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Abstract 1 

Background and Aims 2 

Artificial intelligence-enhanced electrocardiograms (AI-ECG) can be used to predict 3 

risk of future disease and mortality but has not yet been adopted into clinical practice. 4 

Existing model predictions lack actionability at an individual patient level, 5 

explainability and biological plausibility. We sought to address these limitations of 6 

previous AI-ECG approaches by developing the AI-ECG risk estimator (AIRE) 7 

platform.  8 

Methods and Results 9 

The AIRE platform was developed in a secondary care dataset of 1,163,401 ECGs 10 

from 189,539 patients, using deep learning with a discrete-time survival model to 11 

create a subject-specific survival curve using a single ECG. Therefore, AIRE predicts 12 

not only risk of mortality, but time-to-mortality. AIRE was validated in five diverse, 13 

transnational cohorts from the USA, Brazil and the UK, including volunteers, primary 14 

care and secondary care subjects. AIRE accurately predicts risk of all-cause mortality 15 

(C-index 0.775 (0.773-0.776)), cardiovascular (CV) death 0.832 (0.831-0.834), non-16 

CV death (0.749 (0.747-0.751)), future ventricular arrhythmia (0.760 (0.756-0.763)), 17 

future atherosclerotic cardiovascular disease (0.696 (0.694-0.698)) and future heart 18 

failure (0.787 (0.785-0.889))). Through phenome- and genome-wide association 19 

studies, we identified candidate biological pathways for the prediction of increased 20 

risk, including changes in cardiac structure and function, and genes associated with 21 

cardiac structure, biological aging and metabolic syndrome.  22 
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Conclusion 1 

AIRE is an actionable, explainable and biologically plausible AI-ECG risk estimation 2 

platform that has the potential for use worldwide across a wide range of clinical 3 

contexts for short- and long-term risk estimation. 4 

 5 
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Introduction 1 

The electrocardiogram (ECG) has been a fundamental tool in clinical medicine for 2 

over a century. With the recent advent of artificial intelligence (AI), and in particular 3 

deep learning, the potential applications of the ECG have significantly expanded, 4 

including both diagnostic and predictive capabilities (1-3). A major advantage of the 5 

deep learning approach is the ability to extract features relevant to the specific task, 6 

without anchoring on prior human beliefs. Recent studies have demonstrated the 7 

remarkable predictive capabilities of AI-ECG models, not only in terms of predicting 8 

mortality, but also future cardiac diseases (4-7). Novel AI-ECG biomarkers, such as 9 

AI-ECG predicted age and BMI (8, 9), have also been shown to be capable of 10 

capturing information on future risk.  11 

 12 

However, although many of these existing risk prediction models have good 13 

performance metrics, they have not been integrated into routine clinical care. Existing 14 

mortality prediction models are limited by prediction of survival at a small number of 15 

set time points, rather than providing an individualised survival prediction over time. 16 

Just as the Cox proportional hazards model is superior to logistic regression when 17 

time-to-event information is available (10), survival-based deep learning may 18 

outperform classification-based approaches.  19 

 20 

Another key limitation of existing models is the lack of information for clinicians on 21 

specific actionable pathways. A high-risk prediction is unhelpful to a clinician if there 22 

is no accompanying information on how to affect the survival trajectory of their 23 

patient. To make AI-ECG predictions more actionable, it is essential to consider not 24 
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only time-to-event predictions, but also specific predictions for diseases with 1 

established preventive and disease modifying treatments.  2 

 3 

Furthermore, the adoption of AI into clinical practice is significantly limited by 4 

concerns regarding explainability and biological plausibility. Just as knowledge of the 5 

mechanisms of action of drugs are important for physicians to have confidence in 6 

their application, biological plausibility of AI predictions ensures their credibility and 7 

acceptance.  8 

 9 

To address these limitations of existing risk prediction models, we aimed to develop 10 

and perform transnational validation on an AI-ECG risk prediction platform that is not 11 

only accurate, but also actionable, explainable, and biologically plausible. 12 

13 
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1 

Methods 2 

In this study we first developed the AI-ECG risk estimation (AIRE) model for 3 

prediction of all-cause mortality. We subsequently developed seven additional 4 

submodels. The eight models together are referred to as the AIRE platform. A 5 

model development and validation flow chart is shown in Figure 1.  6 

 7 

Ethical approvals 8 

This study complies with all relevant ethical regulations, further details are provided 9 

in the Supplementary Methods.  10 

 11 

Cohorts 12 

We studied five cohorts, briefly the Beth Israel Deaconess Medical Center (BIDMC) 13 

cohort is a secondary care dataset comprised of routinely collected data from, 14 

Boston, USA.  The São Paulo-Minas Gerais Tropical Medicine Research Center 15 

(SaMi-Trop) is a cohort of patients with chronic Chagas cardiomyopathy (11). The 16 

Clinical Outcomes in Digital Electrocardiography (CODE) cohort is a Brazilian 17 

database of ECGs recorded in primary care (8) containing ECGs of both 10s and 7s 18 

duration. The subset of this dataset with only 10s ECGs is referred to as CODE-10s. 19 

The Longitudinal Study of Adult Health (ELSA-Brasil) cohort consists of Brazilian 20 

public servants (12). The UK Biobank (UKB) is longitudinal study of volunteers (13). 21 

Further details are provided in the Supplementary Methods.  22 

 23 

 24 

 25 
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ECG pre-processing 1 

12-lead ECGs were pre-processed with a bandpass filter 0.5 to 100Hz, a notch filter 2 

at 60Hz and re-sampling to 400Hz. Zero padding was added to make the input shape 3 

a power of 2. This resulted in 4096 samples for each lead for a 10s recording (4000 4 

samples + 48 zeros at the start and end), that was used as input to the neural 5 

network model. As leads III, aVL, aVR, aVF are linear combinations of leads I and II, 6 

these leads were not used for model development or evaluation. Therefore, the final 7 

input shape of a single ECG was 4096 x 8.  8 

 9 

AI-ECG risk estimation platform development 10 

We developed the AIRE platform using the BIDMC cohort as the derivation dataset. 11 

