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ABSTRACT 

Aim: Chronic hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma 

(HCC) particularly in African populations, in whom malignancy frequently presents at an 

advanced stage with poor outcomes. We derived HBV whole genome sequences (WGS) from 

individuals with HCC and compared them to sequences from individuals without HCC. 

Methods: We identified adults with HBV infection, with and without complicating HCC, in Cape 

Town, South Africa and utilized pan-genotypic probe-based enrichment followed by Illumina 

sequencing to derive HBV WGS. 

Results: Compared to the non-HCC group, HCC patients were more likely to be male (p < 

0.0001), older (p = 0.01), HIV-negative (p = 0.006), and to have higher HBV viral loads (p < 

0.0001). Among 19 HCC and 12 non-HCC patients, genotype A dominated (74%), of which 96% 

were subtype A1. PreS2 deletions (Δ38–55) were enriched in HBV sequences from HCC 

patients (n = 7). The sequence motif most strongly associated with HCC comprised either 

deletion or polymorphism at site T53 in PreS2 – collectively coined ‘non-T53’ – together with a 

basal core promoter (BCP) mutation G1764A (AUROC 0.79). 

Conclusions: In this setting, HBV sequence polymorphisms and deletions are associated with 

HCC, and ‘non-T53 + G1764A’ represents a putative signature motif for HCC. Additional 

investigations are needed to disaggregate the impact of age, sex and HIV status, to ascertain 

the extent to which viral polymorphisms contribute to oncogenesis, and to determine whether 

HBV sequence is a useful biomarker for risk stratification. 
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INTRODUCTION 

A high incidence of hepatocellular carcinoma (HCC) in the World Health Organization (WHO) 

African region (63,000 cases per annum in 2018) [1,2] reflects the prevalence and distribution of 

hepatitis B virus (HBV) infection [3,4]. The substantial individual and societal impact of HBV-

associated HCC in African populations is related to disease affecting young adults and 

presenting with advanced malignancy, leading to high mortality [5,6]. International targets aim to 

eliminate the public health threat of HBV infection, with HCC as an important area of focus [7]. 

  

In Southern Africa, infection with genotype-A HBV has a strong association with HCC [8,9]. 

Malignant transformation can occur as a result of chronic inflammatory/fibrotic liver disease, 

HBV DNA integration into the host genome, cell stress caused by accumulation of aberrant viral 

proteins [10], and/or a direct influence of HBV genes (particularly HBx) [11]. Specific viral 

polymorphisms have been associated with HCC, including truncated genes, pre-core 

insertions/deletions (‘indels’), and basal core promoter (BCP) mutations [12–14]. Such 

sequence changes can be used potentially to infer disease risk or prognosis [15–17]. However, 

further work is needed to better describe the mutational landscape of HBV in diverse viral 

genotypes, advance insights into specific associations between viral sequence polymorphisms 

and HCC, and determine their mechanistic impact. Evaluation is needed to determine whether 

viral sequence can inform clinical risk assessment, surveillance or interventions. 

  

We undertook HBV sequence analysis from South African adults to explore viral sequence 

polymorphisms in those with and without HCC. 

  

METHODS 

Study samples 

We retrospectively drew on banked serum samples from adults with a confirmed diagnosis of 

chronic HBV infection, in cohorts with and without HCC (described in [18] and [19] respectively) 

(Suppl methods 1; Suppl Fig 1). Ethical approval was granted from the health research ethics 

committee at the University of Stellenbosch (S13/04/072 and N11/09/284). 

  

Illumina sequencing, HBV genome assembly and phylogenetic analysis 
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We generated HBV sequence data based on an adapted version of a published Illumina 

protocol [20] (Suppl methods 2). HBV reads were mapped to reference sequences (genotypes 

A-I) prior to generating consensus WGS. A standard HBV reference strain (Genbank accession 

X02763, genotype A) was used for numbering positions in the genome. 

  

For phylogenetic analysis, we aligned nucleotide alignments using new sequence data from this 

cohort, 61 full-length South African sequences from Genbank, and genotype reference 

sequences[21] using Clustal X 2.1 [22], and performed phylogenetic inference using a Bayesian 

Markov Chain Monte Carlo (MCMC) approach as implemented in the Bayesian Evolutionary 

Analysis by Sampling Trees (BEAST) version 1.10.4 program [2] (Suppl methods 3). 

  

Analysis 

We identified HBV polymorphisms that have been previously associated with HCC [11,23–26] 

(Table 1), and explored the association between polymorphisms and HCC using area under the 

receiver-operating curve (AUROC). The frequency of deletions at each site was compared 

between HCC and non-HCC sequences. Statistical analyses were performed using GraphPad 

Prism v10 and STATA v17.0. 

  

RESULTS 

HBV-associated HCC associated with male sex and higher HBV viral loads 

We identified samples from 161 adults with chronic HBV infection of whom 68 had HCC and 93 

not. Compared to the non-HCC group, those with HCC were more likely to be male (81% vs. 

