Comparing DOACs with warfarin in AF patients with chronic kidney disease or valvular disease: A systematic review and meta-analysis

Aileen Liang¹, Cathy Wang¹, Alla E Iansavichene², Alejandro Lazo-Langner^{1,3}

¹Schulich School of Medicine and Dentistry, Western University, London, ON, Canada

²Library Services, London Health Sciences Centre, London, Ontario, Canada

³Department of Medicine, Division of Hematology, Western University, London, ON, Canada

Corresponding author. Alejandro Lazo-Langner MD MSc FRCPC. Hematology Division,

London Health Sciences Centre, Victoria Hospital. 800 Commissioners Rd E Rm E6-216 London ON, N6A 5W9, Canada.

Telephone (1 519) 685 8500 Ext. 58833

Fax (1 519) 685 8294

E-mail alejandro.lazolangner@lhsc.on.ca

Word count: 4066

Number of figures: 6

Keywords atrial fibrillation, anticoagulation, DOAC, warfarin, chronic kidney disease, valvular heart disease

Contents

Al	ostract.		4
1.	Intro	oduction	6
2.	Met	hods	7
	2.1	Eligibility criteria	8
	2.2	Information Sources	8
	2.3	Study selection and screening	9
	2.4	Data items	9
	2.5	Risk of bias assessment1	.0
	2.6	Data synthesis methods1	.1
	2.7	Subgroup and sensitivity analyses1	.1
3.	Resu	ılts1	.1
	3.1	Study selection and characteristics1	.1
	3.2	Patients with concomitant AF and CKD1	.2
	3.2.3	1 Bleeding events1	.3
	3.2.2	2 Stroke Incidence	.4
	3.2.3	3 Systemic/arterial embolism and all-cause mortality1	.4
	3.2.4	4 Sensitivity analyses for individual DOACs1	.5
	3.2.	5 Subgroup analysis by CKD stages1	.6
	3.3	Patients with concomitant AF and Valve disease1	.7
	3.3.	1 Bleeding events1	.8
	3.3.2	2 Stroke incidence	.8
	3.3.3	3 Arterial/systemic embolism and all-cause mortality1	.9
4.	Disc	ussion1	.9
Re	eferenc	es2	23
Fi	gures a	nd Tables2	26
	Figure	1. PRISMA flow diagram of screening process2	26
	-	 Association between number of overall bleeds and anticoagulation choice of DOAC vs in in patients with concomitant atrial fibrillation and CKD. 	27
	-	3. Association between incidence of strokes and anticoagulation choice of DOAC vs warfarin in the strict strict fibrillation and CKD2	
	-	4. Association between number of bleeds and anticoagulation choice of DOAC versus warfarin ents with concomitant atrial fibrillation and CKD of stages 1-2, stage 3, stage 4-5, or on dialysis	
			9

Figure 5. Bleeding outcomes with warfarin vs DOAC in patients with concomitant atrial fibrillation a	and
valve disease	30

Abstract

Objective: To analyze the safety and efficacy of different direct oral anticoagulant agents (DOACs) compared to warfarin in patients with concomitant atrial fibrillation (AF) and valvular disease or concomitant AF and chronic kidney disease (CKD).

Methods: We conducted literature searches in MEDLINE, Embase, and EBM Reviews to examine randomized-controlled trials (RCTs) and non-RCTs that included the aforementioned patient populations treated with warfarin or DOAC (rivaroxaban, dabigatran, apixaban, or edoxaban) and assessed outcomes of bleeding, stroke, or systemic/arterial thromboembolism. Meta-analysis was performed for eligible studies using the Mantel-Haenszel method randomeffects model.

Results: 3,172 studies were screened and 154 studies were selected after two levels of screening. Meta-analysis showed that, in patients with concomitant AF and CKD, DOAC was associated with reduced bleeding in non-RCTs (OR 0.65, 95% Cl [0.49, 0.86], p=0.003), particularly in more severe CKD (eGFR < 60mL/min/1.73m²). Apixaban in particular was associated with reduced bleeding (OR 0.52, 95% Cl [0.44, 0.63], p<0.00001) and stroke incidence (OR 0.60, 95% Cl [0.41, 0.87], p=0.007). In patients with concomitant AF and valvular disease, DOAC was associated with reduced bleeding (OR 0.75, 95% CI [0.57, 0.97], p=0.03) and stroke incidence (OR 0.66, 95% CI [0.47, 0.93], p=0.02) in non-RCTs.

Conclusion: Our study studied populations that are typically excluded from large-scale anticoagulation studies and our findings suggest that DOACs may be superior to warfarin both in the prevention of thromboembolic event and in the reduction of bleeding risks in patients with concomitant CKD or valvular disease.

1. Introduction

In recent years, the use of direct oral anticoagulants (DOACs) such as apixaban, dabigatran, edoxaban, and rivaroxaban have become first-line choice for most anticoagulant indications. DOACs have been shown to be superior to the previous standard of care drug warfarin in treatment of non-valvular atrial fibrillation (AF) in several large-scale trials and is preferred for reasons including having fewer drug and food interactions and eliminating the need for coagulation test monitoring.^{1–3} Namely, RE-LY, ROCKET-AF, ARISTOTLE, and ENGAGE AF-TIMI 48 are four large-scale trials that have been paramount in solidifying the role of DOACs in treatment of atrial fibrillation and crucial to the establishment of many current guidelines^{1,2,4,5}.

The RE-LY trial enrolled 18,113 participants and compared dabigatran with warfarin to show that dabigatran was noninferior to warfarin in terms of primary efficacy outcomes of stroke and systemic embolism and was also superior to warfarin in primary safety outcome of bleeding depends on the dosage. The ROCKET-AF trial enrolled 14,264 participants in comparing rivaroxaban to warfarin, demonstrating that rivaroxaban was noninferior to warfarin for the prevention of stroke or systemic embolism, and in addition led to fewer occurrences of intracranial and fatal bleeding. ARISTOTLE is another trial with 18,201 participants that compared apixaban to warfarin to show apixaban was superior to warfarin in preventing stroke or systemic embolism, and resulted in lower mortality. Lastly, ENGAGE AF-TIMI 48 had 21,105 participants in their comparison of edoxaban to warfarin, and showed that edoxaban was noninferior to warfarin with respect to the prevention of stroke or systemic

embolism and were associated with significantly lower rates of bleeding and death from cardiovascular causes.

All these large-scale studies have excluded patients with concomitant moderate to severe mitral stenosis, patients with bioprosthetic heart valves, as well as patients with severe renal insufficiency (clearance <25 mL or <30 mL). As a result, although DOACs have been established for use in non-valvular AF in patients without comorbidities, it is less clear how efficient and safe DOACs are in these select populations.

Patients with concomitant AF and CKD or concomitant AF and valvular disease are high-risk populations that require extensive consideration for anticoagulation therapies. The present study aimed to review the outcomes of available literature to analyze the safety and efficacy of DOACs compared to warfarin in patients with concomitant AF and valvular disease or concomitant AF and CKD. To further characterize the comparative benefits and risks of DOACs, our review included subgroup analyses of specific DOACs as well as patients with different stages of CKD when applicable.

2. Methods

This study was a systematic review and meta-analysis and was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The protocol of this review is documented on the International prospective register of systematic reviews (PROSPERO) registry under ID CRD42022322633⁶.

2.1 Eligibility criteria

Eligible studies included adult patients (age > 18) with concomitant atrial fibrillation and valvular disease (stenosis, prolapse, or regurgitation of the mitral, tricuspid, pulmonary, or aortic valve) or adult patients with concomitant atrial fibrillation and chronic kidney disease who are treated with warfarin or one of the following DOACs: rivaroxaban, dabigatran, apixaban, or edoxaban. Eligible studies investigated the safety and/or efficacy of the anticoagulant by assessing at least one of the following primary outcomes: incidence of bleeding, incidence of stroke, or incidence of systemic/arterial thromboembolism. If available, secondary outcome of all-cause mortality was also included. In addition, study design was limited to randomized-controlled trials, cohort studies, or case-control studies published in peer-reviewed journals. Conference proceedings and case studies were not included. Studies were also limited to those published in English to mitigate risk of mistranslation. Patients with valvular disease who have mechanical valves were also excluded.

2.2 Information Sources

A research librarian was consulted in the development of the search strategies. Relevant documents were identified through literature searches conducted in databases including MEDLINE, Embase, and EBM Reviews - Cochrane Central Register of Controlled Trials (all via Ovid interface). Keywords and medical subject headings (MeSH) were used to identify all relevant studies and no date restrictions were placed on the searches. Manual citation screening of included trials was also conducted to ensure a comprehensive search. Complete search strategy is available in the **Supplementary materials**.

2.3 Study selection and screening

All literature search results were uploaded to Covidence (Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. Available at <u>www.covidence.org</u>) and duplicates were removed through an automated duplication check conducted by Covidence and a manual duplicate check conducted by reviewers (AL and CW).

Two reviewers (AL and CW) independently conducted a title abstract screening of the eligible retrieved articles using Covidence. Potentially relevant studies then underwent full text screening by both reviewers independently. After each level of screening, conflicts were resolved during a consensus meeting between the two reviewers. Cohen's kappa (K) coefficient was calculated for each level of screening to assess for inter-rater reliability in screening.