The data was split at a ratio of 50/10/40% for training, validation and internal test, 12 

respectively. For mortality end-points, ECGs without paired life status at 30 days 13 

were excluded. Data was split by patient ID stratified by presence of ECGs with 14 

paired 5-year life status. To prevent data leakage, a single subject could have ECGs 15 

assigned to only one of training/validation/testing datasets. We used a previously 16 

described convolutional neural network architecture based on residual blocks (14) 17 

and adapted the final layer to accommodate a discrete-time survival model (15). The 18 

discrete-time survival approach allows the model to account for both time to outcome 19 

(mortality) and censorship (i.e., loss to follow up). Unlike other models trained to 20 

predict mortality at one, or a small number of time points, our model predicts 21 

outcomes at numerous timepoints up to 10 years and accounts for right censored 22 

data during model training.  23 

 24 
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9 

The lead I model, AIRE-1L, was developed using the same methodology above, 1 

using the same BIDMC data split but using just lead I as the model input. The 2 

Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 3 

Diagnosis Checklist for Prediction Model Development and Validation was followed 4 

(16).  5 

 6 

Model fine-tuning for primary care population 7 

Using the CODE dataset, we finetuned the model to be more representative of a 8 

primary care population (AIRE-primary care) with a much lower risk of adverse 9 

events. We used 75% of the CODE dataset for finetuning, with 5 % as a validation 10 

set. The final 20% was used for internal validation of AIRE-primary care.  11 

 12 

Model fine-tuning for other endpoints 13 

We also developed five other subsequent models by fine-tuning the AIRE model 14 

separately for cardiovascular (CV) death, non-CV death, ventricular arrhythmia (VA), 15 

atherosclerotic cardiovascular disease (ASCVD) and heart failure (HF) in the BIDMC 16 

dataset. These models were named AIRE-CV death, AIRE-NCV death, AIRE-VA, 17 

AIRE-ASCVD and AIRE-HF respectively. The same splits were used as for training 18 

the original model. Fine-tuning was performed by loading the previous model and 19 

training using a low learning rate without freezing any layers. Internal validation and 20 

external validation datasets are shown in Figure 1.  21 

 22 

For non-mortality endpoints (ASCVD, VA, HF), subjects were coded as having 23 

prevalent disease, future disease or neither at the time of the ECG. Although the goal 24 

of these models was to predict future events, we hypothesised that information on 25 
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10 

prevalent disease would be helpful for model training. In order to include prevalent 1 

disease in the discrete-time survival model, we encoded prevalent disease at the first 2 

timepoint in the discrete-time survival labels. When evaluating model performance, 3 

subjects with prevalent disease were excluded.  4 

 5 

Comparison of AIRE with other models 6 

We compared AIRE and AIRE-primary care to the previously described AI-ECG 7 

predicted age (8). AI-ECG predicted age values are publicly available for CODE15 8 

and SaMi-Trop. The remaining 85% of CODE was used to develop the AI-ECG age 9 

model, and therefore was not used. For ELSA-Brasil, the model weights were 10 

downloaded (17) and used to derive AI-ECG predicted age values.   11 

 12 

We also compared AIRE-primary care and AIRE-ASCVD to the recently described 13 

SEER (Stanford Estimator of ECG Risk), which had a similar goal of predicting 14 

cardiovascular mortality and ASCVD (7). The model code and weights were 15 

downloaded (18) and performance evaluated in the UKB, as this was a dataset 16 

external to AIRE-primary care, AIRE-ASCVD and SEER, with cause of death and 17 

ASCVD event data available. 18 

 19 

Survival and statistical analyses 20 

In the test set, we generated predictions of all ECGs for the primary analyses of all-21 

cause mortality. Sensitivity analyses including a single random ECG per subject were 22 

also performed. Model performance was reported using the C-index, and time-23 

dependent AUROC. For analyses requiring a single predictor value (C-index and 24 

AUROC), the probability of survival at 5 years was used. Risk quartiles were defined 25 
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(low, intermediate-low, intermediate-high, high) based on values in the validation set. 1 

Given the diverse populations and event rates evaluated, risk quartiles were 2 

redefined in each dataset. In each case, where categorical risk levels were required, 3 

5% of the dataset was used to define the quartiles and evaluation was performed in 4 

the remaining 95%. Kaplan-Meier curves comparing the risk quartiles were plotted 5 

and statistical significance assessed using the log rank test.  6 

 7 

Cox models were fit using the test dataset comparing demographics, clinical 8 

variables, imaging parameters and AIRE platform predictions. For the Cox models 9 

incorporating AIRE platform predictions, all model outputs (i.e., predicted 10 

probabilities of death at each timepoint) were used as inputs, as well as age, sex, 11 

heart rate, PR interval, QRS duration and QTc interval. These models are designated 12 

AIRE-Cox for the AIRE model and AIRE-CV Death-Cox, AIRE-ASCVD-Cox, AIRE-13 

VA-Cox, AIRE-HF-Cox for the other models. Complete case analysis was used, 14 

therefore no variables were imputed. Recent work suggests virtually all real-world 15 

clinical datasets will violate the proportional hazards assumptions if sufficiently 16 

powered and that statistical tests for the proportional hazards assumption may be 17 

unnecessary (19). In line with these recommendations, the proportional hazards 18 

assumption was not evaluated and the hazard ratio from our Cox models should be 19 

interpreted as a weighted average of the true hazard ratios over the follow-up period. 20 

Nested Cox models were compared with the Likelihood Ratio test, while non-nested 21 

Cox models were compared with the Partial Likelihood Ratio test (20). Statistical 22 

analyses were performed with R 4.2.0 statistical package (R Core Team, Vienna, 23 

Austria) or Python (version 3.9). 24 

 25 
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Diagnostic and imaging data 1 

