1 Article type: Original Article

- 2 Title: Assessing the Incidence of Postoperative Diabetes in Gastric Cancer
- 3 Patients: A Comparative Study of Roux-en-Y Gastrectomy and Other Surgical
- 4 **Reconstruction Techniques**
- 5 Onishi Tatsuki^{1,2*}
- ⁶ ¹Data Science and AI Innovation Research Promotion Center, Shiga University, Hikone,
- 7 Shiga, Japan
- ⁸ ²Department of Anesthesia, Juntendo University Shizuoka Hospital, Izunokuni,
- 9 Shizuoka, Japan
- 10

11

- 12 *Corresponding author:
- 13 Onishi Tatsuki
- 14 Email: tatsuki-onishi@biwako.shiga-u.ac.jp
- 15
- 16 Running title: Postoperative Diabetes in Gastric Cancer Patients
- 17

18 Acknowledgements

19 Tatsuyoshi Ikenoue at Shiga University, Data Science and AI Innovation Research

20 Promotion Center

21

22 Abstract

- 23 **Study objective**: Sleeve gastrectomy is effective in morbid obesity, and it improves
- 24 glucose homeostasis. In gastric cancer patients with type 2 diabetes mellitus,
- 25 gastrectomy, including total gastrectomy (TG), is beneficial for glycaemic control.
- 26 However, the effects of gastrectomy and different reconstructive techniques on the
- 27 incidence of postoperative diabetes in gastric cancer patients are unclear. This study
- investigated the development of new-onset diabetes in these patients, focusing on
- 29 different reconstruction methods.
- 30 **Design**: A comparative study
- 31 Setting: Electrical medical records
- 32 **Patients**: This study included 715 patients without diabetes who underwent TG at
- Tokyo Metropolitan Bokutoh Hospital between August 2005 and March 2019.
- 34 Interventions: Patients underwent reconstruction by Roux-en-Y (RY) or other surgical
- techniques (OT), with diabetes onset determined by HbA1c levels or medical records.
- 36 Measurements: Analyses included two-sample t-tests, chi-squared tests, and the

37 Kaplan-Meier method with log-rank tests to compare the onset curves between the two38 groups.

39	Main Results: Stratified data analysis compared the RY and OT reconstruction methods.
40	Log-rank test results (P=0.0217) indicated a statistically significant difference in the
41	incidence of new-onset diabetes between RY and OT groups in gastric cancer patients.
42	Conclusion: This first-of-its-kind study provides insight into how different methods of
43	gastric reconstruction affect postoperative diabetes. The results suggest significant
44	differences in new-onset diabetes mellitus after surgery based on the reconstruction
45	method. This research highlights the need for careful surgical planning to consider
46	potential postoperative diabetes, particularly in patients with a family history of diabetes
47	mellitus. Future studies should investigate the role of gut microbiota and other
48	reconstructive techniques, such as laparoscopic jejunal interposition, in developing
49	postoperative diabetes.
50	
51	Keywords: Diabetes mellitus, gastrectomy, gastric cancer surgery, glucose metabolism,
52	postoperative diabetes onset, surgery outcomes

53

54 **1. Introduction**

55	Gastrectomy, particularly sleeve gastrectomy (SG), has been shown to be an
56	effective surgical option for morbid obesity due to its low complication rates and
57	significant weight loss results [1–5]. SG results in alteration of the appetite through the
58	regulation of gut hormones, resulting in decreased hunger and increased satiety [6]. SG
59	also improves glucose homeostasis through resulting changes in gut hormone levels [7].
60	Specifically, laparoscopic SG results in significant improvement in glucose metabolism
61	in morbidly obese patients and has been found to stop the development of diabetes at a
62	high rate [8]. SG has been shown to improve blood glucose independently of weight
63	loss by restoring hepatic insulin sensitivity [9]. However, the effects of gastrectomy on
64	non-obese patients with type 2 diabetes are less clear, with some studies suggesting that
65	gastrectomy may improve diabetic status [10].
66	In patients with gastric cancer diagnosed with type 2 diabetes mellitus (T2DM),
67	gastrectomy has been found to have a positive impact on their glycemic control.
68	Improvements in glycemic control, or even diabetes remission, have been reported after
69	gastrectomy [10-15]. The extent of the gastrectomy, duration of diabetes, and method of
70	reconstruction have been identified as important factors influencing the improvements
71	in glycemic control [10–14]. Although the mechanisms underlying these effects are not
72	fully understood, oncometabolic surgeries, including gastrectomy, have been suggested