2.4 Data items

Data was extracted from the included studies independently by two reviewers using a standard form. Any discrepancies were resolved during a consensus meeting between the two reviewers. Extracted data pertained to study characteristics (authors, publication date, study design, location, number of participants), participant demographics (age, sex, concurrent antiplatelet use, comorbid conditions including heart failure, coronary artery disease, diabetes, hypertension, previous stroke, and previous venous thromboembolism), stage of CKD, intervention (medication and dosage), and measured outcomes (major bleeds, GI bleeds, intracranial bleeds, fatal bleeds, overall strokes, TIA, systemic/arterial thromboembolism, and all-cause mortality). Major bleeding events were defined individually by each trial but, in most cases, the definitions

and criteria from the International Society on Thrombosis and Haemostasis were used⁷. For patients with CKD, stages were defined by individual studies, but most used estimated glomerular filtration rate (eGFR) based on criteria from National Kidney Foundation's KDOQI clinical practice guidelines: stage 1 eGFR >90, stage 2 eGFR 60-89, stage 3 eGFR 30-59, stage 4 eGFR 15-29, and stage 5 eGFR <15⁸.

2.5 Risk of bias assessment

For randomized studies, the second version of the Cochrane risk-of-bias tool for randomized trials (RoB 2) and the Jadad Scale were used to assess the risk of bias in all the studies analyzed in this paper^{9,10}. RoB2 will identify bias in the following domains: 1) risk of bias arising from the randomization process, 2) bias due to deviations from intended interventions, 3) bias due to missing outcome data, 4) bias in measurement of the outcome, and 5) bias in selection of the reported result. The Jadad Scale assessed randomization, blinding, and accounts of all patients. For non-randomized studies, the risk of bias in non-randomized studies of interventions (ROBINS-I) tool and the Newcastle-Ottawa Scale were used to assess the risk of bias^{11,12}. ROBINS-I identified the following domains: 1) bias due to confounding, 2) bias in the selection of participants into the study, 3) bias in classification of interventions, 4) bias due to deviations from intended interventions, 5) bias due to missing data, 6) bias in measurement of outcomes, and 7) bias in the selection of the reported result. The Newcastle-Ottawa Scale assessed selection, comparability, and outcome/exposure. Complete risk-of-bias information can be found in the Supplementary materials (supplementary figures 1 and 2 and supplementary tables 1 and 2).

10

2.6 Data synthesis methods

Meta-analysis was conducted on eligible studies. Data extraction of the number of patients and incidence of events were used. Pooled odds ratios with 95% confidence intervals were obtained. A p-value less than 0.05 was considered statistically significant. A random effects model was used as statistical heterogeneity was high ($I^2>50\%$) based on Higgins I^2 -statistics. The results of the meta-analysis were reported using forest plots and publication bias was assessed using funnel plots. Meta-analysis was conducted using Review Manager (RevMan, Version 5; The Nordic Cochrane Center, Copenhagen).

2.7 Subgroup and sensitivity analyses

When data allowed, we compared primary and secondary outcomes based on subgroups of 1) RCT vs non-RCTs, 2) specific DOAC, 3) stages of CKD, 4) types of bleeding (GI, intracranial, fatal), and 5) overall stroke vs TIA.

3. Results

3.1 Study selection and characteristics

The PRISMA flow diagram of screening process is shown in **Figure 1.** The search strategy yielded 3,172 results that were published between 1946 and 2022. After title and abstract screening, 284 studies remained and underwent full-text screening. Through full-text screening, 110 studies met the inclusion criteria. The PRISMA flow diagram of screening process is shown

below. The characteristics of the included studies are shown in the **Supplementary material** (**Supplementary tables 3-6**). For RCTs examining CKD patients, the range for participants' mean age was 64.2-81 years of age, and the percentage of male participants was between 38.2% - 86.3%. For non-RCTs of CKD patients, the mean age ranged from 59.8 - 84.6 years and the percentage of male participants ranged from 36.7% -95.9%. For both non-RCT and RCT analyses, there are patients included with all five stages of CKD. For RCTs assessing valve disease patients, the mean age ranged from 45.7-92 years and the % male ranged from 20.2-60.9%. Valve disease profiles included mitral stenosis, mitral regurgitation, aortic regurgitation, aortic stenosis, and tricuspid regurgitation with or without valve repair and replacements. For non-RCTs examining valve disease patients, the participants' mean age ranged from 59.2-84 years and the % male participants ranged from 5% to 66.7%. Valve disease profiles included mitral stenosis, tricuspid regurgitation, aortic regurgitation, aortic stenosis, mitral regurgitation, aortic regurgitation, aortic stenosis, tricuspid regurgitation, and pulmonary valve disease with or without valve repair and replacements.

The funnel plots for each one of the main analyses can be found in the **Supplementary** material.

3.2 Patients with concomitant AF and CKD

Our analysis of patients with concomitant AF and CKD assessed 15 RCTs and 65 non-RCTs including 310,478 patients with 55,259 total participants in the RCTs and 255,219 participants in the non-RCTs. For studies that include both patients with and without CKD, only participants with CKD were included in the analysis in this study. If eGFR was specified in study, the patients were included in both overall and sensitivity analyses with different eGFR stages.

3.2.1 Bleeding events

All 15 RCTs and 65 non-RCTs included in our review evaluated overall bleeding as an outcome. Meta-analysis of RCTs showed no significant difference in the number of overall bleeding events between warfarin and DOACs (OR 0.84, 95% Cl [0.68, 1.02], p=0.08). Meta-analysis of the non-RCTs favored DOACs for fewer bleeding events than warfarin (OR 0.65, 95% Cl [0.49, 0.86], p=0.003). (**Figure 2**)

Subgroup analyses included studies that reported on numbers of specific etiologies of bleed (GI bleeds or intracranial bleeds) or bleeds that were fatal. Out of the included studies, 2 RCTs (17,021 participants) and 19 non-RCTs (48,705 participants) reported outcomes for number of GI bleeds (**Supplementary Figure 3 in Supplementary Data**). The two RCTs found that DOACs were associated with an increased odds of GI bleeds compared to warfarin (OR 1.37, 95% Cl [1.04, 1.80], p=0.03). In contrast, the non-RCTs found that DOACs were associated with a decreased odd of GI bleeds compared to warfarin (OR 0.68, 95% Cl [0.50, 0.92], p=0.01). There were 4 RCTs and 14 non-RCTs that examined incidences of intracranial bleeds (**Supplementary Figure 4 in Supplementary Data**). RCTs (29,274 participants) showed that DOAC use over warfarin use had no statistically significant associations with intracranial bleeds (OR 0.67, 95% Cl [0.38, 1.17, p=0.16). In contrast, non-RCTs (33,917 participants) found that DOAC use was associated with decreased incidence of intracranial bleeds (OR 0.52, 95% Cl [0.36, 0.76], p<0.001).

Regarding fatal bleeding events, there were 2 RCTs (14,355 participants) and 3 non-RCTs (total 5,434 participants) that examined this outcome (**Supplementary Figure 5 in Supplementary Data**). We found that DOAC usage was associated with a decreased odds of fatal bleeds in RCTs

(OR 0.56, 95% Cl [0.37, 0.85], p=0.007) but not in non-RCTs (OR 0.14, 95% Cl [0.01, 2.63], p=0.19).

3.2.2 Stroke Incidence

Stroke incidence was assessed in 15 RCTs and 40 non-RCTs including 40,147 and 163,081 participants, respectively.

The analyses of both RCTs and non-RCTs found that using DOACs were associated with decreased odds of stroke in both RCTs (OR 0.81; 95% Cl [0.73, 0.90], p<0.001) and non-RCTs (OR 0.60; 95% Cl [0.43, 0.85], p=0.005). (Figure 3)

Five non-RCTs (6,597 participants) examined TIA in particular (**Supplementary Figure 6 in supplementary data**). The meta-analysis showed that, compared to warfarin, DOAC use compared was not associated with a difference in the incidence of TIA (OR 0.36, 95% Cl [0.09, 1.47], p=0.15).

3.2.3 Systemic/arterial embolism and all-cause mortality

There were 13 non-RCTs including 47,687 participants that analyzed the incidence of systemic/arterial embolism (**Supplementary Figure 7 in supplementary data**). Only one RCT assessed this outcome, so a meta-analysis was not done. The meta-analysis of non-RCTs did not find a difference in the incidence of systemic/arterial embolism between DOACs and warfarin (OR 0.49, 95% Cl [0.13, 1.81], p=0.28).

There were 15 RCTs (45,957 total participants) and 32 non-RCTs (127,806 total participants) that assessed the incidence of all-cause mortality (**Supplementary Figure 8 in supplementary data**). The meta-analysis of both RCTs and non-RCTs found that DOACs were associated with decreased odds of all-cause mortality (RCTs OR 0.89, 95% Cl [0.83, 0.96], p=0.003; non-RCTs OR 0.71, 95% Cl [0.61, 0.81], p<0.001).

3.2.4 Sensitivity analyses for individual DOACs

We conducted a sensitivity analysis for comparisons between warfarin and each individual DOAC. In comparisons between warfarin and apixaban, there were 3 RCTs with 20,647 participants and 11 non-RCTs with 48,091 participants that assessed the incidence of major bleeding (**Supplementary Figure 9 in supplementary data**). The results found apixaban usage to be associated with a decreased odds of bleeding in both meta-analyses (RCTs OR 0.64; 95% Cl [0.55, 0.75], p<0.001; non-RCTs OR 0.52; 95% Cl [0.44, 0.63], p<0.001). The incidence of stroke was assessed in 3 RCTs (21,405 participants) and 3 non-RCTs (22,144 participants) (**Supplementary Figure 10 in supplementary data**). Results favoured apixaban in both RCTs (OR 0.71; 95% Cl [0.61, 0.83], p<0.001) and non-RCTs (OR 0.60; 95% Cl [0.41, 0.87], p=0.007).

Regarding comparisons between warfarin with dabigatran, there were 9 non-RCTs that assessed the number of overall bleeds with 42,120 total participants (**Supplementary Figure 11 in supplementary data**). There was no significant difference found between drugs (OR 0.74, 95% CI [0.53, 1.02], p=0.07). Three non-RCTs with 26,905 total studies compared stroke incidence in warfarin and dabigatran treatments (**Supplementary Figure 12 in supplementary data**). There was no significant difference found (OR 0.97, 95% CI [0.44, 2.13], p=0.94).