ICD-9 and ICD-10 codes were used to define presence/absence of disease in the 2 

BIDMC and UKB cohorts. Cardiovascular death in the BIDMC cohort was defined as 3 

mortality occurring within 30 days of a diagnostic code for acute myocardial 4 

infarction, ischaemic stroke, intracranial haemorrhage, sudden cardiac death, or 5 

heart failure as previously described (7, 21). In the UKB, cause of death was 6 

ascertained based on the ICD10 code stated as the primary cause of death. 7 

Diagnostic codes were not available in the SaMi-Trop, CODE and ELSA-Brasil 8 

datasets. Echocardiograms within 60 days of an ECG were linked and used for 9 

analyses incorporating echocardiographic parameters. The pooled cohort equation 10 

was calculated using the PooledCohort R package. Medication usage was not 11 

available in the BIDMC cohort, therefore ICD9 and ICD10 codes consistent with a 12 

diagnosis of hypertension were used to code for antihypertensive medication use for 13 

calculation of the pooled cohort equation. Blood results and blood pressure (BP) 14 

readings taken within 180 days of the ECG were averaged. Sensitivity analyses were 15 

performed using 90 days and 30 days results.  16 

 17 

We investigated the performance of AIRE in the high risk disease groups of severe 18 

aortic stenosis and primary pulmonary hypertension. Severe aortic stenosis was 19 

defined based on the reported overall severity on echocardiography reports (i.e. a 20 

subjective overall assessment by the clinician undertaking the echocardiogram). 21 

Primary pulmonary hypertension was defined using ICD9 and ICD10 codes. No fine-22 

tuning was performed when evaluating the performance of AIRE in the severe aortic 23 

stenosis and primary pulmonary hypertension disease groups. 24 

 25 
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Normal ECG definition 1 

We evaluated the performance of AIRE in clinician reported normal ECGs. In the 2 

BIDMC dataset a subset of ECGs had Cardiologist reports. Normal ECGs in BIDMC 3 

were determined by searching for ‘normal ecg’ in the free text reports, a whole word 4 

match was required in order to exclude ‘abnormal ecg’. ECGs with the phrase 5 

‘otherwise’ were also excluded from the normal definition. Additionally we filtered by 6 

heart rate (60-100 bpm), PR interval (less than 200ms), QRS duration (less than 7 

120ms) and QTc interval (less than 470ms). Normal ECGs in ELSA-Brasil and CODE 8 

were defined as previously described (17).  9 

 10 

 11 

 12 

Explainability 13 

In order to understand the ECG morphologies associated with predicted survival we 14 

used two approaches. Median beats were extracted using the BRAVEHEART ECG 15 

analysis software as previously described (22).  16 

 17 

First, we trained a variational autoencoder (VAE) as previously described (23) using 18 

median ECG beats. Further details in Supplementary Methods. In preliminary 19 

analyses, models based on only the VAE latent features were found to be inferior to 20 

the supervised deep learning approach described above, therefore the VAE was 21 

used for explainability only, and not used for AIRE model training or any of the 22 

prediction models described in this manuscript. VAE latent features were input into a 23 

linear regression with predicted survival as the output. The top 3 most important 24 

features as assessed by the t-value were visualised by latent traversal (23).  25 
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 1 

Second, using the median beats we calculated the average waveform from the 2 

10,000 ECGs with the lowest and highest AIRE predicted mortality. The mean and 3 

standard deviation of these waveforms was then plotted.  4 

 5 

PheWAS 6 

To better understand the biology underlying AIRE and to explore the detailed 7 

phenogroup associations, we performed phenome-wide association studies 8 

(PheWAS).  We performed PheWAS analysis in the UKB, which contains data from 9 

over 3000 phenotypes derived from patient measurements, surveys, and 10 

investigations. Univariate correlation was performed to investigate the association 11 

between ECG phenogroup and phenotypes, adjusted for age, sex and age2. We 12 

additionally investigated the association of predicted survival with continuous echo 13 

traits in the BIDMC dataset. Left ventricular trabeculation was calculated as 14 

previously described (24). Deep learning-derived brain age was calculated as 15 

previously described (25). 16 

 17 

GWAS 18 

To identify genetic associations with the ECG phenogroups, we performed a ge-19 

nome-wide association study (GWAS) in the UKB. As the predicted survival trait was 20 

skewed, the data were normalized by rank-based inverse normal transform prior to 21 

the analysis. The GWAS analysis was adjusted for the following covariates: age at 22 

imaging visit, sex, height, body mass index (BMI), imaging assessment centre and 23 

the first 10 genetic principal components. 24 

 25 

Further methods are described in the Supplementary Methods. 26 
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Results 1 

 2 

AIRE accurately predicts mortality across diverse timepoints  3 

In the BIDMC cohort, 1,163,401 ECGs were available from 189,539 subjects. Mean 4 

follow-up period was 5.46±5.81 years on a per ECG basis, 3.41 (4.08) years taking a 5 

random ECG per subject. 34,938 (18.4%) subjects died during follow-up (Table 1).  6 

 7 

AIRE produces subject-specific survival curves from only a single ECG and can 8 

predict time-to-death. Figure 2A and 2B demonstrate two representative subject-9 

specific survival curves in patients who died during follow up and two curves from 10 

subjects who survived through the follow up period, each generated by AIRE from a 11 

single ECG. Figure 2C demonstrates the evolution of AIRE-predicted survival based 12 

on multiple ECGs performed over several years of follow up. ECGs nearer to the 13 

subject’s time of death show falling survival probabilities, particularly shortly before 14 

the subject’s death.  15 

 16 

In the hold out test set, AIRE predicted all-cause mortality with a concordance-index 17 

of 0.775 (0.773-0.776), further results are reported in the Supplementary Results. 18 

Using the predicted probability of survival at 5 years in the validation set, quartiles of 19 

risk (low, intermediate-low, intermediate-high and high) were determined. Figure 3A 20 

shows the marked separation of survival curves of these quartiles in the test set. 21 

Table S1 shows age and sex adjusted hazard ratios for high risk vs low risk quartile 22 

for all cohorts.  23 

 24 
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A subset of ECGs had cardiologist interpretations available. These were more recent 1 

ECGs with shorter follow up durations compared to the whole cohort. When 2 

considering only ECGs labelled as normal by cardiologists, there remained a 3 

significant difference in mortality between high-risk and low-risk subjects (Figure 3B). 4 

Importantly, AIRE had similar performance in both men and women and in major 5 

ethnic groups (Figure 3C and Table S2). 6 

 7 

AIRE is superior to demographic data and traditional risk factors for mortality 8 

prediction 9 

We compared the ability of AIRE to predict mortality, against using demographic 10 

data, risk factors and risk scores in the BIDMC test set (Figure 3D). AIRE-Cox had a 11 

significantly higher C-index than all other parameters combined (0.794 (0.792-0.795) 12 

vs 0.759 (0.758-0.761), p < 0.0001). Numerical results for all Cox models are shown 13 

in Table S3.  14 

 15 

AIRE-CV Death predicted CV death with a C-index of 0.832 (0.831-0.834). In the 16 

