongoing validation on the test is therefore not a source of data leakage.

Cross-validation

This study is primarily concerned with the consequences of different approaches to splitting the data between

training and test sets. We assess two types of train-test split: (1) holding out individual segments of EEG

data without regard for subject ID (“segment-based holdout”), and (2) holding out entire subjects, ensuring

that all segments for a given subject appear in only the training or the test set (“subject-based holdout”).
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Segment-based holdout

Segment-based cross-validation considers all EEG segments to be equivalent, and divides them into training

and validation partitions without considering subject ID. This segment-holdout approach will lead to data

leakage if there is statistical non-independence due to multiple EEG segments coming from each subject.

Given n segments and m time-points per segments, we construct a matrix X of EEG segments of size (n,m),

and a vector y of diagnostic label of length n. The cross-validation is a simple partition of the index vector

α = {1, 2, ..., n} into disjoint subsets αtrain and αtest. Where Xi gives the ith segments of X, we then have

Xtrain = {Xi}∀i ∈ αtrain, Xval = {Xi}∀i ∈ αtest, and ytrain = {yi}∀i ∈ αtrain, ytest = {yi}∀i ∈ αtest.

Subject-based holdout

Subject-based cross-validation takes into account which subject each EEG segment comes from. This ap-

proach enforces that each subject appears in only one partition of the cross-validation, ensuring there is

no leakage of subject-level information across training and test sets. To create this split, we consider an

additional subject vector s, which is used to constrain the partition of X and y. Concretely, rather than

partitioning the index vector α, we partition the unique subject vector su, which gives the unique entries

of s, and collect all corresponding segments from each subject contained in train and validation partitions

into αtrain and αtest. This enforces the constraint that si ̸= sj∀i ∈ αtrain, j ∈ αtest. To perform k-fold

cross-validation, we first divide su into k non-overlapping chunks, and each chunk to serve as the validation

data in each fold of cross-validation, where the remaining k − 1 chunks are reserved for training.

Literature review

We searched the literature for studies that used deep learning with segments of EEG to classify a va-

riety of diseases. We searched Google Scholar for papers investigating Alzheimer’s disease, Parkinson’s

disease, attention-deficit/hyperactivity disorder (ADHD), depression, schizophrenia, and seizures. We then

searched the references of these papers to identify additional appropriate publications for inclusion. This

non-exhaustive search included 63 papers, all of which were published since 2018 and used deep learning to

study one of the conditions named above.

Next, we examined how the training and test sets were determined in these studies. If a paper specified

that the EEG recordings were split into segments, but did not specify that they used subjects as an organizing

factor of the train-test split, we labeled that study as using ‘segment-based’ holdout. Some papers specifically

stated that segments from individual subjects were included in both the training and test sets (for example,

studies that trained separate models for each subject); these studies were also labeled as segment-based
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holdout. If a paper specified that all the segments from a single subject were assigned to only the training or

the test set, we labeled that study as using ‘subject-based’ holdout. If a study used both segment-based and

subject-based holdout in different analyses, we labeled the study as ‘both’. We labeled studies as ‘unclear’

if we could not determine whether the models were trained on segments of EEG recordings, and it was not

explicitly stated that subjects were used as a factor in the holdout procedure.

Results

Data leakage leads to biased test-set accuracy

We analyze two datasets to test how the estimated accuracy of a DNN classifier depends on the train-test

split. First, we examine the effects of data leakage in a patient-level classifier by training a model to diagnose

Alzheimer’s disease. Second, we examine the effects of data leakage in a segment-level classifier by training

a model to identify periods of time that include an epileptic seizure. In each of these analyses, we reuse a

published DNN architecture to analyze an existing dataset.

Identifying patients with Alzheimer’s disease

To determine whether segment-based holdout leads to a biased estimate of accuracy, we first trained a CNN

to diagnose Alzheimer’s disease using segments of EEG. When the EEG segments were split into training and

test sets without considering subject ID, the model showed nearly perfect test-set accuracy of 99.8% [99.1-

100.0%] (Figure 1a). Performance quickly approached ceiling within the first 15 training epochs (Figure 2a).