as a potential treatment for T2DM in patients with gastric cancer [16].

74	Studies have shown that total gastrectomy (TG) is associated with improved
75	glucose metabolism in patients with gastric cancer, resulting in a lower rate of newly
76	diagnosed diabetes after surgery [22]. However, the effects of gastrectomy on glucose
77	metabolism in diabetic and non-diabetic patients have been inconsistent, with some
78	studies reporting significant reductions in fasting blood glucose levels after gastrectomy
79	[23]. Furthermore, SG has been associated with significant reductions in HbA1c levels
80	in non-diabetic patients, suggesting its possible role in the prevention of type 2 diabetes
81	[24].
82	In terms of reconstruction after partial gastrectomy in patients with gastric
83	cancer, both Roux-en-Y and Billroth II reconstructions have been considered acceptable
84	options [17]. Roux-en-Y reconstruction is often preferred for gastric cancer patients,
85	given that this procedure can lead to decreased reflux gastritis and esophagitis,
86	decreased probability of cancer recurrence, and decreased incidence of surgical
87	complications [18]. Roux-en-Y reconstruction has also been found to be as effective as
88	other methods with respect to nutritional status and postoperative outcomes [19]. In
89	comparison to Billroth II reconstruction, Roux-en-Y has been shown to have similar
90	postoperative complications and better long-term outcomes [20]. Furthermore,

91 Roux-en-Y reconstruction without cutting has been the preferred method in cases of

92	gastritis, bile reflux, and gastric residuals [21].
93	Various studies have examined the impact of different reconstructive
94	procedures on postoperative complications in gastric cancer patients. It has been found
95	that long-limb Roux-en-Y bypass reconstruction could lead to improved glycemic
96	control [25], and it has been observed that pre-existing diabetes is associated with
97	postoperative complications [10, 26]. Several studies further support the benefits of
98	Roux-en-Y reconstruction, with some indicating it to be more effective than Billroth II
99	reconstruction [27, 28]. Additionally, significant improvements in diabetes control have
100	been associated with Roux-en-Y reconstruction [25, 28].
101	Given these, the aim of this research was to investigate the incidence of
102	new-onset diabetes in patients with gastric cancer after surgery and how this incidence
103	varies with different types of surgical reconstruction, namely, the Roux-en-Y procedure
104	and other alternative reconstruction techniques. While studies have investigated how
105	surgical treatment for gastric cancer affects existing diabetes [25, 28], none have
106	investigated the development of new-onset diabetes in patients without diabetes; to the
107	best of our knowledge, this is the very first study to do so. Findings from this study
108	could contribute valuable insights into the postoperative outcomes associated with

109	different gastric reconstruction techniques. Such insights are vital for guiding clinical
110	decisions and optimizing patient care, particularly in the context of mitigating the risk
111	of developing diabetes after gastric surgery. Moreover, findings from this study are
112	expected to have significant implications for both clinical practice and future research in
113	the field of gastric surgery and diabetes prevention.
114	
115	2. Materials and Methods
116	2.1 Study participants
117	A total of 715 patients who underwent TG as the definitive procedure and as a
118	standby procedure at the Tokyo Metropolitan Bokutoh Hospital between August 2005
119	and March 2019 and were not diagnosed with diabetes at the time of surgery were
120	included in the study (Table 1). The study was approved by the institution's ethics
121	committee (30-110) and conducted in accordance with the Declaration of Helsinki.
122	
123	2.2 Methods
124	Whether the patients would undergo reconstruction through Roux-en-Y (RY) or
125	other surgical techniques (OT) was chosen based on previous studies, and the patients
126	were grouped accordingly. The definite onset of diabetes in the patients was considered