15

In comparison of warfarin with edoxaban, there was no significant difference in the odds of number of bleeding events (**Supplementary Figure 13 in supplementary data**) in RCTs (3 studies with 18,419 participants) (OR 0.97, 95% CI [0.65, 1.44], p=0.88) and non-RCTs (2 studies with 6078 participants) (OR 0.65, 95% CI [0.39, 1.11], p=0.12). Sample was insufficient for assessing stroke incidences.

Finally, for comparisons between warfarin and rivaroxaban (**Supplementary Figure 14 in supplementary data**). Bleeding events were assessed in 5 RCTs (3,940 participants) and 9 non-RCTs (50,725 participants). There was no significant difference in RCTs (OR 0.93, 95% CI [0.73, 1.18], p=0.56) but in non-RCT studies, rivaroxaban was favoured over warfarin (OR 0.79, 95% CI [0.71, 0.87], p<0.001). Stroke incidence was assessed in 5 RCTs with 4,120 participants and 7 non-RCTs with 43,892 participants (Supplementary Figure 15 in supplementary data). The RCTs analysis found no significant difference (OR 0.94, 95% CI [0.69, 1.29], p=0.71) while the analysis of non-RCTs favoured rivaroxaban (OR 0.56, 95% CI [0.38, 0.83], p=0.004).

3.2.5 Subgroup analysis by CKD stages

There was a total of 31 non-RCT study including 118,187 patients that assessed number of bleeds for patients of one of more specific stages of CKD. Of those studies, there were 8 studies with 37,718 participants who had stage 1 or 2 CKD, 11 studies with 43,669 patients who had stage 3 CKD, 11 studies with 5,952 patients who had stage 4 or 5 CKD, and 15 studies with 30,848 patients who were on dialysis.

Except for patients with stage 1 or 2 CKD, in all groups DOACs resulted in decreased odds of bleeding over warfarin. Results are shown in **Figure 4.** Each study used some or all of the four

DOACs included in the study, although specific data for specific agents were not available. There was no difference in bleeding events in patients with stage 1 or 2 CKD (OR 0.84, 95% CI [0.54, 1.30], p=0.43). DOAC use was associated with decreased odds of bleeding in patients with stage 3 CKD (OR 0.44, 95% CI [0.22, 0.88], p=0.02), stage 4 or 5 CKD (OR 0.66, 95% CI [0.51, 0.86], p=0.002), and patients on dialysis (OR 0.58, 95% CI [0.47, 0.72], p<0.001).

There were 31 non-RCT studies with 61,379 total patients that assessed incidence of stroke in patients of one or more specific CKD stages (**Supplementary Figure 16 in supplementary data**). Of these, there were 3 studies with 24,060 patients who had stage 1 or 2 CKD, 5 studies with 11,157 patients who had stage 3 CKD, 13 studies with 7,217 patients who had stage 4 or 5 CKD and 17 studies with 18,945 patients who were on dialysis. The subgroup analyses found no significant difference between DOAC usage and the incidence of stroke for all subgroups: stage 1 or 2 CKD patients (OR 0.96, 95% CI [0.78,1.17], p=0.67), stage 3 CKD patients (OR 0.63, 95% CI [0.26, 1.52], p=0.31), stage 4 or 5 CKD patients (OR 0.75, 95% CI [0.49, 1.17], p=0.20), and dialysis patients (OR 0.90, 95% CI [0.33, 2.46], p=0.83).

3.3 Patients with concomitant AF and Valve disease

The analysis of patients with concomitant AF and valve disease assessed 7 RCTs and 23 non-RCTs including a total of 99,299 patients, with 4947 patients included in RCTs and 94,352 patients included in non-RCTs.

3.3.1 Bleeding events

Overall, GI and intracranial bleeds were assessed. Overall bleeding was assessed in 4 RCTs and 11 non RCTs including 6,851 participants in the RCT group and 91,596 in the non-RCT group. There were no significant differences between warfarin and DOACs in the RCTs (OR 0.89, 95% CI [0.61, 1.31], p=0.56), but results favored DOACs in non-RCT studies (OR 0.75, 95% CI [0.57, 0.97], p=0.03). (**Figure 5**)

Non-RCT demonstrated no significant differences between warfarin and DOACs for GI bleed (OR 0.47, 95% CI [0.07, 3.23], p=0.44) and favored DOAC for intracranial bleeding (OR 0.45, 95% CI [0.31, 0.64], p<0.001). The number of RCTs reporting GI and intracranial bleeding was not sufficient for statistical analysis.

Furthermore, when comparing warfarin and the apixaban, there was no significant differences in overall bleeding in non-RCTs (OR 0.28, 95% Cl [0.01, 9.56], p=0.48) (**Supplementary Figure 17 in supplementary data**). The number of studies assessing other DOACs were not sufficient for individual analyses.

3.3.2 Stroke incidence

The incidence of overall stroke and transient ischemic attack between warfarin and DOAC users was evaluated in 4 RCTs including 4,947 participants and 14 non-RCTs including 94,352 participants in this analysis. For stroke, the RCTs demonstrated no significant difference between warfarin and DOAC (OR 0.86, 95% CI [0.64, 1.14], p=0.29) while non-RCTs favoured DOACs (OR 0.66, 95% CI [0.47, 0.93], p=0.02). Non-RCTs demonstrated no significant difference

between warfarin and DOACs for TIA (OR 1.05, 95% CI [0.68, 1.64], p=0.81). (**Figure 6**) The numbers of RCTs reporting TIAs was not sufficient for statistical analysis.

3.3.3 Arterial/systemic embolism and all-cause mortality

Non-RCT's demonstrated no significant differences in arterial/systemic embolisms between warfarin and DOAC users (OR 2.18, 95% CI [0.89, 5.32], p=0.09), but the number of RCTs reporting this outcome was not sufficient for statistical analysis (**Supplementary Figure 18 in supplementary data**). Regarding all-cause mortality, there were no significant differences between warfarin and DOACs in both RCTs (OR 1.01, 95% CI [0.85, 1.19], p=0.94) and non-RCTs (OR 0.77, 95% CI [0.54, 1.09], p=0.14) (**Supplementary Figure 19 in supplementary data**).

4. Discussion

Aging patient population often presents with increasing comorbidities, in particular chronic kidney disease (CKD), which notably increases the risk of embolism and hemorrhage.¹³ Additionally, AF is also associated with a higher risk of developing end-stage renal disease in patients with CKD.^{14,15} Thus, it is important to consider how patients with concomitant CKD will respond to anticoagulation therapy compared to those with normal kidney function.¹⁶ Research into the use of DOACs in valvular AF is also limited.¹⁷ Unlike mechanical heart valves, bioprosthetic heart valves eliminate the need for lifelong warfarin therapy, but not anticoagulation altogether.¹⁸ There is a high risk of thromboembolic events within 3-6 months following bioprosthetic valve surgery, and recent studies note that the risk is further increased

with transcatheter aortic valve replacement compared to a traditional open-heart procedure.^{19,20} Recently, more studies have started to compare clinical outcomes of DOACs with warfarin in this population of patients with AF and bioprosthetic valve replacement and some results have suggested that DOACs could serve as a preferred alternative to warfarin.²¹ In the present study we conducted and exhaustive systematic review of studies evaluating the use

of DOACs in AF patients with CKD and valvular disease since such patients are usually either underrepresented or excluded from large-scale studies. To the best of our knowledge this is the largest and most comprehensive study in this area.

There are several findings from our research. First, in patients with concomitant AF and CKD, we found that DOAC use was associated with a significant reduction in overall bleeding, particularly for patients with more severe CKD (eGFR < 60mL/min/1.73m²), as well as a significantly reduction in all-cause mortality. Second, when analyzing specific DOACs in patients with concomitant AF and CKD, apixaban in particular was associated with reduced overall bleeding and stroke incidence. Lastly, in patients with concomitant AF and valvular disease, DOAC use was associated with significant reduction in bleeding and stroke incidence as well. Taken together, these findings suggest that DOACs are probably a reasonable option in these populations, however, these are still considered off-label indications by regulatory authorities.

The majority of our results appear to be in line with previous meta-analyses looking at similar populations. A systematic review and pairwise network meta-analysis by Su *et al.* focused on patients with AF and CKD stage 3-5 who received one of the four DOACs analyzed in our study²². They also found DOACs to be superior to warfarin in reducing bleeding events and preventing thromboembolic events. Their comparison of different DOACs found apixaban and

20

edoxaban to be superior for reducing bleeds. Another systematic review and meta-analysis by Chen *et al.* also found improve efficacy of DOACs over warfarin particularly in early CKD, but noted research to be still lacking in patients with stage 4-5 CKD and on dialysis²³. Similar to our analysis of patients with concomitant AF and valvular disease, another metaanalysis by Gerfer *et al.* looking specifically at patients with valvular disease who have undergone valve repair or replacement, they found that DOAC reduced major bleeds as well as stroke incidence²⁴. However, a separate meta-analysis by Zhang et al. found that DOACs and warfarin usage were associated with similar risks of stroke incidence, while also acknowledging that more trials were needed²⁵.

Our study does have some limitations. Due to the nature of a systematic review, we could not ensure that all the individual trials included in our analysis defined relevant outcomes in the same manner. In assessing our outcome of bleeding events, most studies did report major bleeding events specifically in accordance to the criteria of International Society of Thrombosis. However, some studies chose to include clinically relevant non-major bleeding which might make the interpretation of the results more difficult, although these events are widely accepted as appropriate outcomes for studies evaluating anticoagulants. As well, we do acknowledge that there may be some extent of reporting bias present as not all of the studies reported all of the outcomes.