BIDMC test set, AIRE-CV Death-Cox had a significantly higher C-index for prediction 17 

of CV death than all other parameters combined (0.844 (0.839-0.849) vs 0.795 18 

(0.789-0.801), p < 0.0001) (Figure 3E). Finally, AIRE-Non-CV Death predicted non-19 

CV death with a C-index of 0.749 (0.747-0.751). Figure S2 shows sensitivity 20 

analyses using a single random ECG per subject.  21 

 22 
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AIRE predicts mortality in transnational external datasets 1 

First, we evaluated the performance of AIRE in the SaMi-Trop cohort of patients with 2 

chronic Chagas cardiomyopathy (11). Dataset demographics for all cohorts are 3 

shown in Table 1. The C-index was 0.773 (0.733-0.813, Figure 4A).  4 

 5 

The CODE cohort is a Brazilian database of ECGs recorded in primary care (8). The 6 

dataset contains both 10s and 7s duration ECGs. We first evaluated the performance 7 

of AIRE without any fine-tuning. As AIRE was trained exclusively on 10s ECGs, we 8 

evaluated the model on the 10s subset (CODE-10s), AIRE had a C-index of 0.762 9 

(0.759-0.765) for all-cause mortality prediction. AIRE-primary care more accurately 10 

predicted mortality with an improved C-index of 0.802 (95% CI 0.799-0.805, Figure 11 

4B). When considering only the ECGs labelled as normal (26766 ECGs from 21897 12 

subjects), there remained a significant difference in mortality between high-risk and 13 

low-risk subjects based on model predictions (Table S1). 14 

 15 

Further evaluation of AIRE-primary care was performed in another independent 16 

external dataset, ELSA-Brasil (n = 13739) a volunteer cohort of civil servants from 17 

Brazil (12)). The C-index was 0.713 (0.691-0.735 Figure 4C). Again, when 18 

considering normal ECGs only there was a significant difference in mortality between 19 

high and low risk subjects (Table S1).   20 

 21 

Finally, we additionally evaluated the performance of AIRE-primary care in the UK 22 

Biobank, a relatively healthy volunteer population (n = 42386) with only 526 (1.2%) 23 

deaths during follow-up. The C-index was 0.638 (0.608-0.668 (Figure 4D)) for all-24 

cause mortality. As cause of death was available in the UKB, we additionally 25 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.24301267doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.13.24301267
http://creativecommons.org/licenses/by/4.0/


19 

examined the ability of AIRE-primary care (which was trained for all-cause mortality) 1 

to predict CV death. C-index for CV death was 0.695 (0.636-0.754) 2 

 3 

Hughes et al recently reported SEER (Stanford Estimator of ECG Risk) with the 4 

similar goal of predicting cardiovascular mortality (7). The model code and weights 5 

were downloaded, and performance evaluated in the UKB, as this was a dataset 6 

external to both AIRE-primary care and SEER, with cause of death available. AIRE-7 

primary care was superior to SEER at predicting CV death in the UKB (SEER C-8 

index 0.572 (0.514-0.630) p values for comparison to AIRE-primary care <0.001).  9 

 10 

AIRE outperforms AI-ECG models of biological aging 11 

AI-ECG predicted age and the difference between AI-ECG predicted age and 12 

chronological age (“delta-age”) have been shown to be a better markers of biological 13 

aging than chronological age (8) . We compared AIRE/AIRE-primary care 14 

predictions to AI-ECG predicted age. For the subsequent analyses, AIRE was used 15 

for SaMi-Trop and AIRE-primary care was used for CODE and ELSA-Brasil. We 16 

found AIRE/AIRE-primary care-predicted survival inversely correlated with AI-ECG 17 

age (CODE: r = -0.595, p < 0.0001, ELSA: r = -0. 449, p <0.0001, SaMi-Trop -0.479, 18 

p <0.0001) and, to a lesser extent, chronological age (CODE: r = -0.499, ELSA: -19 

0.293, SaMi-Trop: -0.275, p < 0.0001 for all).  20 

 21 

We compared the predictive capability of AIRE/AIRE-primary care with AI-ECG 22 

predicted age and delta-age in the CODE15 (a 15% subset of CODE), ELSA-Brasil 23 

and SaMi-Trop datasets. In age- and sex-adjusted models, AIRE/AIRE-primary care 24 

had a significantly higher C-index compared to AI-ECG predicted age or delta age in 25 
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all three cohorts (CODE: 0.823 (0.813-0.833) vs 0.806 (0.796-0.816), ELSA-Brasil: 1 

0.754 (0.734-0.774) vs 0.738 (0.718-0.758), SaMi-Trop 0.788 (0.749-0.827) vs 0.715 2 

(0.672-0.758); p < 0.001 for all).   3 

 4 

AIRE performance in high-risk disease groups 5 

For model predictions of mortality to be clinically useful, there needs to be specific 6 

interventions available to alter the trajectory of patients. Using the BIDMC test set, 7 

we investigated the performance of AIRE in two high-risk disease groups with 8 

existing risk stratification strategies and effective interventions. The data for high-risk 9 

disease group analysis was not available for the other cohorts. 10 

 11 

For aortic stenosis, AIRE accurately predicted all-cause mortality, C-index: 0.701 12 

(0.681- 0.721, 1293 ECGs from 449 subjects). AIRE-Cox had a significantly higher 13 

C-index compared to all other parameters combined, Figure 5A, C-index 0.709 14 

(0.688-7.30) vs 0.683 (0.661-0.705), p < 0.001).  15 

 16 

Similarly, for primary pulmonary hypertension, AIRE accurately predicted all-cause 17 

mortality, C-index 0.731 (0.724-0.738, 11741 ECGs from 789 subjects). In a subset 18 

with available recent echocardiograms (602 ECGs in 212 subjects, we evaluated 19 

AIRE in comparison and addition to other risk parameters. AIRE-Cox was superior 20 

all other parameters combined (C-index 0.753 (0.726-0.779) vs 0.700 (0.670-0.730), 21 

p < 0.005, Figure 5B). 22 

 23 
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Actionable predictions: (1) ASCVD 1 