127	based on the previous electronic medical records or when their HbA1c value was
128	greater than 6.5 based on laboratory testing. The competing outcome was death. After a
129	meticulous data curation process using Python 3.10 that corrects for missing values,
130	manages outliers, and ensures appropriate data types, we obtained a data set that was
131	optimized for analysis and free of common data inconsistencies.
132	Furthermore, basic statistical measures such as the mean, median, and standard
133	deviation were computed using Python 3.10. Two sample t-test and Chi-squared test for
134	variables in characteristics were used to assess the difference in demographics of the
135	two groups using Python 3.10. In addition, the Kaplan-Meier method was employed to
136	estimate the onset function from the time-event data present and was augmented with
137	log-rank tests to help compare the onset curves between the RY and OT groups using
138	Python 3.10.
139	
140	3. Results
141	The characteristics of the patients included in the study at the time of the
142	surgery are shown in Table 1.
143	In the present study, following rigorous data pre-processing, a Kaplan–Meier

144 onset curve was constructed to estimate the function delineating the interval between the

145	total gastrectomy and the subsequent emergence of new-onset diabetes postoperatively
146	(Fig. 1). This nonparametric approach provides a survival function, articulated as a step
147	function, which quantifies the probability of patients remaining free from diabetes up to
148	a specific time point following surgery.
149	The analytical framework was further refined by stratifying the data to draw
150	comparisons between the two types of reconstruction methods applied, the RY and OT.
151	This stratification was imperative for a granular comparison of the incidence rates of
152	postoperative diabetes associated with these distinct reconstructive procedures.
153	Kaplan-Meier curves were employed for each stratified group, offering a visual
154	representation of the temporal pattern of diabetes onset post-surgery corresponding to
155	each surgical technique. The rate of diabetes onset was inferred from the slope of these
156	curves, with a steeper decline indicating a higher incidence within the respective group.
157	To statistically ascertain the significance of the disparities observed in the
158	incidence curves between the groups, a log-rank test was conducted. The resultant
159	P-value from this log-rank test was found to be 0.0217, which denotes a statistically
160	significant difference in the incidence of new-onset diabetes post-surgery between those
161	who underwent RY and those subjected to OT in patients with gastric cancer. These
162	findings indicate a difference in the incidence of postoperative diabetes based on the

type of gastric reconstruction method employed.

4. Discussion

166	This study is the first to provide insights into how different methods of gastric
167	reconstruction might affect the risk of developing postoperative diabetes. This analysis
168	is important for understanding the temporal dynamics of diabetes development after
169	gastric surgery and has significant implications for surgical planning and patient
170	management to prevent postoperative diabetes. A thorough approach to data
171	pre-processing and the use of robust statistical methods will ensure the reliability and
172	validity of these findings in the wider context of gastric surgery and diabetes research.
173	Although the results of this study show that RY is associated with a higher
174	incidence of new-onset postoperative diabetes compared with OT, these data could be
175	improved by comparison with a population that has not undergone total gastrectomy as
176	a control. Nevertheless, the finding that new-onset diabetes mellitus after surgery differs
177	according to the method of gastric cancer reconstruction should be an important
178	consideration in surgical selection, especially in cases with a strong family history of
179	diabetes mellitus.
180	Surgery for gastric cancer, particularly gastrectomy, has been shown to