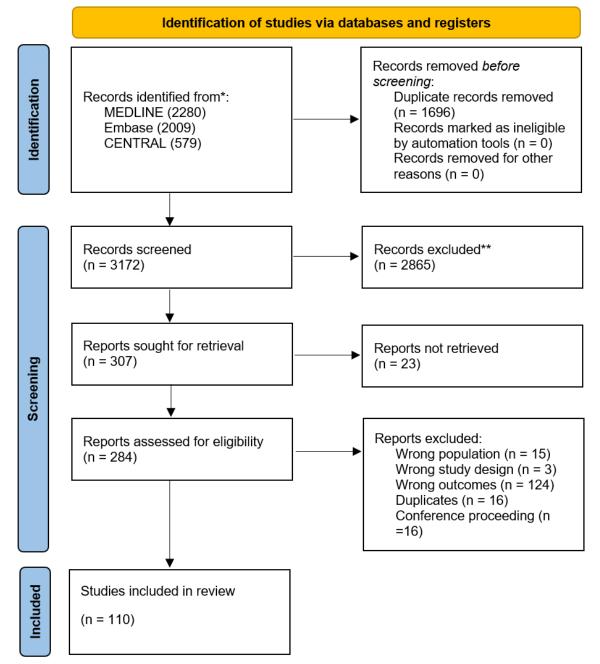
Our study also does identify areas that would benefit from further research. Specifically, there is a relative paucity of data examining specific DOACs or comparisons between them. In patients with concomitant AF and CKD, our study only identified apixaban as superior to warfarin in association with bleeding events, but more trials are needed before a clear clinical recommendation can be made. Similarly, our study identified differences in responses to

21

treatments in patients of specific CKD stages. More studies contrasting patients with early-stage CKD, late-stage CKD, or end-stage renal disease on dialysis will help in forming a stronger conclusion. In summary, our findings suggest that the use of DOACs in patients with CKD, in particular advanced CKD, as well as AF in valvular disease may be appropriate, although these agents are not approved for use in such populations and formal regulatory studies are required.

References

- 1. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. *N Engl J Med*. 2013;369(22):2093-2104. doi:10.1056/NEJMOA1310907
- Granger CB, Alexander JH, McMurray JJV, et al. Apixaban versus warfarin in patients with atrial fibrillation. *N Engl J Med.* 2011;365(11):981-992. doi:10.1056/NEJMOA1107039
- 3. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. *N Engl J Med*. 2011;365(10):883-891. doi:10.1056/NEJMOA1009638
- 4. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. *N Engl J Med*. 2011;365(10):883-891. doi:10.1056/NEJMOA1009638
- Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus Warfarin in Patients with Atrial Fibrillation. *N Engl J Med.* 2009;361(12):1139-1151. doi:10.1056/NEJMOA0905561/SUPPL_FILE/NEJM_CONNOLLY_1139SA1.PDF
- 6. PROSPERO. Accessed May 22, 2022. https://www.crd.york.ac.uk/prospero/
- Schulman S, Kearon C. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. *J Thromb Haemost*. 2005;3(4):692-694. doi:10.1111/J.1538-7836.2005.01204.X
- Levey AS, Coresh J, Balk E, et al. National Kidney Foundation Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification. *Ann Intern Med*. 2003;139(2). doi:10.7326/0003-4819-139-2-200307150-00013
- Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? *Control Clin Trials*. 1996;17(1):1-12. doi:10.1016/0197-2456(95)00134-4
- 10. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in


randomised trials. BMJ. 2019;366. doi:10.1136/BMJ.L4898

- 11. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ*. 2016;355. doi:10.1136/BMJ.I4919
- Ottawa Hospital Research Institute. Accessed December 21, 2023. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
- Sy J, Hsiung JT, Edgett D, Kalantar-Zadeh K, Streja E, Lau WL. Cardiovascular and Bleeding Outcomes with Anticoagulants across Kidney Disease Stages: Analysis of a National US Cohort. *Am J Nephrol.* 2021;52(3):199-208. doi:10.1159/000514753
- Heine GH, Brandenburg V, Schirmer SH. Oral Anticoagulation in Chronic Kidney
 Disease and Atrial Fibrillation: The Use of Non-Vitamin K-Dependent Anticoagulants and
 Vitamin K Antagonists. *Dtsch Arztebl Int*. 2018;115(17):287.
 doi:10.3238/ARZTEBL.2018.0287
- Kiuchi MG. Atrial fibrillation and chronic kidney disease: A bad combination. *Kidney Res Clin Pract*. 2018;37(2):103. doi:10.23876/J.KRCP.2018.37.2.103
- Heine GH, Brandenburg V, Schirmer SH. Oral Anticoagulation in Chronic Kidney
 Disease and Atrial Fibrillation: The Use of Non-Vitamin K-Dependent Anticoagulants and
 Vitamin K Antagonists. *Dtsch Arztebl Int*. 2018;115(17):287.
 doi:10.3238/ARZTEBL.2018.0287
- Fauchier L, Philippart R, Clementy N, et al. How to define valvular atrial fibrillation?
 Arch Cardiovasc Dis. 2015;108(10):530-539. doi:10.1016/J.ACVD.2015.06.002
- Sun JCJ, Davidson MJ, Lamy A, Eikelboom JW. Antithrombotic management of patients with prosthetic heart valves: current evidence and future trends. *Lancet*. 2009;374(9689):565-576. doi:https://doi.org/10.1016/S0140-6736(09)60780-7

- Sachdev S, Bardia N, Nguyen L, Omar B. Bioprosthetic Valve Thrombosis. *Cardiol Res.* 2018;9(6):335. doi:10.14740/CR789
- 20. Bioprosthetic valve thrombosis: Are we not seeing the wood for the trees? -ScienceDirect. Accessed December 5, 2021. https://www-sciencedirectcom.proxy1.lib.uwo.ca/science/article/pii/S0022522316308807?via%3Dihub
- Siontis KC, Yao X, Gersh BJ, Noseworthy PA. Direct Oral Anticoagulants in Patients With Atrial Fibrillation and Valvular Heart Disease Other Than Significant Mitral Stenosis and Mechanical Valves. *Circulation*. 2017;135(7):714-716. doi:10.1161/CIRCULATIONAHA.116.026793
- 22. Su X, Yan B, Wang L, Lv J, Cheng H, Chen Y. Oral Anticoagulant Agents in Patients With Atrial Fibrillation and CKD: A Systematic Review and Pairwise Network Metaanalysis. *Am J Kidney Dis*. 2021;78(5):678-689.e1. doi:10.1053/J.AJKD.2021.02.328
- Chen HY, Ou SH, Huang CW, et al. Efficacy and Safety of Direct Oral Anticoagulants vs Warfarin in Patients with Chronic Kidney Disease and Dialysis Patients: A Systematic Review and Meta-Analysis. *Clin Drug Investig*. 2021;41(4):341-351. doi:10.1007/S40261-021-01016-7
- Gerfer S, Djordjevic I, Eghbalzadeh K, Mader N, Wahlers T, Kuhn E. Direct oral anticoagulation in atrial fibrillation and heart valve surgery-a meta-analysis and systematic review. *Ther Adv Cardiovasc Dis.* 2022;16. doi:10.1177/17539447221093963
- Zhang Y, Chen M. Direct Oral Anticoagulants in Patients with Atrial Fibrillation and Significant Mitral Stenosis-a Preliminary Meta-Analysis. *Cardiovasc drugs Ther*.
 Published online 2023. doi:10.1007/S10557-023-07451-2

Figures and Tables

Figure 1. PRISMA flow diagram of screening process

Figure 2. Association between number of overall bleeds and anticoagulation choice of DOAC vs warfarin in patients with concomitant atrial fibrillation and CKD.