AIRE-ASCVD was able to predict future ASCVD in subjects without known ASCVD 2 

(C-index 0.696 (0.694-0.698) n = 227588 ECGs from 56598 subjects). We externally 3 

validated these findings in the UKB Biobank (UKB); a healthy, volunteer population. 4 

AIRE-ASCVD had reduced performance in predicting ASCVD, C-index 0.643 (0.624-5 

0.662) but was significantly better than the SEER model (7) (SEER C-index 0.547 6 

(0.527-0.567), p <0.0001 for comparison with AIRE). 7 

 8 

We compared AIRE-ASCVD to other risk parameters, including the pooled cohort 9 

equation (PCE) and ASCVD risk factors, in a subset of outpatients (4580 ECGs from 10 

2926 subjects) in the BIDMC test set with appropriate available data. AIRE-ASCVD-11 

Cox had a significantly higher C-index than all other factors combined (0.679 (0.651-12 

0.708) vs 0.642 (0.613-0.672), Figure 5C, p < 0.00001). Figure S3 shows sensitivity 13 

analyses using a single random ECG per subject for all three actionable prediction 14 

endpoints.  15 

 16 

Actionable predictions: (2) Ventricular arrhythmia  17 

AIRE-VA was able to accurately predict future VA (C-index 0.760 (0.756-0.763) n = 18 

393203 ECGs from 62443 subjects) in subjects without a previous history of VA. 19 

When compared to other conventional risk parameters, including ECG parameters 20 

and left ventricular ejection fraction, AIRE-VA-Cox, had a significantly higher C-index 21 

than all other factors combined (0.732 (0.723-0.741) vs 0.700 (0.692-0.709), Figure 22 

5D, p < 0.0001). The Supplementary Results describe performance in subgroups of 23 

LVEF <50% and dilated cardiomyopathy.  24 

 25 
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In the UKB, (n = 34400 with both ECG and cardiac magnetic resonance imaging 1 

(CMR) and without previous VA, 44 events), AIRE-VA had similar performance in 2 

predicting first occurrence of VA 0.719 (0.635-0.803) and performed at least 3 

equivalent to LVEF from cardiac magnetic resonance imaging (CMR) (C-index 0.595 4 

(0.494-0.697), p for comparison 0.11).  5 

 6 

Actionable predictions: (3) Future heart failure 7 

AIRE-HF was able to accurately predict future HF in subjects without a previous 8 

history of HF (C-index 0.787 (0.785-0.889) n = 310200, from 61747 unique subjects). 9 

In a subset of patients with the available data, we compared AIRE-HF-Cox to other 10 

conventional risk parameters in Cox models (36486 ECGs from 12288 subjects), 11 

including HF risk factors identified in the Atherosclerotic Risk in Communities (ARIC) 12 

study (26). AIRE-HF-Cox, had a significantly higher C-index than all other factors 13 

combined (0.761 (0.755-0.767) vs 0.716 (0.710-0.722), Figure 5E, p < 0.00001). In 14 

the external validation cohort, UKB, AIRE-HF-Cox had similar performance at 15 

predicting future HF (C-index 0.768 (0.733 -0.802).  16 

 17 

Single-lead ECG model performance 18 

To evaluate if AIRE could be potentially used in wearable devices or inpatient 19 

telemetry units, we trained a single-lead version of AIRE using lead I only (AIRE-1L). 20 

The performance of AIRE-1L (C-index 0.751 (0.750-752) Figure S4) was only 21 

slightly inferior in discrimination compared to the 8-lead AIRE model.  22 

 23 
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Explainable ECG morphology associates with adverse prognosis 1 

Using a variational autoencoder, we found features of QRS morphology, particularly 2 

broader and more left bundle branch block morphologies, inverted and biphasic T 3 

waves as well as ST segment changes were identified as the most significant 4 

morphological features associated with high predicted mortality (Figure 6A). 5 

 6 

In a second approach, using median beats the BIDMC test set we found poor 7 

precordial R wave progression, low QRS amplitude and T wave flattening/inversion 8 

as important features in AIRE-predicted survival (Figure 6B). 9 

 10 

Biological plausibility: Genetic associations of AIRE-predicted survival 11 

To investigate the underlying genetic associations with AIRE-predicted survival, we 12 

performed a genome-wide association study (Figure 7A). We found significant loci 13 

adjacent to TBX3, VGLL2, CCDC91 and KCNQ1. 8% of the total phenotypic variance 14 

in predicted survival was caused by the additive effects of genetic variation. TBX3 15 

has been associated with blood pressure (27), ECG morphology (28), myocardial 16 

mass (29) and trabecular development (24). VGLL2 has been associated with ECG 17 

parameters, blood pressure, atrial fibrillation and BMI (27, 28, 30, 31). KCNQ1 18 

(Potassium Voltage-Gated Channel Subfamily Q Member 1) encodes Kv7.1 and is 19 

most well-known for its associated with Long Qt Syndrome 1 and Jervell And Lange-20 

Nielsen Syndrome 1 and QT interval (32) but is also associated with metabolic 21 

syndrome phenotypes (33-35). Finally, CCDC91 (Coiled-Coil Domain Containing 91) 22 

associates with BMI (33), a variant associated with the ECG has been previously 23 

described in this region (28). 24 

 25 
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Biological plausibility: Phenotypic associations of AIRE-predicted survival 1 

In order to investigate the biological associations with AIRE-predicted mortality, we 2 

performed a PheWAS in the UK Biobank, Figure 7B. In particular, CMR associations 3 

included reduced left ventricular (LV) ejection fraction (EF), more positive, i.e., 4 

abnormal, global longitudinal strain, increased LV mass and increased left atrial size, 5 

which were correlated with reduced AIRE-predicted survival. We additionally 6 

specifically examined the association between predicted survival and left ventricular 7 

trabeculation and found a significant negative correlation (Table S5). Important 8 

lifestyle risk factors included smoking status and alcohol intake which were both 9 

correlated with reduced predicted survival. Significant physical measures included 10 

systolic blood pressure, which was negatively correlated with predicted survival.  11 

