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Abstract  

Background 

To date, there is no high throughput proteomic study in the context of Autosomal Dominant Alzheimer's 

disease (ADAD). Here, we aimed to characterize early CSF proteome changes in ADAD and leverage 

them as potential biomarkers for disease monitoring and therapeutic strategies.  

Methods 

We utilized Somascan® 7K assay to quantify protein levels in the CSF from 291 mutation carriers (MCs) 

and 185 non-carriers (NCs). We employed a multi-layer regression model to identify proteins with different 

pseudo-trajectories between MCs and NCs. We replicated the results using publicly available ADAD datasets as 

well as proteomic data from sporadic Alzheimer’s disease (sAD). To biologically contextualize the results, 

we performed network and pathway enrichment analyses. Machine learning was applied to create and validate 

predictive models. 

Findings 

We identified 125 proteins with significantly different pseudo-trajectories between MCs and NCs.  Twelve proteins 

showed changes even before the traditional AD biomarkers (Aβ42, tau, ptau). These 125 proteins belong 

to three different modules that are associated with age at onset: 1) early stage module associated with stress 

response, glutamate metabolism, and mitochondria damage;  2) the middle stage module, enriched in 

neuronal death and apoptosis;  and 3) the presymptomatic stage module was characterized by changes in 

microglia, and cell-to-cell communication processes, indicating an attempt of rebuilding and establishing 

new connections to maintain functionality. Machine learning identified a subset of nine proteins that can 

differentiate MCs from NCs better than traditional AD biomarkers (AUC>0·89). 

Interpretation 

Our findings comprehensively described early proteomic changes associated with ADAD and captured 

specific biological processes that happen in the early phases of the disease, fifteen to five years before 

clinical onset. We identified a small subset of proteins with the potentials to become therapy-

monitoring biomarkers of ADAD MCs. 

Funding 

Proteomic data generation was supported by NIH: RF1AG044546 
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Introduction 

Autosomal dominant Alzheimer's disease (ADAD) accounts for approximately 1% of all AD cases.1 ADAD 

is characterized by the presence of autosomal dominant mutations in amyloid precursor protein (APP), 

presenilin-1 (PSEN1), or presenilin-2 (PSEN2).1,2 This rare form of AD has been instrumental in 

elucidating critical pathological mechanisms that underlie the disease and the temporal progression of 

brain changes associated with AD.3 Thus, a comprehensive study of the cerebrospinal fluid (CSF) 

proteomic changes in this rare form of the disease can help advance our understanding of its intricate 

pathophysiology and contribute to the identification of novel biomarkers and potential therapeutic 

strategies. 

The Dominantly Inherited Alzheimer Network (DIAN) Observational Study is a worldwide effort to study 

individuals with ADAD mutations, aiming to understand the natural progression of ADAD. It involves 

longitudinal assessments including imaging, cognitive evaluations, and fluid collection including CSF and 

plasma.4 Traditional CSF AD biomarkers, such as amyloid β42 (Aβ42), total Tau (Tau), and 

phosphorylated-tau181 (pTau) are measured regularly and have demonstrated their analytical validity in 

ADAD as well as sporadic Alzheimer’s disease (sAD).5 Additionally, several studies support the 

correlation between CSF biomarker levels and neuropathological changes associated with AD onset and 

progression.5-7 In fact, CSF biomarkers change earlier in the disease course than amyloid or tau in 

positron emission tomography (PET) imaging.8 Moreover, CSF biomarkers provide more cost-effective, 

faster, and simpler results in clinical settings than those based on imaging techniques.7 Although 

proteome-based biomarkers in the plasma for ADAD and sAD are being identified, CSF, which is in direct 

contact with the brain, is relatively unaffected by proteins from other organs.9 In ADAD, mutation 

carriers (MCs) from the same family tend to exhibit similar age at symptom onset (AAO), and therefore, 

it is possible to calculate the “estimated year of onset (EYO)” for each family member by extrapolating 

from the known AAO in individuals who share the same mutation.10 EYOs are determined by subtracting 

the age at study assessment minus the mean mutation AAO associated with their specific mutation. 10 