DOAC	Warfarin	Odds Ratio	Odds Ratio	

tudu or Subaroup	DO.		War		Weight B	Odds Ratio	Odds Ratio
tudy or Subgroup .1.1 RCT	Events	rotal	Events	rotal	weight N	A-H, Random, 95% CI	M-H, Random, 95% Cl
ohula 2016	418	7035	524	7036	3.6%	0.79 [0.69, 0.90]	-
eVriese 2020	0	0	0	0		Not estimable	
eVriese 2021	0	0	0	0		Not estimable	
ikelboom 2012	0	0	0	0		Not estimable	
ox 2011	128	1474	135	1476	3.5%	0.94 [0.73, 1.22]	*
lart 2011	0	0	5	267	2.60	Not estimable	_
ijazi 2014 ijazi 2021	372 156	6029 1131	320 207	5957 1046	3.6% 3.5%	1.16 [0.99, 1.35]	- T
ohnloser 2012	230	9120	341	9081	3.5%	0.65 [0.52, 0.81] 0.66 [0.56, 0.79]	+
ohnloser 2019	0	0	0	0	0.070	Not estimable	
ori 2013	17	141	20	143	2.6%	0.84 [0.42, 1.69]	
ip 2017	17	1067	13	1082	2.5%	1.33 [0.64, 2.75]	-
pGYH 2017	17	1095	13	1104	2.5%	1.32 [0.64, 2.74]	-
atsui 2022	131	706	0	0		Not estimable	
tanifer 2017	7	136	19	133	2.2%	0.33 [0.13, 0.80]	
ubtotal (95% CI)		27934		27325	27.7%	0.84 [0.68, 1.02]	•
otal events eterogeneity: Tau² =	1493 0.06; Chi	r = 38.25.	1597 df = 8 (P	< 0.0000	1); I² = 79%		
est for overall effect:	Z=1.75 ((P = 0.08)					
1.2 Non-RCT							
hatia 2019	20	152	0	0		Not estimable	
onde 2016	0	0	1538	7407		Not estimable	
onde 2017	0	0	1347	10423		Not estimable	
onnemeier 2019	0	0	0	0		Not estimable	
arrero 2014	0	0	277	5292		Not estimable	
han 2009 han 2016	0	0	0	0		Not estimable	
han 2015 han 2016	0	0	0	0		Not estimable	
han 2016 han 2019	U 0	0	0	0		Not estimable	
han 2019 han 2020	164	20967	58	5812	3.4%	Not estimable 0.78 [0.58, 1.06]	
hang 2019	14	20907	25	273	2.6%	0.65 [0.33, 1.28]	
hantrarat 2021a	0	220	126	1659	2.5 %	Not estimable	
hantrarat 2021b	6	192	103	1741	2.3%	0.51 [0.22, 1.18]	+
hen 2014	0	0	0	0		Not estimable	
oleman 2019	99	1896	418	4848	3.5%	0.58 [0.47, 0.73]	+
avis 2020	5	15	18	76	1.7%	1.61 [0.49, 5.33]	-
iLullo 2018	0	0	0	0		Not estimable	
ikelboom 2012	0	0	0	0		Not estimable	
lis 2021	2	97	4	155	1.1%	0.79 [0.14, 4.42]	
azio 2018	0	46	0	0		Not estimable	
u 2021	14	125	30	125	2.6%	0.40 [0.20, 0.80]	
arg 2016	0	0	26	119		Not estimable	
arza-Mayers 2018	5	17	0	0		Not estimable	
enovesi 2016	0	0	0	0	0.00	Not estimable	
urevitz 2021	11	689	12 143	689	2.3%	0.92 [0.40, 2.09]	
ioue 2018 and 2020	0	0		2782 0		Not estimable Not estimable	
ang 2020 un 2015	99 0	496 0	0 1774	11822		Not estimable	
ai 2017	0	0	181	888			
alil 2016	23	864	36	1710	3.0%	Not estimable 1.27 [0.75, 2.16]	
odani 2018	0	0	96	4243	0.0 10	Not estimable	
oretsune 2022	91	4523	132	4523	3.5%	0.68 [0.52, 0.89]	-
ai 2009	0	0	32	232	0.0 /0	Not estimable	
augesen 2019	15	552	55	1008	2.9%	0.48 [0.27, 0.86]	
ee 2015	6	59	71	174	2.2%	0.16 [0.07, 0.40]	
ee 2017	0	0	0	0		Not estimable	
in 2021	23	173	560	3185	3.1%	0.72 [0.46, 1.13]	-+
oo 2018	23	2596	0	0		Not estimable	
akani 2020	975	10794	1856	10939	3.6%	0.49 [0.45, 0.53]	•
atusik 2021	14	90	0	0		Not estimable	
itsuma 2015	0	0	7	27		Not estimable	
ovikova 2021	3	79	0	0		Not estimable	
nan 2019	0	0	13	115		Not estimable	
hafer 2018	4	273	22	261	1.9%	0.16 [0.05, 0.48]	
nah 2014	0	0	149	756		Not estimable	
hen 2015	0	0	153	1838	0.0~	Not estimable	L
hin 2018	863	3206	805	3206	3.6%	1.10 [0.98, 1.23]	_ T
ontis 2018	129	2351	715 26	7053	3.6%	0.51 [0.42, 0.62]	
anifer 2020 / 2022	10	136		133	2.4%	0.33 [0.15, 0.71]	
	-	0	973	5960 1651		Not estimable	
an 2019 anderWall 2021	0 38	0 4873	407 0	1651 0		Not estimable Not estimable	
anderWall 2021 'akasugi 2014	38	4873	3	28		Notestimable	
ang 2015	Ū.	0	22	59		Not estimable	
eir 2017	54	1797	132	1961	3.4%	0.43 [0.31, 0.59]	
eir 2020	66	2317	144	2317	3.4%	0.44 [0.33, 0.60]	
etmore 2020	274	10735	270	8431	3.6%	0.79 [0.67, 0.94]	+
ilson 2019	324	4362	1743	23109	3.6%	0.98 [0.87, 1.11]	+
inkelmayer 2011	0	0	48	237		Not estimable	
anagisawa 2018	12	552	10	552	2.3%	1.20 [0.52, 2.81]	<u> </u>
10 2017	24	410	0	0		Not estimable	
ao 2020	2121	22156	397	10680	3.6%	2.74 [2.46, 3.06]	+
odogawa 2016	0	0	3	30		Not estimable	
oon 2017	0	0	0	0		Not estimable	
2018	33	5856	35	3016	3.1%	0.48 [0.30, 0.78]	
ubtotal (95% CI)		103674		151545	72.3%	0.65 [0.49, 0.86]	◆
otal events	5564		14995				
eterogeneity: Tau² = est for overall effect:	0.43; Chi	P = 764.77 P = 0.000	', df = 24	(P < 0.00	001); I² = 97	7%	
	∠ = 3.UU (,				
otal (95% CI)		131608		178870	100.0%	0.70 [0.57, 0.86]	◆
	7057		16592				
otal events							
	0.31; Chi		, df = 33	(P < 0.00	001); l² = 96	5%	0.01 0.1 1 10

Figure 3. Association between incidence of strokes and anticoagulation choice of DOAC vs warfarin in patients with concomitant atrial fibrillation and CKD.

Study or Subarows	DOA		Warf		Woight	Odds Ratio	Odds Ratio M-H, Random, 95% Cl
tudy or Subgroup .5.1 RCT	Events	rotal	Events	rotal	weight	M-H, Random, 95% Cl	wi-n, realdom, 95% Ci
Bohula 2016	201	7035	317	7036	6.9%	0.00 0.75 1.041	-
DeVriese 2020	281 2	46	5	7030	1.4%	0.88 [0.75, 1.04] 0.35 [0.07, 1.93]	
Devriese 2020 DeVriese 2021	4	40	7	44	2.1%	0.50 [0.14, 1.86]	
Eikelboom 2012	4	40	ó	44	2.170	Not estimable	
Fox 2011	66	1474	65	1476	6.1%	1.02 [0.72, 1.44]	
Hart 2011	0	0	5	267	0.170	Not estimable	
Hijazi 2014	9	141	9	143	3.2%	1.02 [0.39, 2.64]	
Hijazi 2021	136	1513	183	1422	6.6%	0.67 [0.53, 0.85]	+
Hohnloser 2012	141	9120	185	9081	6.7%	0.76 [0.61, 0.94]	-
Hohnloser 2019	0	0	0	0	0.1 10	Not estimable	
Hori 2013	9	141	9	143	3.2%	1.02 [0.39, 2.64]	
_ip 2017	0	0	0	0	5.2.70	Not estimable	
_ipGYH 2017	Ő	Ő	Ŭ	Ŭ		Not estimable	
latsui 2022	27	706	Ŭ	Ő		Not estimable	
Stanifer 2017	6	136	10	133	2.9%	0.57 [0.20, 1.61]	
Subtotal (95% CI)		20358		19789	39.0%	0.81 [0.73, 0.90]	•
Total events	681		795				•
leterogeneity: Tau ² =		i² = 7.90		= 0.44 Y P	² = 0%		
est for overall effect: .				0.117,1	0.2		
.5.2 Non-RCT							
3hatia 2019	3	152	0	0		Not estimable	
Bonnemeier 2019	156	6102	0	0		Not estimable	
Carrero 2014	0	0	152	5292		Not estimable	
Chan 2009	0	0	74	747		Not estimable	
Chan 2015	11	281	221	8064	4.7%	1.45 [0.78, 2.68]	+
Chan 2016	0	0	0	67		Not estimable	
Chantrarat 2021b	2	192	50	1741	1.9%	0.36 [0.09, 1.47]	
Chen 2014	0	0	15	294		Not estimable	
Coleman 2019	23	1896	98	4848	5.5%	0.60 [0.38, 0.94]	
Davis 2020	0	15	0	76		Not estimable	
DiLullo 2018	0	247	25	100	0.6%	0.01 [0.00, 0.10]	•
azio 2018	0	46	0	0		Not estimable	
u 2021	6	125	10	125	2.8%	0.58 [0.20, 1.65]	
3arg 2016	0	0	13	119		Not estimable	
<ai 2017<="" td=""><td>0</td><td>0</td><td>78</td><td>888</td><td></td><td>Not estimable</td><td></td></ai>	0	0	78	888		Not estimable	
Kodani 2018	0	0	73	4243		Not estimable	
Koretsune 2022	180	4542	273	4542	6.8%	0.65 [0.53, 0.78]	-
.ai 2009	0	0	21	232		Not estimable	
_ee 2015	3	174	10	59	2.1%	0.09 [0.02, 0.32]	
_ee 2017	0	0	56	589		Not estimable	
_in 2021	7	173	236	3185	3.9%	0.53 [0.24, 1.14]	
.00 2018	16	2596	0	0		Not estimable	
dakani 2020	537	10794	1100	10939	7.0%	0.47 [0.42, 0.52]	•
/latusik 2021	13	117	0	0		Not estimable	
Phan 2019	0	0	12	115		Not estimable	
Schafer 2018	2	273	1	261	0.8%	1.92 [0.17, 21.29]	
Shah 2014	0	0	52	756		Not estimable	
Shen 2015	0	0	92	1838	0.00	Not estimable	
3hin 2018	305	3206	301	3206	6.9%	1.01 [0.86, 1.20]	Ť
Sy 2022	0	0	388	5960		Not estimable	
Fan 2019	0	0	124	1651		Not estimable	
/ander/Wall 2021	25	4873	0	0		Not estimable	
Vakasugi 2014 Nang 2015	0	0	8	28		Not estimable	
Nang 2015 Naix 2017	0	1000	5	59	4.000	Not estimable	
Veir 2017 Niloop 2010	14	1290	75	2468	4.9%	0.35 [0.20, 0.62]	
Vilson 2019 Vinkolmouor 2011	259	4362	990	23109	6.9%	1.41 [1.23, 1.62]	-
Vinkelmayer 2011	0	0	38	237	6.20	Not estimable	
′ao 2020 (adamawa 2046	89	22156	65	10680	6.2%	0.66 [0.48, 0.91]	
/odogawa 2016 (ang 2017	0	0	2	30		Not estimable	
(oon 2017 Subtotal (95% CI)	0	63612	310	2921	61.0%	Not estimable	
Subtotal (95% CI)	4054	63612	4080	99469	61.0%	0.60 [0.43, 0.85]	-
Fotal events Heterogeneity: Tau² = Fest for overall effect :				3 (P ≺ 0.0	0001); I² =	= 94%	
esctor overall effect.	∠ = 2.85 ((r = 0.00	4)				
Fotal (95% CI)		83970		119258	100.0%	0.68 [0.54, 0.86]	•
	2332		5763				•

28

Figure 4. Association between number of bleeds and anticoagulation choice of DOAC versus warfarin in patients with concomitant atrial fibrillation and CKD of stages 1-2, stage 3, stage 4-5, or on dialysis.