 12 

In BIDMC echocardiographic analyses (Figure 7C), we found LVEF was positively 13 

correlated with predicted survival while LA volume and surrogate measures of 14 

pulmonary pressure (TR velocity) and right ventricular diameter were negatively 15 

correlated.  16 

 17 

Finally, investigation of non-cardiac imaging phenotypes identified associations with 18 

multiple multi-model brain imaging phenotypes including the total volume of white 19 

matter hyperintensities and deep learning-derived brain age (25) (Table S6).  20 

Other non-cardiac imaging associations included predicted-survival inversely 21 

correlating with carotid intimal-media thickness, which is a marker of overall 22 

atherosclerotic burden (36).  23 

24 
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Discussion 1 

We describe, for the first time, an actionable, explainable, and biologically plausible 2 

mortality and risk prediction AI-ECG platform of eight AI-ECG models. Importantly, 3 

our platform was externally validated across ethnically and demographically diverse 4 

transnational cohorts.   5 

 6 

Importance of time-to-event for actionability 7 

This paper substantially extends the work of others on mortality protection using the 8 

ECG. Raghunath et al previously described the use of deep learning for mortality 9 

prediction (37), while Sun et al more recently built upon this work (6). Our study has 10 

several significant differences from these previous publications. Firstly, the use of a 11 

survival neural network architecture, provides our model with the ability to predict 12 

time of death without being constrained to a small number of time points. 13 

Additionally, this allows us to use training data from subjects that were censored, for 14 

whom the time for death was not known. Specifically, we created a model that 15 

provides an individualised survival curve based on a single ECG. The ability to 16 

identify patients at risk of short-term mortality versus those at risk of long-term 17 

mortality is an important distinction. For example, patients at risk of short-term 18 

mortality may benefit from early escalation to intensive care settings, while those at 19 

risk of long-term mortality may need more detailed outpatient, follow-up or aggressive 20 

medical or interventional treatment. 21 

 22 

Furthermore, by comparing our model to existing clinical risk factors and 23 

demographic information we have demonstrated the significant additive value of our 24 

model beyond traditional approaches. Finally, we performed external validation 25 
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across diverse populations, demonstrating the wide applicability of our model 1 

platform.  2 

 3 

Actionable risk prediction in high-risk disease groups 4 

By predicting risk of death in high-risk disease groups, we were able to provide 5 

potentially actionable information that could guide treatment decisions. We described 6 

how AIRE can be used to predict the risk of death in severe aortic stenosis and 7 

primary pulmonary hypertension. Severe aortic stenosis has a high mortality if left 8 

untreated. Current clinical guidelines in general advocate intervention based on 9 

echocardiographic measures and the patient’s symptoms (38, 39) . However, there is 10 

increasing evidence that earlier intervention in asymptomatic individuals at high-risk 11 

of death may be of benefit, and there are randomised control trials currently 12 

investigating this approach (40, 41). Primary pulmonary hypertension also has a 13 

significant mortality rate (42). Medical therapy is available, and transplantation may 14 

be undertaken (43), therefore accurate risk stratification is paramount in guiding 15 

treatment selection for pulmonary hypertension patients. Mortality prediction using 16 

AIRE may be helpful in guiding treatments in both these conditions. 17 

 18 

Event-specific risk prediction 19 

Using disease specific models, we showed the AIRE platform can also predict future 20 

cardiovascular events such as ASCVD, HF and VA, in addition to predicting mortality. 21 

ASCVD prediction is currently used extensively in international guidelines for 22 

decision-making around lipid lowering therapies. A 10-year ASCVD is calculated and 23 

can be used to consider initiation of primary prevention statin therapy (44). In order to 24 

assess ASCVD risk, various scoring systems are used, including the PCE, SCORE2 25 
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and QRISK3 (44-46) . The ECG, despite being a cheap and readily available 1 

investigation, does not feature in any of these scoring systems. In this study, we have 2 

shown that AIRE-ASCVD can provide additional information that could improve 3 

ASCVD risk prediction and may be superior or at least additive to the existing PCE.  4 

 5 

Our analyses are additive to those of Hughes et al (7), who recently describe SEER, 6 

an AI-ECG model for the prediction of CV death. AIRE-primary care and AIRE-7 

ASCVD was superior to SEER for CV death and ASCVD prediction in the UKB. 8 

Additionally, the time-to-event nature of our platform provides additive actionable 9 

information as discussed above (7).  10 

 11 

Similarly, predicting future VA is a particularly important endpoint, as there are clear 12 

preventative, and therapeutic options. For example, in-hospital predictions of short-13 

term high risk of VA could be used to guide the need for cardiac monitoring and 14 

potentially even prophylactic use of antiarrhythmics. Medium-term risk could be 15 

managed with a wearable cardioverter defibrillator (47), while patients at longer-term 16 

risk of ventricular arrhythmias may benefit from primary prevention implantable 17 

cardioverter defibrillator implantation. Current guidelines advocate LVEF as the 18 

primary factor in determining eligibility for a primary prevention ICD. In our study, we 19 

demonstrated that AIRE-VA is a better predictor of future VT/VF than LVEF and 20 

could therefore potentially be incorporated into this decision-making paradigm.  21 

 22 

Lastly, predicting future heart failure is important given the high number of unplanned 23 

hospital admissions due to undiagnosed heart failure (48). Early clinical assessment, 24 
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echocardiography and institution of appropriate therapies may reduce adverse 1 

events, particularly in HF with reduced ejection fraction (HFrEF) (49).  2 

 3 

Single-lead ECG applications 4 

Extending risk prediction to the single-lead ECG is particularly important given the 5 

rapidly increasing number of single lead devices, including consumer products (50) . 6 

Others have shown the applicability of AI-ECG algorithms to consumer single-lead 7 

products (51). Our study highlights the excellent performance of AIRE at mortality 8 

prediction on only a single lead. This could be particularly applicable for inpatient 9 

cardiac monitoring, or for remote monitoring in the outpatient setting using wearable 10 

devices, for example in patients with chronic diseases such as heart failure, where 11 

high-risk predictions could trigger pre-emptive treatments to prevent hospital 12 

admissions. 13 

 14 

Explainability and biological plausibility  15 

A major advantage of the deep learning approach is the ability to extract features 16 

relevant to the specific task, without anchoring on prior beliefs. However, a significant 17 

challenge is explainability of the model predictions. A significant barrier to the 18 

adoption of AI tools in clinical practice is physician reluctance to adopt technologies 19 

that are often “black boxes” (52). Explainability and biological plausibility is therefore 20 

key to improving clinician trust in AI. In this study using multiple approaches, we have 21 

explored the underlying biology behind AIRE risk predictions. Our ECG morphology 22 

findings are in line with prior studies that highlight these features as being 23 

prognostically importantly (53-55). Importantly, the significant predictive value of 24 
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AIRE, even in normal ECGs, shows how deep learning can additionally make use of 1 