181	significantly alter the gut microbiota, leading to dysbiosis characterized by changes in
182	bacterial content and gene function [31, 32]. This dysbiosis is associated with intestinal
183	inflammation, overgrowth of small intestinal bacteria and an increased risk of colorectal
184	cancer [32]. Specific changes in the gut microbiota after surgery include increased
185	species richness, decreased butyrate-producing bacteria, and enrichment of certain
186	symbiotic bacteria [33]. The abundance of specific gut bacterial genera has been found
187	to correlate with the population of peripheral immune cells [33-35].
188	This study did not include an assessment of other determinants that could
189	potentially influence the development of diabetes mellitus, including lifestyle choices
190	and genetic predisposition. It is plausible that there may be a difference in the intrinsic
191	characteristics of diabetes mellitus in patients who present with diabetic symptoms prior
192	to undergoing surgery for gastric cancer, as opposed to those in whom the onset of
193	gastric malignancy precedes the development of diabetes mellitus. Such considerations
194	were beyond the scope of analysis within the parameters of the current study.
195	Similarly, laparoscopic jejunal interposition (LJIP) reconstruction, a surgical
196	technique used to treat gastric cancer in which a pouch is created in the jejunum and
197	used to reconstruct the upper gastrointestinal tract, may be appropriate for patients with
198	impaired glucose tolerance [36]. Studies have shown that LJIP reconstruction leads to

199	better postoperative outcomes, including improved quality of life and nutritional status,
200	compared with other reconstruction methods, such as double tract reconstruction
201	[36-39]. The procedure has also been successfully performed laparoscopically with
202	promising results in terms of operative time, blood loss and postoperative recovery [40,
203	41].
204	In this study, LJIP reconstruction was not performed at the institution, and it
205	was not possible to study the gut microbiota. With access to a suitable dataset, we would
206	like to investigate the association between gut microbiota and the development of
207	new-onset diabetes after surgery further based on different reconstructive methods,
208	including LJIP reconstruction.
209	
210	Acknowledgements
211	Tatsuyoshi Ikenoue at Shiga University, Data Science and AI Innovation Research

- 212 Promotion Center for proof reading, Yoshika Onishi at Wellbeing Keiei LLC for proof
- 213 reading

- 215 Funding
- 216 No funding

217 Data availability statement

- 218 Data is available upon request to the corresponding author. Codes have been uploaded
- 219 here https://github.com/bougtoir/gastric_dm
- 220

221 Conflict of Interests

- 222 The authors declare no conflict of interest.
- 223

224 Author contributions

- 225 O.T.: conceptualization, writing original draft, data curation, visualization, and final
- approval of the manuscript.
- 227

228 **References**

- 1. Gumbs AA, Gagner M, Dakin G, Pomp A. Sleeve gastrectomy for morbid obesity.
- 230 Obes Surg. 2007;17(7):962–9. doi:10.1007/s11695-007-9151-x
- 231 2. Huang R, Ding X, Fu H, Cai Q. Potential mechanisms of sleeve gastrectomy for
- reducing weight and improving metabolism in patients with obesity. Surg Obes
- 233 Relat Dis. 2019;15(10):1861-71. doi:10.1016/j.soard.2019.06.022

234	3.	Butte JM	Devaud N.	Jarufe NP	Boza C.	Pérez G.	Torres J.	Pérez-Av	vuso RM.

- 235 Arrese M, Martínez J. Sleeve gastrectomy as treatment for severe obesity after
- orthotopic liver transplantation. Obes Surg. 2007;17(11):1517-9.
- 237 doi:10.1007/s11695-008-9432-z.
- 4. Rawlins L, Rawlins MP, Brown CC, Schumacher DL. Sleeve gastrectomy: 5-year
- outcomes of a single institution. Surg Obes Relat Dis. 2013;9(1):21-5.
- 240 doi:10.1016/j.soard.2012.08.014
- 5. Armstrong J, O'Malley SP. Outcomes of sleeve gastrectomy for morbid obesity: a
- safe and effective procedure?. Int J Surg. 2010;8(1):69-71.
- 243 doi:10.1016/j.ijsu.2009.11.004
- 6. Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and
- bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2(2):152-64.
- 246 doi:10.1016/S2213-8587(13)70218-3.
- 247 7. Papamargaritis D, et al. Mechanisms of weight loss after sleeve gastrectomy and
- adjustable gastric banding: Malabsorption versus restriction. Surg Obes Relat Dis.
- 249 2012. doi:10.1016/j.soard.2011.09.033
- 8. Natoudi M, et al. Laparoscopic sleeve gastrectomy for morbid obesity: 5-year
- 251 results. Surg Obes Relat Dis. 2013. doi:10.1016/j.soard.2012.09.006