Study or Subgroup	DOA	C	Warfa	arin		Odds Ratio	Odds Ratio
0 1 1 01 1 0	Events		Events		Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
2.1.1 Stage 1-2							
Bonde 2016	0	0	676	2730		Not estimable	
Bonde 2017	Ō	0	679	4524		Not estimable	
Carrero 2014	0	0	118	2584		Not estimable	
Chantrarat 2021a	0	0	33	578		Not estimable	
Jang 2020	50	514	0	0		Not estimable	
Jun 2015	0	0	640	6140		Not estimable	
Shin 2018	537	2083	520	2084	9.5%	1.04 [0.91, 1.20]	+
Yao 2020	265	10880	201	5601	9.3%	0.67 [0.56, 0.81]	+
Subtotal (95% CI)	205	13477	201	24241	18.7%	0.84 [0.54, 1.30]	
	050	13411	2067	27271	10.1 /0	0.04 [0.04, 1.00]	•
Total events Heterogeneity: Tau ² = Test for overall effect: 2				P = 0.00	02); I² = 9	3%	
2.1.2 Stage 3							
Bhatia 2019	14	112	0	0		Not estimable	
Bonde 2016	0	0	676	2730		Not estimable	
Bonde 2017	0	0	679	4524		Not estimable	
Carrero 2014	0	0	130	2270		Not estimable	
Chantrarat 2021a	Ō	0	67	933		Not estimable	
Jang 2020	41	118	0	0		Not estimable	
Jun 2015	0	0	1021	5041		Not estimable	
Lee 2015	4	174	37	59	3.4%	0.01 [0.00, 0.04]	+
Shin 2018	326	1023	285	1125	9.3%	1.38 [1.14, 1.66]	-
Wetmore 2020	274	1023	200	8431	9.3%		+
		4343		2051	9.3%	0.79 [0.67, 0.94]	_
Yao 2020 Subtotal (95% CI)	128	4343 16505	103	2051 27164	8.8% 30.8%	0.57 [0.44, 0.75] 0.44 [0.22, 0.88]	
	787	10000	2262	21104	30.0%	0.44 [0.22, 0.00]	-
Total events			3268				
Heterogeneity: Tau ² = Test for overall effect: 2				P < 0.00	001); I*=	97%	
2.1.3 Stage 4-5							
Bonde 2016	Π	Ω	89	219		Not estimable	
Bonde 2017	0	0	11	372		Not estimable	
Carrero 2014	0	0	25	372		Not estimable	
	14	228	25	273	5.8%		
Chang 2019						0.65 [0.33, 1.28]	
Elis 2021	2	97	4	155	1.8%	0.79 [0.14, 4.42]	
Fazio 2018	0	46	0	0		Not estimable	
Fu 2021	14	125	30	125	5.7%	0.40 [0.20, 0.80]	
Jang 2020	7	25	0	0		Not estimable	
Jun 2015	0	0	99	586		Not estimable	
Matusik 2021	0	0	14	90		Not estimable	
			71	1076	8.5%	0.73 [0.54, 0.99]	
Yao 2020	106	2163					
	106	2163 2684		3268	21.8%	0.66 [0.51, 0.86]	◆
Yao 2020	106 143		368	3268	21.8%		•
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² =	143 0.00; Chi	2684 ² = 2.48,	368 df = 3 (P				•
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 2 2.1.4 Dialysis	143 0.00; Chi Z = 3.15 (2684 F = 2.48, F = 0.00	368 df = 3 (P 2)	= 0.48);	I ^z = 0%	0.66 [0.51, 0.86]	•
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect <i>:</i> 2.1.4 Dialysis Chan 2015	143 0.00; Chi Z = 3.15 (174	2684 ² = 2.48, P = 0.00 281	368 df = 3 (P 2) 6031	= 0.48); 8064	I² = 0% 8.9%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70]	 ▲ →
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020	143 0.00; Chi Z = 3.15 (174 5	2684 ² = 2.48, ² = 0.00 281 15	368 df = 3 (P 2) 6031 18	= 0.48); 8064 76	I ^z = 0%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33]	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020 Garg 2016	143 0.00; Chi Z = 3.15 (174 5 0	2684 ² = 2.48, (P = 0.00) 281 15 0	368 df = 3 (P 2) 6031 18 26	= 0.48); 8064 76 119	I² = 0% 8.9%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020	143 0.00; Chi Z = 3.15 (174 5	2684 ² = 2.48, ² = 0.00 281 15	368 df = 3 (P 2) 6031 18	= 0.48); 8064 76	I² = 0% 8.9%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33]	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020 Garg 2016 Garza-Mayers 2018	143 0.00; Chi Z = 3.15 (174 5 0	2684 ² = 2.48, (P = 0.00) 281 15 0	368 df = 3 (P 2) 6031 18 26	= 0.48); 8064 76 119	I² = 0% 8.9%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: : 2.1.4 Dialysis Chan 2015 Davis 2020 Garg 2016 Garza-Mayers 2018 Kai 2017	143 0.00; Chi Z = 3.15 (174 5 0 0	2684 = 2.48, P = 0.00 281 15 0 0	368 df = 3 (P 2) 6031 18 26 5	= 0.48); 8064 76 119 17	I² = 0% 8.9%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ²¹ = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020 Garza-Mayers 2018 Kai 2017 Lin 2021	143 0.00; Chi Z = 3.15 (174 5 0 0 0 23	2684 P = 2.48, P = 0.00: 281 15 0 0 0 173	368 df = 3 (P 2) 6031 18 26 5 181 560	= 0.48); 8064 76 119 17 888 3185	l² = 0% 8.9% 3.1%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 1.13]	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020 Garg 2016 Garga-Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015	143 0.00; Chi Z = 3.15 (174 5 0 0 0 23 0	2684 ² = 2.48, ² = 0.00 281 15 0 0 173 0	368 df = 3 (P 2) 6031 18 26 5 181 560 7	= 0.48); 8064 76 119 17 888 3185 27	l² = 0% 8.9% 3.1%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 1.13] Not estimable	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: : 2.1.4 Dialysis Chan 2015 Davis 2020 Garga-Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015 Phan 2019	143 0.00; Chi Z = 3.15 (174 5 0 0 0 0 23 0 0 0	2684 ² = 2.48, ² = 0.00 281 15 0 0 173 0 0 0 173 0 0	368 df = 3 (P 2) 6031 18 26 5 181 560 7 13	= 0.48); 8064 76 119 17 888 3185 27 115	l² = 0% 8.9% 3.1%	0.66 [0.51, 0.86] 0.65 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 113] Not estimable Not estimable	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020 Garg 2016 Garza-Mayers 2018 Kai 2017 Kai 2017 Mitsuma 2015 Phan 2019 Shah 2014	143 0.00; Chi Z = 3.15 (174 5 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2684 ² = 2.48, ² = 0.00: 281 15 0 0 0 173 0 0 0 0 0 0 0 0 0 0 0 0 0	368 df = 3 (P 2) 6031 18 26 5 181 560 7 13 149	= 0.48); 8064 76 119 17 888 3185 27 115 756	I [≠] = 0% 8.9% 3.1% 7.5%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 1.13] Not estimable Not estimable Not estimable	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020 Garg 2016 Garg-Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015 Phan 2019 Shah 2014 Siontis 2018	143 0.00; Chi Z = 3.15 (174 5 0 0 0 23 0 0 0 0 23 0 0 0 23	2684 P = 2.48, P = 0.00 281 15 0 0 173 0 0 0 2351	368 df = 3 (P 2) 6031 18 26 5 181 560 7 13 149 715	= 0.48); 8064 76 119 17 888 3185 27 115 756 7053	l² = 0% 8.9% 3.1%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 1.13] Not estimable Not estimable Not estimable 0.51 [0.42, 0.62]	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau [®] = Test for overall effect: J 2.1.4 Dialysis Chan 2015 Davis 2020 Garga-Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015 Phan 2019 Shah 2014 Siontis 2018 Sy 2022	143 0.00; Chi Z = 3.15 (174 5 0 0 0 23 0 0 23 0 0 0 129 0 0	2684 P = 2.48, P = 0.00 281 15 0 0 173 0 0 173 0 0 2351 0	368 df = 3 (P 2) 6031 18 26 5 181 560 7 13 149 715 973	= 0.48); 8064 76 119 17 888 3185 27 115 756 7053 5960	I [≠] = 0% 8.9% 3.1% 7.5%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 1.13] Not estimable Not estimable 0.51 [0.42, 0.62] Not estimable	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020 Garg 2016 Garga-Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015 Phan 2019 Shah 2014 Siontis 2018 Sy 2022 Tan 2019	143 0.00; Chi Z = 3.15 (174 5 0 0 0 23 0 0 23 0 0 0 129 0 0 0 0 0	2684 ² = 2.48, ^(P) = 0.000 281 15 0 0 173 0 0 173 0 0 2351 0 0 0 0 0 0 0 0 0 0 0 0 0	368 df = 3 (P 2) 6031 18 26 5 181 560 7 13 149 715 973 407	= 0.48); 8064 76 119 17 888 3185 27 115 756 7053 5960 1651	I [≠] = 0% 8.9% 3.1% 7.5%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 1.13] Not estimable Not estimable 0.51 [0.42, 0.62] Not estimable Not estimable Not estimable	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau" = Test for overall effect: 2 C.1.4. Dialysis Chan 2015 Davis 2020 Garg 2016 Garga-Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015 Phan 2019 Shah 2014 Siontis 2018 Sy 2022 Tan 2019 Wakasugi 2014	143 0.00; Chi Z = 3.15 (174 5 0 0 0 0 23 0 0 0 0 0 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2684 ² = 2.48, ² = 0.000 281 15 0 0 173 0 0 2351 0 0 0 0 0 0 0 0 0 0 0 0 0	368 df = 3 (P 2) 6031 18 26 5 181 560 7 13 149 715 973 407 3	= 0.48); 8064 76 119 17 888 3185 27 115 7053 5960 1651 28	I [≠] = 0% 8.9% 3.1% 7.5%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable 0.72 [0.46, 1.13] Not estimable Not estimable Not estimable 0.51 [0.42, 0.62] Not estimable Not estimable Not estimable Not estimable	-