This high accuracy is consistent with prior studies that use segment-based holdout and report high accuracy

for CNNs at identifying neurological disorders2,43,56. Could this pattern of high accuracy reflect data leakage,

instead of a robust and generalizable classifier?

When we used subject-based holdout, ensuring that individual subjects’ data did not appear in both

the training and test sets, test accuracy dropped to 53.0% [43.1-64.8%], with 95% confidence intervals that

included chance performance of 50%. Performance remained low throughout the training epochs (Figure 2b).

Compared with subject-based holdout, segment-based holdout significantly overestimates the model perfor-

mance on previously-unseen subjects (Wilcoxon T = 0.0, p = .002).

Identifying segments containing epileptic seizures

In some cases, artificial neural network models have been used to identify time-limited events within ongoing

brain activity, such as epileptic seizures. Does segment-based holdout also lead to data leakage when labeling
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Figure 1: Test-set accuracy of CNN models predicting held-out data, plotted separately for segment-
based holdout and subject-based holdout. (a) Accuracy for models trained to classify Alzheimer’s disease in
individual subjects. Boxes show the inter-quartile range, dark lines show the median, and whiskers extend
to the minimum and maximum points. (b) Accuracy for models trained to identify seizures in segments of
EEG data. Details as in (a).

periods of time within subjects? To answer this question, we trained a CNN to classify segments of EEG

data as containing an epileptic seizure or not.

When the EEG segments were split into training and test sets without considering subject ID, the model

reached a high test-set accuracy of 79.1% [78.8-79.4%] (Figure 1b). Accuracy leveled out within 10 training

epochs (Figure 2c). When individual subjects’ data segments were restricted to appear in only the training

or test set, however, accuracy fell to 65.1% [61.3-69.1%]. Accuracy remained low throughout training epochs

(Figure 2d). Even when the model is tasked with labeling periods of activity within subjects, segment-

based holdout significantly overestimates performance on previously-unseen subjects (Wilcoxon T = 0.0,

p = 0.0001).

Data leakage in published EEG studies

Do published translational EEG studies suffer from subject-specific data leakage, or do they avoid it by

computing their test-set accuracy on held-out subjects? We examined the train-test split strategies in

published studies that attempted to identify a clinical disorder using DNNs with EEG recordings. Out of

the 63 relevant papers we found, only 17 (27.0%) unambiguously avoided this type of data leakage (Figure 3,

Table 1). Leakage of subject-specific information is pervasive in the translational EEG literature.
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Figure 2: Test-set accuracy of CNN models plotted as a function of the training epoch. Grey lines show
accuracy in individual cross-validation folds, and red lines show the average across folds. (a) Accuracy for
models trained to classify Alzheimer’s disease using segment-based holdout. (b) Accuracy for models trained
to classify Alzheimer’s disease using subject-based holdout. (c) Accuracy for models trained to identify
seizures using segment-based holdout. (d) Accuracy for models trained to identify seizures using subject-
based holdout.

Unclear
6.3%

Subjects
27.0%

Both
4.8%

Segments
61.9%

Train-test split

Figure 3: Number of studies using each type of test-split. “Segments”: Segments of EEG data were assigned
to the training and test sets without regard to subject; this approach leads to data leakage. “Subjects”: Each
subject’s data appeared in only the training set or the test set. “Both”: Both the Subjects and Segments
approaches were used in different analyses. “Unclear”: We could not determine which approach was used
for train-test splits.
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Discussion

In EEG studies using deep learning, data leakage can occur when segments of data from the same subjects are

included in both the training and test sets. Here we demonstrate that leakage of subject-specific information

can dramatically overestimate the real-world clinical performance of a DNN classifier. Our Alzheimer’s

CNN classifier appeared to have an accuracy of above 99% when using segment-based holdout, but its true

performance on previously-unseen subjects was indistinguishable from chance. We found this bias in test-set

performance both in a between-subjects task (identifying patients with Alzheimer’s disease) and in a within-

subjects task (identifying segments that contain a seizure). Next, we show that this type of data leakage

appears in the majority of published translational DNN-EEG studies we examined. Together, these results

illustrate how an improperly-designed training-test split can bias the results of DNN studies, and show that

biased results are widespread in the published literature.