252	9. Abu-Gazala S, Horwitz E, Ben-Haroush Schyr R, Bardugo A, Israeli H, Hija A,
253	Schug J, Shin S, Dor Y, Kaestner KH, Ben-Zvi D. Sleeve Gastrectomy Improves
254	Glycemia Independent of Weight Loss by Restoring Hepatic Insulin Sensitivity.
255	Diabetes. 2018;67(6):1079-85. doi:10.2337/db17-1028
256	10. Kang KC, et al. Influence of gastric bypass surgery on resting energy expenditure in
257	morbidly obese patients. Surg Obes Relat Dis. 2012.
258	doi:10.1016/j.soard.2011.06.019
259	11. Rahakrishnan L, Haridas TV. The effect on glycemic status in type 2 diabetes
260	mellitus after gastric cancer surgery. Int Surg J. 2021.
261	doi:10.18203/2349-2902.isj20205880
262	12. An JY, Kim YM, Yun MA, Jeon BH, Noh SH. Improvement of type 2 diabetes
263	mellitus after gastric cancer surgery: short-term outcome analysis after gastrectomy.
264	World J Gastroenterol. 2013;19(48):9410-7. doi:10.3748/wjg.v19.i48.9410
265	13. Lee YK, Lee EK, Lee YJ, et al. Metabolic Effects of Gastrectomy and Duodenal
266	Bypass in Early Gastric Cancer Patients with T2DM: A Prospective Single-Center
267	Cohort Study. J Clin Med. 2021;10(17):4008. doi:10.3390/jcm10174008
268	14. Guner A, Cho M, Son T, Kim HI, Noh SH, Hyung WJ. Improved glycemic control

269 with proximal intestinal bypass and weight loss following gastrectomy in non-obese

diabetic gastric cancer patients. Oncotarget. 2017;8(61):104605-14.

270

271	doi:10.18632/oncotarget.22262
272	15. Wei FX, Zhang HH, Wang HL, et al. Impact of sub-gastrectomy on glucose
273	regulation in gastric cancer patients with T2DM: a follow-up study. Int J Diabetes
274	Dev Ctries. 2016;36(1):89-94. doi:10.1007/s13410-015-0437-6
275	16. Cheng YX, Peng D, Tao W, Zhang W. Effect of oncometabolic surgery on gastric
276	cancer: The remission of hypertension, type 2 diabetes mellitus, and beyond. World
277	J Gastrointest Oncol. 2021;13(9):1157-63. doi:10.4251/wjgo.v13.i9.1157
278	17. Ho TW, Wu JM, Yang CY, Lai HS, Lai F, Tien YW. Total gastrectomy improves
279	glucose metabolism on gastric cancer patients: a nationwide population-based study.
280	Surg Obes Relat Dis. 2015;12(3):635-41. doi:10.1016/j.soard.2015.11.024
281	18. Jin HY, Park TS, Lee KA, Baek YH. The influence of total or sub-total gastrectomy
282	on glucose control in diabetic and non-diabetic patients. Acta Endocrinol.
283	2016;12(4):423-30. doi:10.4183/aeb.2016.423
284	19. Özdaş S, Olt S, Şirik M. The role of sleeve gastrectomy on preventing type 2
285	diabetes mellitus. Open Access Maced J Med Sci. 2017;5(3):316-8.
286	doi:10.3889/oamjms.2017.074