ADAD exhibits several similarities to sAD, including phenotype, clinical progression, and 

neuropathology.1,11,12 However, it is essential to note that the etiology and onset mechanisms of these 

two AD forms follow distinct patterns.13 The first published unbiased proteomic study of CSF in 14 

carriers of ADAD mutations identified 600 proteins, 56 of which differed between MCs and NCs. 14 Of 

these, 40 proteins displayed alterations during the presymptomatic stage of the disease and fourteen of 

these proteins had been previously described to be altered in sAD.  In a recent proteomic study that 

included 22 MCs and 20 NCs individuals, 66 CSF proteins associated with ADAD were identified.15 When 

comparing with sAD (n=531), they demonstrated that ADAD indeed presented biomolecular similarities 

with sAD, and in fact, the common proteins were dysregulated in both ADAD and sAD. However, the 

predictive value of those proteins was not explored. In another recent proteomic study, researchers 

analyzed 59 CSF proteins in 286 MCs and 184 NCs samples.16 However, these 59 proteins were pre-

selected based on previous brain studies. Out of 59, 33 proteins were associated significantly with ADAD 

status after correcting by EYO. 

In recent years, there has been a significant increase in the volume of AD proteomic research. These 
studies have explored protein variances in AD across various brain regions17-19 and tissue fractions,20-24 
such as those enriched in insoluble materials, synaptic components, membranes, or blood vessels. 
Furthermore, specialized proteomic analyses have been conducted on a small scale but has been able to 
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capture some actual biological substrates and goes beyond the traditional neuropathological features 
like amyloid plaques, neurofibrillary tangle, and cerebral amyloid angiopathy, 25-31 leading to a better 
biological understanding of the disease as well as revealing potential new therapeutic targets.  Each 
study has individually contributed valuable insights into the pathogenesis, revealing novel potential drug 
targets and biomarkers but mostly in sAD. However, when evaluating individual studies, including the 
previous published ADAD studies, they shared some common limitations such as limited sample size and 
a small number of investigated proteins. Moreover, it is worth noting that previous studies were focused 
on identifying proteins associated with mutation status, not disease onset. Although some were 
corrected by the EYO,16 EYO information has neither been fully leveraged to identify proteins that show 
different trajectories between MCs and NCs, nor to determine the time in which protein changes occur 
in relation to the clinical onset. Overall, these limitations highlight the need for an unbiased large-scale 
and high-throughput study to identify early proteomic changes in the ADAD. 
 
Therefore, in this study, we utilized a deep and unbiased biofluids proteomic profiling (covering CSF and 

plasma) and measured 6,163 proteins in 476 CSF samples (291 MCs and 185 NCs) and 6,022 proteins in 

538 plasma samples (325 MCs and 213 NCs) from DIAN by Somascan® 7K Platform. High-throughput 

unbiased proteomics goes beyond standard AD biomarkers studies or neuroimaging as proteomics is 

getting at the actual biological substrates, which can lead to a much better biological understanding of 

the disease as well as revealing potential new therapeutic targets. 

To conduct this study, we used a novel approach that leverages the estimated age at onset to assess 

pseudo-trajectories (using cross-sectional data to simulate longitudinal data) and identified proteins 

with significantly different coefficient-estimates between MCs and NCs. We subsequently determined 

the exact time when those pseudo-trajectories become divergent in relation to the EYO. We applied 

network and pathway-enrichment analysis to create clusters of proteins that share functional 

relationships, leading to the identification of novel mechanisms implicated in disease. Finally, we 

leveraged those dysregulated proteins to create Aβ- and pTau-independent predictive models. Our 

overarching goal was to pinpoint potential biomarkers that could aid in monitoring disease progression, 

assessing treatment effectiveness, and designing well-informed therapeutic strategies.  

 

Methods 

ADAD cohort 

DIAN is a long-term observational study that employs standardized clinical and cognitive assessments 

(Clinical Dementia Rating®(CDR)®), neuropsychological testing, imaging modalities (magnetic resonance 

imaging (MRI), PIB-PET, and 18F-FDG),32 and collects biological fluids (blood and CSF). The main goal of 

this cohort is to detect alterations in individuals who possess known gene mutations that cause AD, 

including pre-symptomatic and symptomatic mutation carriers. We applied the Somascan® 7K panel to 

analyze the CSF proteome from 291 MCs, 185 NCs, and the plasma proteome from 325 MCs and 213 

NCs from DIAN participants. In total, there were 448 participants that have both CSF and plasma 

proteomics data.  