To be useful in a clinical setting, a diagnostic classifier must be able to identify a disease in new patients.

Models trained using segment-based holdout, however, strongly overestimate their ability to perform this

task. Instead, these models may learn patterns associated with individual subjects, and then associate those

idiosyncratic patterns with a diagnosis. As a consequence, performance of these models drops precipitously

when they are tested in new subjects. When training a translational DNN classifier, the model must be

tested with subjects who were not included in the training set.

Data leakage when identifying events within subjects

Instead of identifying a disease in each subject, some studies attempt to identify a diseased process in each

segment of time (see Appendix Table 1). DNN models of epilepsy, for example, often aim to classify the

segments of data that contain a seizure. We demonstrated that those studies are not immune to data leakage

in training-test splits: the accuracy in novel subjects is strongly overestimated when the test set includes

subjects who were also in the training set. This result could arise if the model uses different patterns to

identify seizures in each subject.

Subject-specific studies indicate that a bespoke classifier could be trained to identify seizures in each new

patient34,46,47. However, this would require every patient to have a large dataset of recordings that have

already been labeled, which limits the clinical utility of this approach. A more realistic approach is to train

DNN models to identify events in unseen patients.
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Data leakage in other methods

In studies which have only one observation per subject, cross-validation is trivial – single observations are

simply assigned to the training or test set. However, in EEG and many other medical imagining methods,

the data from each subject is routinely split into multiple segments. In this paper, we showed how data

leakage can arise when a long recording is split into multiple shorter segments. However, the same principles

apply to any other method that introduces statistical non-independence between the training and test sets.

For example, some EEG-based DNNs treat every channel independently, and use information from each

channel as a separate observation48. Those studies are likely to suffer from substantial data leakage, since

physiological sources of electrical activity appear redundantly across multiple EEG scalp electrodes50.

These principles also apply to other medical imaging methods. Similar types of data leakage have

been documented in studies using both functional73 and anatomical74 MRI, as well as in optical coherence

tomography (OCT)65.

Conclusion

Data leakage occurs when EEG segments from one subject appear in the both the training and test sets.

As a result, the test set accuracy dramatically overestimates the classifier’s performance in new subjects.

This type of data leakage is common in published studies using DNNs and translational EEG. To accurately

estimate a model’s performance, researchers must ensure that each subject’s data is included in only the

training or the test set, but not both.
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Table 1: Prior translational studies using deep learning with EEG.

Each line in the table describes one published translational study

using a DNN with EEG data. The “Target” column holds the

clinical condition being classified. The “Test split” column shows

the approach used to determine how the data were divided into

training and test sets. “Segments”: Segments of EEG data were

assigned to the training and test sets without regard to subject;

this approach leads to data leakage. “Subjects”: Each subject’s

data appeared in only the training set or the test set. “Both”:

Both the Subjects and Segments approaches were used in different

analyses. “Unclear”: We could not determine which approach was

used for train-test splits.

Article Target Test split

Ahmadi et al. (2021) ADHD Segments

Bakhtyari and Mirzaei (2022) ADHD Segments

Chang et al. (2022) ADHD Subjects

Chen et al. (2019) ADHD Segments

Chen et al. (2019) ADHD Segments

Dubreuil-Vall et al. (2020) ADHD Subjects

Mafi and Radfar (2022) ADHD Segments

Moghaddari et al. (2020) ADHD Segments

TaghiBeyglou et al. (2022) ADHD Subjects

Tosun (2021) ADHD Segments

Vahid et al. (2019) ADHD Subjects

Zhou et al. (2022) ADHD Unclear

Kim et al. (2018) Alcoholism Segments

Bi and Wang (2019) Alzheimer’s Segments

Gkenios et al. (2022) Alzheimer’s Both

Huggins et al. (2021) Alzheimer’s Segments

Ieracitano et al. (2019) Alzheimer’s Both

Kim and Kim (2018) Alzheimer’s Subjects
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Morabito et al. (2016) Alzheimer’s Subjects