46%, respectively, p < 0.0001), older (median 41 vs. 36 years, p = 0.01), and had higher HBV 

DNA viral loads (median 5.2 vs 3.5 log10 IU/mL, p < 0.0001). HIV coinfection was present in 18 

of 65 HCC cases (3 had no documented test result) and 46 of 93 non-HCC cases (27.8% vs 

49.5%; p = 0.006) (Suppl Table 1). 

  

We were able to undertake WGS HBV sequencing from 19 samples from the HCC group and 

14 from the non-HCC group (Suppl Methods 2), with sufficient reads to construct WGS 

assemblies from 31 of these (19 HCC and 12 non-HCC (Table 1; Suppl Fig 2)). Sequence data 

can be accessed in GenBank project PRJEB71107.  

 

Overall, genotype A predominated, accounting for 23 of 31 (74.2%), of which 22 were A1. There 

was no difference in genotype distribution between HCC and non-HCC groups (Suppl Fig 1; 
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Suppl Tables 2 and 3; Suppl Results 1). HBV sequences from HCC and non-HCC groups 

were interspersed with other South African HBV sequences, suggesting there was no particular 

viral lineage associated with the development of HCC (Suppl Fig 3).  

  

Deletions and substitutions in HBV Pre-S2 significantly enriched in HCC 

We examined HBV sequences for the presence of polymorphisms and deletions previously 

associated with HCC (Table 1). There was sequence coverage in the PreS2 region in 17 of 19 

HCC cases, among which 7 of 17 had PreS2 Δ38–55 deletions, compared to none in the non-

HCC group (p = 0.02) (Figure 1A, 1B). In the consensus sequences, deletions were observed 

ranging from 3 bp to 42 bp in length, with a mean of 21 bp. Start locations of the sequences 

varied, but all deletions terminated by nucleotide (nt) 55. We also evaluated the T53C 

substitution that has been reported in association with HCC[27]. In the HCC group, wild-type 

T53 was uncommon, due to a combination of deletions (n = 6), and substitutions (n = 9; T53C 

substitution in 8 and T53G in one). Thus, overall, the ‘non-T53’ motif occurred in 15/19 samples 

in the HCC group compared to 4/11 in the non-HCC group (p = 0.027; Table 1). 

  

BCP mutations 

Mutations in the BCP region associated with HCC by other studies (A1762T, G1764A and the 

combination of both together) were more common in the HCC group; however, this was not 

significantly different from the non-HCC group (Table 1). 

  

Associations of combined polymorphisms with HCC 

Finally, we analysed ‘non-T53’ together with the most common BCP mutation (G1764A) or the 

BCP double mutation (A1762T + G1764A). The combination of ‘non-T53’ with the G1764A 

mutation was the most strongly associated with HCC (AUROC = 0.79) (Table 1, Figure 1C). 

  

DISCUSSION 

In this small sample set, HBV PreS2 ‘non-T53’ (either as a result of a mutation or deletion) in 

combination with the BCP G1764A polymorphism, is the sequence motif most strongly 

associated with HCC. Both of these sequence changes have been reported independently in 

South African sequence data [28–32]. However, to the best of our knowledge, this combined 

motif has not been previously studied. Further data are needed to evaluate the sensitivity and 
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specificity of the association between this motif and HCC, and to determine the impact of 

potential confounders such as age, sex, HBV VL, HIV status, and antiviral treatment, which was 

not possible in this small cohort. Furthermore, there may be an impact of additional contributors 

which were not measured, such as host genetic/epigenetic factors, and external environmental 

factors [33–36]. As sequencing only generates data for high VL samples, there may be artificial 

enrichment for A1762T and G1764A mutations. 

  

PreS2 deletions have also been reported in association with HCC in West African sequence 

data, potentially associated with aflatoxin exposure and/or conferring a viral fitness 

advantage[37]). Mechanistically, ‘non-T53’ may have an influence on PreS2 function or 

regulation and/or impact the spacer domain of the polymerase protein. Proposed oncogenic 

mechanisms include the accumulation of defective proteins in the endoplasmic reticulum (ER), 

stress responses resulting in DNA damage, centrosome over-duplication, and genomic 

instability [25,38–40]. PreS2 deletions start at a wide range of sites (sometimes prior to nt 38) 

but consistently terminate immediately prior to nt 55, where there is a highly conserved region of 

approximately 20 bp, and the first of several cysteine residues within a putative zinc finger 

domain, considered to be essential for reverse transcriptase activity [41]. Therefore, deletions 

downstream of nt 55 are likely to be detrimental to viral replication, potentially explaining why 

they all terminate within the same region. 