- 287 20. Tran TB, Worhunsky DJ, Squires MH, et al. To Roux or not to Roux: a comparison
- between Roux-en-Y and Billroth II reconstruction following partial gastrectomy for
- 289 gastric cancer. Gastric Cancer. 2016;19(3):994-1001.
- 290 doi:10.1007/s10120-015-0547-3
- 291 21. Hoya Y, Mitsumori N, Yanaga K. The advantages and disadvantages of a Roux-en-Y
- reconstruction after a distal gastrectomy for gastric cancer. Surg Today.
- 293 2009;39(8):647–51. doi:10.1007/s00595-009-3964-2
- 294 22. Bozzetti F, Bonfanti G, Castellani R, et al. Comparing reconstruction with
- 295 Roux-en-Y to a pouch following total gastrectomy. J Am Coll Surg.
- **1996;183(3):243-8**.
- 297 23. He L, Zhao Y. Is Roux-en-Y or Billroth-II reconstruction the preferred choice for
- 298 gastric cancer patients undergoing distal gastrectomy when Billroth I reconstruction
- is not applicable? A meta-analysis. Medicine. 2019;98(48):e17093.
- 300 doi:10.1097/MD.000000000017093
- 301 24. Park JY, Kim YJ. Uncut Roux-en-Y Reconstruction after Laparoscopic Distal
- 302 Gastrectomy Can Be a Favorable Method in Terms of Gastritis, Bile Reflux, and
- 303 Gastric Residue. J Gastric Cancer. 2014;14(4):229–37.
- 304 doi:10.5230/jgc.2014.14.4.229

305	25. Kim JH, Huh YJ, Park S, et al. Multicenter results of long-limb bypass
306	reconstruction after gastrectomy in patients with gastric cancer and type II diabetes.
307	Asian J Surg. 2020;43(1):297-303. doi:10.1016/j.asjsur.2019.03.018
308	26. Wei ZW, Li JL, Wu Y, et al. Impact of pre-existing type-2 diabetes on patient
309	outcomes after radical resection for gastric cancer: a retrospective cohort study. Dig
310	Dis Sci. 2014;59(5):1017-24. doi:10.1007/s10620-013-2965-6
311	27. Yun L, Zhiwei J, Junsheng P, Xiaobin W, Cancan X, Jieshou L. Comparison of
312	Functional Outcomes between Functional Jejunal Interposition and Conventional
313	Roux-en-Y Esophagojejunostomy after Total Gastrectomy for Gastric Cancer. Dig
314	Surg. 2020;37(3):240-8. doi:10.1159/000501677
315	28. Kwon Y, Jung Kim H, Lo Menzo E, Park S, Szomstein S, Rosenthal RJ. A
316	systematic review and meta-analysis of the effect of Billroth reconstruction on type
317	2 diabetes: A new perspective on old surgical methods. Surg Obes Relat Dis.
318	2015;11(6):1386-95. doi:10.1016/j.soard.2015.01.001
319	29. An JY, Kim YM, Yun MA, Jeon BH, Noh SH. Improvement of type 2 diabetes
320	mellitus after gastric cancer surgery: short-term outcome analysis after gastrectomy.
321	World J Gastroenterol. 2013;19(48):9410-7. doi:10.3748/wjg.v19.i48.9410

322	30. Costa M,	Trovão Lima A,	Morais T	, et al.	Does	Reconstruction	Type After	Gastric
-----	--------------	----------------	----------	----------	------	----------------	------------	---------

- 323 Resection Matters for Type 2 Diabetes Improvement?. J Gastrointest Surg.
- 324 2020;24(6):1269-77. doi:10.1007/s11605-019-04255-4
- 325 31. Maksimaityte V, et al. Gastrectomy impact on the course of diabetes mellitus and
- gut hormones. Surg Obes Relat Dis. 2021. doi:10.1016/j.soard.2020.08.031
- 327 32. Tseng CH, Lin JT, Ho HJ, et al. Gastric microbiota and predicted gene functions are
- 328 altered after subtotal gastrectomy in patients with gastric cancer. Sci Rep.
- 329 2016;6:20701. doi:10.1038/srep20701
- 330 33. Qi YF, Sun JN, Ren LF, et al. Intestinal Microbiota Is Altered in Patients with
- 331 Gastric Cancer from Shanxi Province, China. Dig Dis Sci. 2019;64(5):1193-203.
- 332 doi:10.1007/s10620-018-5411-y
- 333 34. Lederer AK, Pisarski P, Kousoulas L, Fichtner-Feigl S, Hess C, Huber R.
- Postoperative changes of the microbiome: are surgical complications related to the
- 335 gut flora? A systematic review. BMC Surg. 2017;17(1):125.
- 336 doi:10.1186/s12893-017-0325-8
- 337 35. Guyton K, Alverdy JC. The gut microbiota and gastrointestinal surgery. Nat Rev
- 338 Gastroenterol Hepatol. 2017;14(1):43–54. doi:10.1038/nrgastro.2016.139