You et al. (2020) Alzheimer’s Segments

Zhao and He (2015) Alzheimer’s Segments

Acharya et al. (2018) Depression Segments

Ay et al. (2019) Depression Segments

Kwon et al. (2019) Depression Subjects

Li et al. (2019) Depression Subjects

Li et al. (2020) Depression Subjects

Mumtaz and Qayyum (2019) Depression Segments

Uyulan et al. (2021) Depression Unclear

Xie et al. (2020) Depression Unclear

Zhang et al. (2020) Depression Segments

Khare et al. (2021) Parkinson’s Segments

Lee et al. (2019) Parkinson’s Segments

Loh et al. (2021) Parkinson’s Segments

Oh et al. (2020) Parkinson’s Segments

Shaban (2021) Parkinson’s Segments

Shaban and Amara (2022) Parkinson’s Subjects

Shi et al. (2019) Parkinson’s Subjects

Ahmedt-Aristizabal et al. (2020) Schizophrenia Subjects

Chu et al. (2017) Schizophrenia Segments

Oh et al. (2019) Schizophrenia Both

Shalbaf et al. (2020) Schizophrenia Segments

Acharya et al. (2018) Seizure Segments

Avcu et al. (2019) Seizure Subjects

Choi et al. (2019) Seizure Subjects

Daoud and Bayoumi (2019) Seizure Segments

Emami et al. (2019) Seizure Subjects

Fürbass et al. (2020) Seizure Subjects

Gao et al. (2020) Seizure Segments

Hussein et al. (2019) Seizure Segments

Iešmantas and Alzbutas (2020) Seizure Subjects
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Jana et al. (2020) Seizure Segments

Khan et al. (2017) Seizure Segments

Li et al. (2020) Seizure Segments

Liang et al. (2020) Seizure Segments

Raghu et al. (2020) Seizure Unclear

Rashed-Al-Mahfuz et al. (2021) Seizure Segments

Truong et al. (2018) Seizure Segments

Ullah et al. (2018) Seizure Segments

Wei et al. (2018) Seizure Segments

Wei et al. (2019) Seizure Segments

Zhao et al. (2020) Seizure Segments

Zhou et al. (2018) Seizure Segments

Bouallegue et al. (2020) Seizure and autism Segments
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AD model definition

Listing 1: AD model definition

AD_model = tf.keras.models.Sequential ([

tf.keras.layers.Conv1D(

input_shape = (500, 19),

filters = 5,

kernel_size = (20),

activation = ’relu’,

),

tf.keras.layers.MaxPool1D(pool_size = 2, strides = 2),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Conv1D(

filters = 10,

kernel_size = (10),

activation = ’relu’,

),

tf.keras.layers.MaxPool1D(pool_size = 2, strides = 2),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Conv1D(,

filters = 10,

kernel_size = (10),

activation = ’relu’,

),

tf.keras.layers.MaxPool1D(pool_size = 2, strides = 2),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Conv1D(

filters = 15,

kernel_size = (5),

activation = ’relu’,

),

tf.keras.layers.MaxPool1D(pool_size = 2, strides = 2),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense (20, activation = ’relu’),

tf.keras.layers.Dropout (0.5),

tf.keras.layers.Dense (10, activation = ’relu’),

tf.keras.layers.Dropout (0.5),

tf.keras.layers.Dense(2, activation = ’softmax ’)

])
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Seizure model definition

Listing 2: Seizure model definition

seizure_model = tf.keras.models.Sequential ([

tf.keras.layers.Conv2D(

input_shape = (224, 224, 3),

filters = 32,

kernel_size = 3,

activation = ’relu’,

),

tf.keras.layers.MaxPooling2D(pool_size = 2, strides = 2),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Conv2D(

filters = 32,

kernel_size = 3,

activation = ’relu’,

),

tf.keras.layers.MaxPooling2D(pool_size = 2, strides = 2),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Conv2D(

filters = 64,

kernel_size = 3,

activation = ’relu’,

),

tf.keras.layers.MaxPooling2D(pool_size = 2, strides = 2),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Conv2D(

filters = 64,

kernel_size = 3,

activation = ’relu’,

),

tf.keras.layers.MaxPooling2D(pool_size = 2, strides = 2),

tf.keras.layers.BatchNormalization (),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense (256, activation = ’relu’),

tf.keras.layers.Dense (512, activation = ’relu’),

tf.keras.layers.Dropout (0.5),

tf.keras.layers.Dense(2, activation = ’softmax ’)

])
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Simona Bottani, Didier Dormont, Stanley Durrleman, Ninon Burgos, Olivier Colliot, et al. Convolutional

neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical

Image Analysis, 63:101694, 2020.