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau [®] = Test for overall effect: J 2.1.4 Dialysis Chan 2015 Davis 2020 Garg.2016 Garga-Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015 Phan 2019 Shah 2014 Siontis 2018 Sy 2022 Tan 2019 Wakasugi 2014	143 0.00; Chi Z = 3.15 (174 0 0 0 23 0 0 23 0 0 0 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2684 ² = 2.48, P = 0.002 281 15 0 0 173 0 0 173 0 0 0 2351 0 0 0 0 0 0 0 0 0 0 0 0 0	368 df = 3 (P 2) 6031 18 26 181 560 7 13 149 715 973 407 3 22	= 0.48); 8064 76 119 17 888 3185 27 115 756 7053 5960 1651 28 59	I [≠] = 0% 8.9% 3.1% 7.5%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 1.13] Not estimable 0.51 [0.42, 0.62] Not estimable Not estimable	-
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020 Garg-2Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015 Phan 2019 Shah 2014 Siontis 2018	143 0.00; Chi Z = 3.15 (174 5 0 0 0 0 23 0 0 0 0 0 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2684 ² = 2.48, ² = 0.000 281 15 0 0 173 0 0 2351 0 0 0 0 0 0 0 0 0 0 0 0 0	368 df = 3 (P 2) 6031 18 26 5 181 560 7 13 149 715 973 407 3	= 0.48); 8064 76 119 17 888 3185 27 115 7053 5960 1651 28	I [≠] = 0% 8.9% 3.1% 7.5%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable 0.72 [0.46, 1.13] Not estimable Not estimable Not estimable 0.51 [0.42, 0.62] Not estimable Not estimable Not estimable Not estimable	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020 Garg 2016 Garga-Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015 Phan 2019 Shah 2014 Siontis 2018 Sy 2022 Tan 2019 Wakasugi 2014 Wang 2015 Yodogawa 2016	143 0.00; Chi Z = 3.15 (174 5 0 0 0 23 0 0 0 0 129 0 0 0 0 0 0 331 0.02; Chi	2684 ² = 2.48, P = 0.00: 281 15 0 0 173 0 0 2351 0 0 0 2351 0 0 0 2352 ² ² ² ² ³ ³ ³ ⁶ ⁶ ⁶ ⁷ ⁸ ⁸ ⁸ ⁸ ⁸ ⁹ ⁸ ⁸ ⁸ ⁹ ⁸ ⁸ ⁹ ⁸ ⁹ ⁸ ⁹ ⁹ ⁸ ⁹ ⁹ ⁹ ⁹ ⁹ ⁹ ⁹ ⁹	368 df = 3 (P 2) 6031 18 26 5 181 560 7 13 149 715 973 407 3 22 3 9113 df = 3 (P	= 0.48); 8064 76 119 17 888 3185 27 115 756 7053 5960 1651 28 59 30 28028	² = 0% 8.9% 3.1% 7.5% 9.2% 28.7%	0.66 [0.51, 0.86] 0.65 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 1.13] Not estimable 0.51 [0.42, 0.62] Not estimable Not estimable Not estimable Not estimable Not estimable Not estimable	◆
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020 Garg 2016 Garga-Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015 Phan 2019 Shah 2014 Siontis 2018 Sy 2022 Tan 2019 Wakasugi 2014 Wang 2015 Yodogawa 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect :	143 0.00; Chi Z = 3.15 (174 5 0 0 0 23 0 0 0 0 129 0 0 0 0 0 0 331 0.02; Chi	2684 ² = 2.48, P = 0.00: 281 15 0 0 173 0 0 2351 0 0 0 2351 0 0 0 2352 ² ² ² ² ³ ³ ³ ⁶ ⁶ ⁶ ⁷ ⁸ ⁸ ⁸ ⁸ ⁸ ⁹ ⁸ ⁸ ⁸ ⁹ ⁸ ⁸ ⁹ ⁸ ⁹ ⁸ ⁹ ⁹ ⁸ ⁹ ⁹ ⁹ ⁹ ⁹ ⁹ ⁹ ⁹	368 df = 3 (P 2) 6031 18 26 5 181 560 7 13 149 715 973 407 3 22 3 9113 df = 3 (P	= 0.48); 8064 76 119 17 888 3185 27 715 5560 7053 5960 1651 28 59 30 28028 = 0.18);	² = 0% 8.9% 3.1% 7.5% 9.2% 28.7% ² = 39%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 1.13] Not estimable Not estimable 0.51 [0.42, 0.62] Not estimable Not estimable Not estimable Not estimable Not estimable Not estimable Not estimable 0.58 [0.47, 0.72]	•
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020 Garg 2016 Garga-Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015 Phan 2019 Shah 2014 Siontis 2018 Sy 2022 Tan 2019 Wakasugi 2014 Wang 2015 Yodogawa 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : Total (95% CI)	143 0.00; Chi Z = 3.15 (174 5 0 0 0 23 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0	2684 [≠] = 2.48, ^P = 0.00 281 15 0 0 173 0 0 2351 0 0 0 2351 0 0 0 2351 0 0 2352 0 0 0 2352 0 0 0 2352 0 0 2352 0 0 0 2352 0 0 0 2352 0 0 0 0 2352 0 0 0 0 2352 0 0 0 0 0 2355 0 0 0 0 0 0 0 0 0 0 0 0 0	368 df = 3 (P 2) 6031 18 26 5 181 149 715 5 181 715 715 713 407 7 3 22 3 3 973 973 973 973 973 3 407 3 2 2 3 3 9713 3 2 2 3 3	= 0.48); 8064 76 119 17 888 3185 27 715 5560 7053 5960 1651 28 59 30 28028 = 0.18);	² = 0% 8.9% 3.1% 7.5% 9.2% 28.7%	0.66 [0.51, 0.86] 0.65 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 1.13] Not estimable 0.51 [0.42, 0.62] Not estimable Not estimable Not estimable Not estimable Not estimable Not estimable	•
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ^a = Test for overall effect: J 2.1.4 Dialysis Chan 2015 Davis 2020 Garg 2016 Garga-Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015 Phan 2019 Shah 2014 Siontis 2018 Sy 2022 Tan 2019 Wakasugi 2014 Wang 2015 Yodogawa 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ^a = Test for overall effect: J Total (95% CI) Total events	143 0.00; Chi Z = 3.15 (174 5 0 0 0 23 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0	2684 ² = 2,48, ^P = 0.00 2811 15 0 0 0 0 0 0 0 0 0 0 0 0 0	368 df=3 (P 2) 6031 18 26 5 181 560 7 7 13 149 715 973 407 7 13 22 3 407 7 13 3 22 3 3 9113 df=3 (P 001) 15616	= 0.48); 8064 766 119 17 878 883185 27 715 5960 1651 28 30 28028 = 0.18); 82701	² = 0% 8.9% 3.1% 7.5% 9.2% 28.7% ² = 39% 100.0%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 113] Not estimable Not estimable Not estimable Not estimable Not estimable Not estimable 0.58 [0.47, 0.72] 0.64 [0.49, 0.82]	
Yao 2020 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect : 2.1.4 Dialysis Chan 2015 Davis 2020 Garg 2016 Garga-Mayers 2018 Kai 2017 Lin 2021 Mitsuma 2015 Phan 2019 Shah 2014 Siontis 2018 Sy 2022 Tan 2019 Wakasugi 2014 Wang 2015 Yodogawa 2016 Subtotal (95% CI)	143 0.00; Chi Z = 3.15 (174 5 0 0 0 23 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0	2684 ² = 2.48, P = 0.00. 281 155 0 0 173 0 0 2351 0 0 0 2820 ² = 4.92, P < 0.000 35486 ² = 140.4	368 df = 3 (P 2) 6031 18 26 5 181 18 26 5 181 7 13 149 715 7 3 22 3 9113 22 3 9113 407 7 15 6 001) 15616 8, df = 1	= 0.48); 8064 766 119 17 878 883185 27 715 5960 1651 28 30 28028 = 0.18); 82701	² = 0% 8.9% 3.1% 7.5% 9.2% 28.7% ² = 39% 100.0%	0.66 [0.51, 0.86] 0.55 [0.43, 0.70] 1.61 [0.49, 5.33] Not estimable Not estimable 0.72 [0.46, 113] Not estimable Not estimable Not estimable Not estimable Not estimable Not estimable 0.58 [0.47, 0.72] 0.64 [0.49, 0.82]	