ECG morphological features that clinicians deem to be normal.   2 

 3 

The accuracy of AIRE at mortality prediction raises the important question as to 4 

which biological pathways are being identified in these predictions. Using cardiac 5 

imaging data in two distinct datasets, we identified associations with cardiac chamber 6 

structure, function and measures of pulmonary pressure, that may be reflected in the 7 

ECG (56). We also identified multiple established factors, whose effects maybe 8 

reflected directly or indirectly in the ECG, including blood pressure, smoking and 9 

alcohol intake. 10 

  11 

Previous work has described the importance of ischaemic heart disease on brain 12 

aging and outcomes (57). Our work has identified significant associations between 13 

ECG-predicted survival and brain imaging phenotypes that may reflect the combined 14 

effect of cardiovascular risk factors on cardiac and brain outcomes.  15 

 16 

AIRE-predicted survival is a biomarker of overall health  17 

Through GWAS, we have identified plausible biological pathways, including 18 

myocardial mass and trabecular development, that could be a significant factors 19 

influencing AIRE-predicted survival. TBX3 and VGLL2 have been previously 20 

described in relation to AI-ECG derived delta-age, which is a marker of accelerated 21 

biological aging (8). Indeed, there was a moderate correlation between AIRE-22 

predicted survival and AI-ECG predicted age, which was stronger than the correlation 23 

with chronological age. We also identified AIRE-predicted survival as inversely 24 

correlated with deep learning-derived brain-age. Additionally, we identified variants in 25 
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KCNQ1 and CCDC91 that suggest AIRE may capture metabolic risk as an additional 1 

mechanism. These findings suggest AIRE-predicted survival is a biomarker of overall 2 

health, including biological age and the presence of clinical and subclinical disease.  3 

 4 

Reduced performance in volunteer populations 5 

In our analyses, in general, AIRE-primary care had reduced performance metrics in 6 

the volunteer populations (UK Biobank, ELSA-Brasil). Our findings are consistent 7 

with other studies in that AI-ECG model performance is generally reduced in these 8 

volunteer populations (8, 58). A similar phenomenon is seen in other risk prediction 9 

models applied to the UK Biobank, such as QRISK3 (59). This may be due to 10 

differences in population characteristics, for example the UK Biobank population is 11 

older but healthier than the general population (60), and low event rates.  12 

 13 
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Limitations 1 

There are limitations to the accuracy and granularity of ICD diagnostic codes that are 2 

used in this study to ascertain disease status. In particular, ventricular arrhythmias as 3 

reported by ICD codes are not necessarily sustained or haemodynamically significant 4 

and therefore patients predicted to have these events would not necessarily benefit 5 

from an implantable cardioverter defibrillator. Further evaluation in an implantable 6 

cardioverter defibrillator cohort is needed. The GWAS findings should be considered 7 

hypothesis generating given the absence of a replication dataset. The GWAS and 8 

UKB PheWAS results were drawn from a population of predominantly European 9 

ancestry and may not apply to other populations. Despite these limitations, we have 10 

demonstrated that the AIRE platform is highly effective at predicting the timing of 11 

multiple outcomes in multiple, diverse, transnational datasets.  12 

 13 
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Conclusion 1 

In conclusion, we describe the AIRE platform, an actionable, explainable and 2 

biologically plausible AI-ECG risk estimation platform that has the potential for use 3 

worldwide across a wide range of clinical contexts, including primary and secondary 4 

care, for short- and long-term risk prediction at a population and disease-specific 5 

levels. 6 
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Table 1 
Dataset demographics 
Data at the timepoint of a randomly selected ECG per subject is shown for the BIDMC and CODE datasets.  
Categorical variables n (%), continuous variables mean (SD) 
 
 BIDMC SaMi-TROP CODE ELSA-Brasil UK Biobank 
N subjects 189539 

 
1631 1558421 13739 42386 

 
Age 57.68 (18.69) 

 
59.40 (12.79) 
 

51.66 (17.59) 
 

52.26 (9.10) 
 

64.14 (7.75) 
 

Follow up (years) 3.41 (4.08) 2.08 (0.39) 3.68 (1.87) 9.35 (1.28) 3.73 (1.57) 
Sex (M) 90792 

(47.9) 
534 (32.7) 
 

627042 (40.2) 
 

7483 (54.5) 
 

20538 (48.5) 
 

Hypertension 74409 (39.3)  - 492640 (31.6) 
 

4924 (35.9) 
 

6256 (14.8) 
 

Previous MI 11788 (6.2) 
 

- 11604 (0.7) 
 

251 (1.8) 
 

633 (1.5) 
 

Smoker 23343 (12.3) 
 

- 108815 (7.0) 
 

1801 (13.1) 
 

1111 (2.6) 
 

Diabetes Mellitus 33748 (17.8) 
 

- 101470 (6.5) 
 

2728 (19.9) 
 

1334 (3.1) 
 

Hyperlipidaemia 67087 (35.4) 
 

- 60590 (3.9) 6811 (49.6) 2985 (7.0) 

Mortality 34938 (18.4) 104 (6.4) 52127 (3.3)  599 (4.4) 526 (1.2) 
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Table 2 
Mortality prediction results summary table 
Model performance as assessed by C-index (95% CI) is shown 
AIRE: Artificial-intelligence enhanced ECG risk estimator 
 

 BIDMC Test set SaMi-Trop CODE-10s 
 

CODE Test set UK Biobank ELSA-Brasil 

N ECGs 434,629 1631 958,954  464,429 42,386 13,739 
N Subjects 64,105 1631 645,372 311,684 42,386 13,739 
Internal/external 
validation 

Internal External External Internal External External 

AIRE 0.775 (0.773-
0.776) 

0.773 (0.733-
0.813) 

0.762 (0.759-
0.765) 

- - - 

AIRE-primary care - - - 0.802 (0.799-
0.805) 

0.638 (0.608-
0.668) 

0.713 (0.691-
0.735) 
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Figure Legends  

Figure 1 

Schematic depicting all eight models in the AIRE platform, training datasets and 

validation datasets. AIRE and AIRE-primary care were trained for all-cause 

mortality, the remaining models were trained for the outcomes they are named after. 