  

A longer duration of infection may be needed for cumulative BCP mutations to develop, and an 

increased frequency of these polymorphisms has been reported as HBV infection progresses 

[42,43]. The increase in A-T-rich regions in the BCP region (nt 1762-1770) may be associated 

with upregulating viral transcription [44], and these mutations may influence malignant 

transformation mediated through the overlapping X gene [16]. 

  

In future, larger studies with matched case:control recruitment would allow multivariable 

analysis, investigation of the impact of sequence changes in diverse genotypes, and an 

unbiased, sequence agnostic approach to WGS changes (instead of focusing only on 

polymorphisms that have been previously reported). To date, sequencing protocols have been 

limited by high VL thresholds and/or cost. As the sensitivity of sequencing methods improves, it 

may be possible to sequence HBV genomes at lower VL, to analyse within-host sequence 

diversity, and to generate long-read sequencing[20] to support WGS haplotype analysis. We 
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highlight the pressing need for the field to be expanded by the open-source sharing of HBV 

sequences together with clinical metadata. 

  

In conclusion, we propose a novel HBV sequence motif that may be associated with HCC, but 

further work is required to determine the cause, effect and chronology of these sequence 

changes relative to clinical and demographic characteristics, and the evolution of HCC. 
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TABLES 
  
Table 1: Frequency of HBV polymorphisms previously associated with hepatocellular 
carcinoma (HCC) identified in consensus sequences derived by Illumina among patients 
with and without a diagnosis of HCC. Frequencies are based on analysis of consensus 
sequences. Partial genomes were derived in some cases; hence, the denominator at certain 
sites is lower than the total number of samples sequenced. 
  

HBV genomic region and 
amino acid site 

Frequency of HBV 
polymorphism in HCC 

(n = 19) 

Frequency of HBV 
polymorphism in non-

HCC 
(n = 12) 

p-value 

HBsAg polymorphisms and deletions[27,37,45,46] 

W172* 0/19 0/12 n/a 

W182* 0/19 0/12 n/a 

L216* 1/19 0/11 0.63 

Pre-S2 T53C (F22L) 8/18 3/11 0.30 

PreS2Δ38–55a 7/17 0/11 0.02 

‘Non-T53’ (Pre-S2 
T53C/A/G OR Δ38–55b) 

15/19 4/11 0.03 

Other pre-S1 deletion 0/17 0/11 n/a 

Other S deletion 0/19 0/11 n/a 

Pre-core region 

Q2* 1/19 0/12 0.61 

S13T 12/19 8/12 0.58 
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W28* 
(also reported as 
G1896A) 

5/19 2/12 0.44 

G29D 
(also reported as 
G1899A) 

3/19 1/12 0.49 

BCP region[11], overlapping with X protein changes 

T1753C 
(I127T in X protein) 

4/19 1/11 0.38 

A1762T 
(K130M in X protein) 

12/18 4/11 0.11 

G1764A 
(V131I in X protein) 

14/18 5/11 0.09 

C1766T 
(F132Y/I/Rc in X protein) 

6/18 1/11 0.15 

T1768A 4/19 1/11 0.38 

Double mutation 
A1762T/G1764A 

11/18 4/11 0.18 

Triple mutation 
T1753C / A1762T / 
G1764A 

3/18 0/11 0.22 

Deletion spanning 1762-
1764 

1/19 0/11 0.63 

Stop mutation indicated by * 
a

 The presence of any deletion spanning the region preS2Δ38–55 was recorded[37] 
b

 The preS2Δ38–55 deletion and the T53C mutation spanned the same site so were analysed together and 

considered as ‘non T53’. 
c 

F132Y was the only variant observed at site 132 in our sequences. 
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FIGURES 

Figure 1 Legend: HBV Sequence motifs associated with HCC in South African adults. A: 
Schematic of HBV genome. Region of PreS2 and BCP polymorphisms are shown in pink 
highlights. B: Regions of the HBV genome showing the proportion of reads with deletions in at 
each site. Data are presented for individuals with HCC (top) and without HCC (bottom). 
Termination of deletions in 7 HBV sequences from the HCC group was at nt 52 (n = 1), nt 53 (n 
= 2), nt 54 (n = 2), and nt 55 (n = 2). Additional discussion of the minority variant deletions is 
provided in Suppl results 2. The bioinformatic pipeline did not provide deletion frequencies for 
reads when a deletion was the consensus at that site (the site was absent), so these sites have 
been assigned a frequency of 100% to generate these plots. C: Receiver operating 
characteristic (ROC) curves for pre-S2 deletions and T53 polymorphisms combined with BCP 
polymorphisms as a predictor of HCC status in HBV sequences. Curves are shown for 
combinations of PreS2 ‘not T53’ alone, or combined with the BCP polymorphisms G1764A and 
the double mutation A1764T /G1764A. Two sequences, HCC-34 and nHCC-12 were excluded 
from the analysis as there was no sequence for the region under consideration. AUC, area 
under the curve. 
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