Figure 5. Bleeding outcomes with warfarin vs DOAC in patients with concomitant atrial fibrillation and valve disease.

	DOAG		War			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 RCTs Overall B							
Breithardt 2016	248	939	233	1001	4.7%	1.18 [0.96, 1.45]	-
Avezum 2015	92	2405	118	2323	4.6%	0.74 [0.56, 0.98]	-
Guimaraes 2019	9	87	10	69	3.5%	0.68 [0.26, 1.78]	
Duraes 2016	1	15	2	12	1.3%	0.36 [0.03, 4.50]	
Ezekowitz 2016	0	0	0	0		Not estimable	
Subtotal (95% CI)		3446		3405	14.0%	0.89 [0.61, 1.31]	
Total events	350		363				
Heterogeneity: Tau ² = Test for overall effect				(P = 0.04	4); I ² = 63	%	
1.1.2 Non-RCTs Ove	rall Bleed						
Duan 2021	40	439	145	2233	4.5%	1.44 [1.00, 2.08]	
zumi 2022	7	263	11	489	3.5%	1.19 [0.46, 3.10]	
Kosmidou 2019	34	155	159	778	4.4%	1.09 [0.72, 1.66]	-
i 2021	359	5833	381	5833	4.7%	0.94 [0.81, 1.09]	+
Briasoulis 2018	166	4302	688	16223	4.7%	0.91 [0.76, 1.08]	4
Nauffal 2021	36	9769	83	16753	4.5%	0.74 [0.50, 1.10]	
anawuttiwat 2022	807	8127	1775	13004	4.7%	0.70 [0.64, 0.76]	•
Guimaraes 2020	7	500	13	505	3.5%	0.54 [0.21, 1.36]	
Annacio 2022	25	340	90	692	4.4%	0.53 [0.33, 0.84]	
zumi 2020	23	16	53	179	2.5%	0.34 [0.07, 1.55]	
Aoon 2019	147	2792	359	2371	4.7%	0.31 [0.25, 0.38]	-
lampton 2020	147	2/92	339	23/1	4.7%	Not estimable	-
Subtotal (95% CI)		32536	0	59060	46.0%	0.75 [0.57, 0.97]	▲
		52550	3757	33000	40.0%	0.75 [0.57, 0.57]	•
Total events	1630	2 100		10 /8	0.00001	12 010	
Heterogeneity: Tau ² = Fest for overall effect				= 10 (P <	0.00001)	$1^{2} = 91\%$	
. 1.3 Non-RCT GI bl Duan 2021	eed 31	439	64	2233	4.4%	2.58 [1.66, 4.01]	
.i 2021	285	5833	261	5833	4.7%	1.10 [0.92, 1.30]	-
Briasoulis 2018	154	4302	561	16223	4.7%	1.04 [0.86, 1.24]	+
Moon 2019	43	2972	1125	2371	4.6%	0.02 [0.01, 0.02]	-
Subtotal (95% CI)		13546	1125	26660	18.4%	0.47 [0.07, 3.23]	
Fotal events	513		2011				
Heterogeneity: Tau ² =		$i^2 = 776$		= 3 (P < 0	00001)	$l^2 = 100\%$	
Test for overall effect				- 5 (1 < 0	.00001), 1	- 100%	
.1.4 Non-RCT Intra	cranial Bl	eed					
zumi 2022	4	263	12	489	3.1%	0.61 [0.20, 1.92]	
i 2021	74	5833	120	5833	4.6%	0.61 [0.46, 0.82]	-
zumi 2020	0	16	9	179	1.1%	0.54 [0.03, 9.77]	
loon 2019	32	2792	60	2371	4.4%	0.45 [0.29, 0.69]	
Duan 2021	5	439	58	2233	3.5%	0.43 [0.17, 1.08]	
(im 2019	7	1115	36	1115	3.7%	0.19 [0.08, 0.43]	_ _
Juimaraes 2020	0	500	5	505	1.1%	0.09 [0.01, 1.65]	<
ubtotal (95% CI)		10958		12725	21.6%	0.45 [0.31, 0.64]	◆
otal events	122		300				•
leterogeneity: Tau ² =		$i^2 = 9.2$		(P = 0.1)	5): $I^2 = 35$	%	
est for overall effect					-,,	-	
otal (95% CI)		60486		101850	100.0%	0.60 [0.43, 0.84]	•
otal events	2615		6431				
leterogeneity: Tau ² =	= 0.64; Ch	i ² = 856	5.49, df =	= 25 (P <	0.00001);	$ ^2 = 97\%$	0.01 0.1 1 10 10
lest for overall effect							0.01 0.1 1 10 1 Favours DOACs Favours Warfar
Fest for subgroup dif				= 3 (P = 0	.05), I ² =	62.7%	ravours DOACS ravours Warrar
Risk of bias legend							
A) Random sequence	e generatio	on (selea	tion bia	5)			
 B) Allocation conceal 				,			
C) Blinding of partici				ormance k	oias)		
D) Blinding of outcor					,		
E) Incomplete outcor							

(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

Figure 6. Association between stroke and TIA incidences with anticoagulation choice of DOAC versus warfarin in patients with concomitant atrial fibrillation and valve disease.

	DOA		Warf			Odds Ratio	Odds Ratio
study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.2.1 RCTs Overall S	itroke						
Breithardt 2016	33	939	41	1001	6.0%	0.85 [0.53, 1.36]	
DeCaterina 2017	77	1869	46	955	6.5%	0.85 [0.58, 1.23]	
Duraes 2016	0	15	1	12	0.5%	0.25 [0.01, 6.64]	
Guimaraes 2019	4	87	2	69	1.7%	1.61 [0.29, 9.09]	
Subtotal (95% CI)		2910		2037	14.7%	0.86 [0.64, 1.14]	•
Total events	114		90				
Heterogeneity: Tau ² :	= 0.00; Ch	$i^2 = 1.0$	7, df = 3	P = 0.7	79); I ² = 0	1%	
Test for overall effect	L: Z = 1.05	P = 0.	29)				
1.2.2 Non-RCTs Ove	erall Strok	e					
Briasoulis 2018	46	4302	246	16223	6.8%	0.70 [0.51, 0.96]	-
DiBiase 2021	0	127	0	127	0.0/0	Not estimable	
Duan 2021	42	439	155	2233	6.6%	1.42 [0.99, 2.03]	
Guimaraes 2020	3	500	12	505	2.6%	0.25 [0.07, 0.88]	
Izumi 2020	Ő	16	10	179	0.7%	0.49 [0.03, 8.73]	
Izumi 2022	4	263	12	489	3.0%	0.61 [0.20, 1.92]	
Kim 2019	30	1115	146	1115	6.3%	0.18 [0.12, 0.27]	-
Kosmidou 2019	12	155	41	778	4.9%	1.51 [0.77, 2.94]	
Li 2021	414	5833	411	5833	7.4%	1.01 [0.87, 1.16]	+
Mannacio 2022	24	340	79	692	6.0%	0.59 [0.37, 0.95]	
Moon 2019	69	2792	152	2371	6.9%	0.37 [0.28, 0.49]	+
Nauffal 2021	22	9769		16753	5.8%	0.74 [0.45, 1.22]	
Seeger 2017	1	141	1	131	0.7%	0.93 [0.06, 15.00]	
Tanawuttiwat 2022	168	8127		13004	7.2%	0.97 [0.80, 1.17]	+
Subtotal (95% CI)		33919		60433	64.8%	0.66 [0.47, 0.93]	◆
Total events	835		1594				
Heterogeneity: Tau ² :	= 0.27; Ch	$i^2 = 112$	2.57, df =	= 12 (P <	0.00001	.); $I^2 = 89\%$	
Test for overall effect	t: Z = 2.35	(P = 0.)	02)				
1.2.3 Non-RCT TIA							
	0	127	0	127		Not optimable	
DiBiase 2021 Duan 2021	15	127 439	0 51	127	E /0/	Not estimable	
Guimaraes 2020	15	439 500	1	2233 505	5.4% 0.6%	1.51 [0.84, 2.72] 0.34 [0.01, 8.27]	
Kosmidou 2019	4	155	18	778	3.1%	1.12 [0.37, 3.35]	
Li 2021	68	5833	52	5833	5.1% 6.5%		
Mannacio 2022	11	340	42	5855 692	6.5% 4.9%	1.31 [0.91, 1.89] 0.52 [0.26, 1.02]	
Subtotal (95% CI)	11	7394	42	10168	4.9% 20.5%	1.05 [0.68, 1.64]	•
Total events	98		164				[
Heterogeneity: Tau ² :		$i^2 = 7.3$	1, $df = 4$	P = 0.1	(2); $I^2 = 4$	5%	
Test for overall effect							
Total (95% CI)		44223		72638	100.0%	0.76 [0.59, 0.97]	•
Total events	1047		1848				
Heterogeneity: Tau ²		i ² = 126		= 21 (P <	0.00001	.); $I^2 = 83\%$	
Test for overall effect	,						0.005 0.1 1 10 2
Test for subgroup dif				= 2 (P =	0.24), l ² =	= 29.0%	Favours DOACs Favours Warfarin

Test for subgroup differences: $Chi^2 = 2.82$, df = 2 (P = 0.24), $I^2 = 29.0\%$