[75] Yunlong Xie, Banghua Yang, Xi Lu, Minmin Zheng, Cunxiu Fan, Xiaoying Bi, Yingjie Li, et al. Anxiety

and depression diagnosis method based on brain networks and convolutional neural networks. In 2020

26

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.16.24301366doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.16.24301366
http://creativecommons.org/licenses/by-nd/4.0/


42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),

pages 1503–1506. IEEE, 2020.

[76] Zeng You, Runhao Zeng, Xiaoyong Lan, Huixia Ren, Zhiyang You, Xue Shi, Shipeng Zhao, Yi Guo, Xin

Jiang, and Xiping Hu. Alzheimer’s Disease Classification With a Cascade Neural Network. Frontiers

in Public Health, 8:584387, November 2020. ISSN 2296-2565. doi:10.3389/fpubh.2020.584387. URL

https://www.frontiersin.org/articles/10.3389/fpubh.2020.584387/full.

[77] Xiaowei Zhang, Junlei Li, Kechen Hou, Bin Hu, Jian Shen, and Jing Pan. Eeg-based depression detection

using convolutional neural network with demographic attention mechanism. In 2020 42nd Annual

International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pages 128–

133. IEEE, 2020.

[78] Wei Zhao, Wenbing Zhao, Wenfeng Wang, Xiaolu Jiang, Xiaodong Zhang, Yonghong Peng, Baocan

Zhang, and Guokai Zhang. A novel deep neural network for robust detection of seizures using eeg

signals. Computational and Mathematical Methods in Medicine, 2020, 2020.

[79] Yilu Zhao and Lianghua He. Deep Learning in the EEG Diagnosis of Alzheimer’s Disease. In C.V.

Jawahar and Shiguang Shan, editors, Computer Vision - ACCV 2014 Workshops, Lecture Notes in

Computer Science, pages 340–353, Cham, 2015. Springer International Publishing. ISBN 978-3-319-

16628-5. doi:10.1007/978-3-319-16628-5 25.

[80] Dingfu Zhou, Zhihang Liao, and Rong Chen. Deep learning enabled diagnosis of children’s adhd based

on the big data of video screen long-range eeg. Journal of Healthcare Engineering, 2022, 2022.

[81] Mengni Zhou, Cheng Tian, Rui Cao, Bin Wang, Yan Niu, Ting Hu, Hao Guo, and Jie Xiang. Epileptic

seizure detection based on eeg signals and cnn. Frontiers in Neuroinformatics, 12:95, 2018.

27

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.16.24301366doi: medRxiv preprint 

https://doi.org/10.3389/fpubh.2020.584387
https://www.frontiersin.org/articles/10.3389/fpubh.2020.584387/full
https://doi.org/10.1007/978-3-319-16628-5_25
https://doi.org/10.1101/2024.01.16.24301366
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Methods
	Deep neural network analysis overview
	Experiment 1: Alzheimer's disease diagnosis
	EEG data
	Architecture
	Training

	Experiment 2: seizure detection
	EEG data
	Architecture
	Training

	Cross-validation
	Segment-based holdout
	Subject-based holdout

	Literature review

	Results
	Data leakage leads to biased test-set accuracy
	Identifying patients with Alzheimer's disease
	Identifying segments containing epileptic seizures

	Data leakage in published EEG studies

	Discussion
	Data leakage when identifying events within subjects
	Data leakage in other methods
	Conclusion

	Acknowledgements
	Conflict of interest
	Appendix
	AD model definition
	Seizure model definition