339	36. Nomura E, Lee SW, Kaw	ai M, et al. Functional	outcomes by reconstruction

- 340 technique following laparoscopic proximal gastrectomy for gastric cancer: double
- tract versus jejunal interposition. World J Surg Oncol. 2014;12:20.
- 342 doi:10.1186/1477-7819-12-20
- 343 37. Nomura E, Kayano H, Lee SW, et al. Functional evaluations comparing the
- double-tract method and the jejunal interposition method following laparoscopic
- ³⁴⁵ proximal gastrectomy for gastric cancer: an investigation including laparoscopic
- total gastrectomy. Surg Today. 2019;49(1):38-48. doi:10.1007/s00595-018-1699-7
- 347 38. Namikawa T, Munekage E, Munekage M, et al. Reconstruction with Jejunal Pouch

after Gastrectomy for Gastric Cancer. Am Surg. 2016;82(6):510-7.

- 349 39. Namikawa T, Oki T, Kitagawa H, Okabayashi T, Kobayashi M, Hanazaki K. Impact
- 350 of jejunal pouch interposition reconstruction after proximal gastrectomy for early
- 351 gastric cancer on quality of life: short- and long-term consequences. Am J Surg.
- 352 2012;204(2):203-9. doi:10.1016/j.amjsurg.2011.09.035
- 40. Mochiki E, Kamimura H, Haga N, Asao T, Kuwano H. The technique of
- ³⁵⁴ laparoscopically assisted total gastrectomy with jejunal interposition for early
- 355 gastric cancer. Surg Endosc. 2002;16(3):540-4. doi:10.1007/s00464-001-8219-2

356	41.	Takaori K	, Nomura E	, Mabuchi H	, et al. A secure	technique	e of intracorpor	real

- 357 Roux-Y reconstruction after laparoscopic distal gastrectomy. Am J Surg.
- 358 2005;189(2):178-83. doi:10.1016/j.amjsurg.2004.09.008
- 359

360 Figure Legends

- 361 Figure 1: Kaplan-Mayer curve of new onset of DM in RY and OT group
- 362 RY, Roux-en-Y; OT, other surgical techniques.
- 363

364 **Tables**

		RY	ОТ	<i>P</i> -value
Number of cases		489	226	
Age (SD)		68.1 (10.6)	70.0 (10.4)	0.031
Male		363 (74.2%)	139 (61.5%)	
Height in cm (SD)		160.6 (8.6)	157.9 (10.8)	0.001
Weight in kg (SD)		57.1 (11.1)	56.9 (14.8)	0.865
BMI in kg/m ^{2} (SD)		22.1 (3.4)	24.6 (3.2)	0.246
ASA score	1	27 (5.5%)	21 (9.3%)	

365 **Table 1.** Demographics of the study population

2	384 (78.5%)	167 (73.9%)
3	77 (15.7%)	34 (15.0%)
4	1 (0.2%)	4 (1.8%)

366 SD, standard deviation; BMI, body mass index; ASA, American Society of

367 Anesthesiology; RY, Roux-en-Y; OT, other surgical techniques.

Figure 1: Kaplan-Mayer curve of newly onset of DM in RY and OT group RY, Roux-en-Y; OT, other surgical techniques.