CODE-10s denotes the subset of CODE with ECGs of 10s duration. CV: 

cardiovascular, NCV: non-cardiovascular, ASCVD: atherosclerotic cardiovascular 

disease, HF: heart failure, VA: ventricular arrhythmia. BIDMC: Beth Israel Deaconess 

Medical Center, CODE: Clinical Outcomes in Digital Electrocardiography, SaMi-

TROP: São Paulo-Minas Gerais Tropical Medicine Research Center, ELSA-Brasil: 

The Brazilian Longitudinal Study of Adult Health. 

 

Figure 2 

Example subject-specific survival predictions 

AIRE outputs subject-specific survival curves. Two examples are shown for subjects 

who died during follow up (A), and two for subjects who survived through the follow 

up period (B). Dashed red lines indicate the date of death and dashed black lines 

indicate AIRE-predicted date of death. (C) Examples of subjects with many ECGs 

during the study period, each blue dot is a survival prediction from a single ECG. 

AIRE-predicted survival trends down over time and predicted probability of survival is 

particularly low prior to actual time of death (red dashed line).  

 

Figure 3 

Mortality prediction performance – BIDMC Test set 
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Kaplan-Meier curves of AIRE-predicted all-cause mortality by risk quartile in the 

whole BIDMC test set (A) and a subset of normal ECGs (B). (C) Comparison of AIRE 

performance across sex and major ethnic groups, AIRE performs well across all 

demographic groups. Using Cox models, AIRE was compared with existing risk 

factors and ECG parameters. In these Cox models, age, sex and ECG parameters 

were incorporated with AIRE to create AIRE-Cox. In all comparisons, AIRE-Cox had 

a significantly higher C-index than all comparators for both all-cause mortality (D), 

and cardiovascular mortality (E). ECG parameters: heart rate, PR interval, QRS 

duration, QTc interval, CV risk factors: diabetes mellitus, hypertension, smoking 

history, hyperlipidaemia, ethnicity. ASCVD risk factors: systolic blood pressure, total 

cholesterol, HDL cholesterol, hypertension, smoking history, diabetes mellitus, 

ethnicity. 10-year ASCVD risk assessed using the pooled cohort equation.  

 

Figure 4 

Survival analysis in four diverse, transnational, external validation datasets 

In all cohorts, AIRE/AIRE-primary care successfully identified groups at higher risk 

of all-cause mortality. (A) São Paulo-Minas Gerais Tropical Medicine Research 

Center (SaMi-TROP) cohort of subjects with Chagas disease, AIRE predictions are 

shown, (B) CODE cohort of primary care subjects in Brazil, (C) The Brazilian 

Longitudinal Study of Adult Health (ELSA-Brasil) volunteer cohort, (D) UK Biobank 

volunteer cohort. AIRE-primary care results are shown for panels B-D. Sub panels 

show truncated y-axes for the populations with low event rates.  

 

Figure 5 
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Mortality prediction in high-risk disease groups and prediction of actionable 

end-points - BIDMC Test set 

Using Cox models, AIRE was compared with existing risk factors, ECG and imaging 

parameters in subgroups. In these Cox models, age, sex and ECG parameters were 

incorporated with AIRE to create AIRE-Cox. Severe aortic stenosis (A), and primary 

pulmonary hypertension (B). We also evaluated disease specific models, AIRE-

ASCVD (atherosclerotic cardiovascular disease) (C), AIRE-VA (ventricular 

arrhythmia) (D) and AIRE-HF (heart failure) (E). Echocardiographic parameters for 

severe aortic stenosis: left ventricular ejection fraction (LVEF), aortic valve area, 

peak gradient and mean gradient. Echocardiographic parameters for primary 

pulmonary hypertension: LVEF, LV end diastolic diameter, tricuspid regurgitation 

(TR) pressure gradient, TR severity, right ventricular (RV) function, RV diameter. 

ECG parameters: heart rate, PR interval, QRS duration, QTc interval. ASCVD risk 

factors: systolic blood pressure, total cholesterol, HDL cholesterol, hypertension, 

smoking history, diabetes mellitus, ethnicity. 10-year ASCVD risk assessed using the 

pooled cohort equation. ARIC-HF risk factors: body mass index, systolic blood 

pressure, prevalent ASCVD, diabetes mellitus, smoking history, previous myocardial 

infarction, hypertension, ethnicity.  

 

Figure 6 

AIRE model explainability - BIDMC Test set: (A) A variational auto-encoder was 

used to identify the most important morphological features in AIRE-predicted 

mortality, each subpanel shows one of three latent features, identifying the 

importance of a broad QRS complex in a left bundle morphology as well as biphasic 

and inverted T waves. (B) Average ± standard deviation (shaded region) ECG 
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waveforms for the 10,000 highest and lowest predicted survival ECGs from the 

BIDMC test set. This analysis identified poor R wave progression, low QRS 

amplitude and T wave flattening/inversion as important features in AIRE-predicted 

survival.  

 

Figure 7 

Exploration of underlying biology through Phenome and Genome-wide 

association studies.  

(A) Genome-wide association study (GWAS) in the UK Biobank. Manhattan plots of 

genomic loci associated with predicted survival. Nearest genes to significant single 

nucleotide polymorphisms are shown. The red line depicts the genome-wide 

significant threshold (P<5 x 10-8). (B) Phenome-wide association study in the UK 

Biobank. Cardiac associations include left ventricular ejection fraction (LVEF), atrial 

and right ventricular phenotypes. Non-cardiac associations included brain 

phenotypes such as total volume of white matter hyperintensities and pack years of 

smoking. (C) Association of AIRE-predicted survival with echocardiographic 

parameters in the BIDMC test set. LA: left atrium, LAEF: LA ejection fraction, TR: 

tricuspid regurgitation, MV: mitral valve, LVESD: LV end-systolic diameter, LVEDD: 

LV end-diastolic diameter, RA: right atrium, AV: aortic valve.  
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Graphical Abstract 
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Figure 1 
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Figure 2 
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Figure 4 
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Figure 6 
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