CSF samples were distributed as follows: 291 MCs [216 (74%) PSEN1, 23 (8%) PSEN2, and 52 (18%) APP]. 

Of these, 105 (36%) were symptomatic MCs, and 186 (64%) were presymptomatic MCs. The 108 NCs in 

the study were recruited from family members associated with MCs. The mean age of MCs was 40.0 
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years; 55% were females, with a mean EYO of -6·6 ±10.4 years (yrs), and 29% of MCs carried at least one 

APOE ε4 allele. The mean age of NCs was 39.6 years, 59% were females, the mean EYO was -7·8 ± 12.5 

yrs, and 33% of NCs presented at least one APOE ε4 allele. Age, sex, EYO and APOE ε4 allele did not 

show any significant difference between MCs and NCs in CSF (Table 1).  

Plasma was available for 325 MCs [240 (74%) PSEN1, 25 (8%) PSEN2, and 60 (18%) APP]. Of those, 129 

(39%) were asymptomatic MCs, and 196 (61%) were presymptomatic MCs. The mean age of MCs was 

40·4 years; with a mean EYO of -6·3 ±11·06 yrs, 30% carried at least one APOE ε4 allele, and 55% were 

females. There were 213 NCs with a mean age of 40·7 years; 59% were females, with the mean of -7·9 ± 

11·7 yrs, and 33% of NCs carried at least one APOE ε4 allele. There was no significant difference 

observed in the distribution of sex, age at draw, EYO, and frequency of APOE ε4 carriers as well in the 

individual with plasma samples and at the specific blood draw used in this study.  

The Institutional Review Board of Washington University School of Medicine in St. Louis approved the 

study, and research was performed following the approved protocols. All human studies were 

conducted under the supervisory review and approval of the Washington University in St. Louis 

institutional review board. Participants or their caregivers provided informed consent by their respective 

local institutional review boards. 

Clinical assessment and EYO in ADAD 

Dementia was evaluated using the CDR®, with clinical assessors blinded to participants' mutation status. 

The EYO for a participant was computed during each assessment, factoring in their age at the visit and 

the anticipated period of dementia symptom onset specific to their mutation. 10 This anticipated onset 

age for a given mutation was established by averaging reported symptom onset ages among individuals 

sharing the same mutation. When the mutation-specific expected age of symptom onset was 

unavailable, the EYO was derived from the age of cognitive decline onset in the participant's parents or 

family members, as determined through a thorough semi-structured interview using comprehensive 

historical data. It is crucial to note that the EYO calculation procedure remained consistent for both MCs 

and NCs. In the present study, we leveraged the DIAN-EYO, which enhances EYO accuracy by integrating 

an individual's actual decline age into the EYO determination process rather than solely relying on the 

mean mutation or parental/familial age at onset. 10 For simplification, EYO stands for DIAN-EYO.10 

Mutation status was determined using a PCR-based amplification of the relevant exon, followed by 

Sanger sequencing.2 

 

Sporadic AD cohorts 

To characterize ADAD proteomics in comparison to sAD, we combined four different sAD cohorts 

(Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight-ADRC), Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), Fundació ACE Alzheimer Center Barcelona, and Barcelona-1; see 

supplementary materials) with available CSF proteomic data, reaching a total of 1,763 samples. We 

grouped the sAD cohorts based on the ATN classification (where A +T+ and  A-T- serve as proxies for sAD 

and controls).33 However, the lack of consensus in universal biomarker cutoffs is a major caveat as 

biomarker levels, and subsequently their cutoffs for dichotomization, can be influenced by the 

technique of measurement. Thus, we utilized Gaussian mixture models to dichotomize quantitative 

Aβ42 and pTau measures into positive and negative groups and applied separately for each sAD cohort. 
34,35 Individuals with low CSF Aβ42 and high pTau levels were classified as amyloid/tau positive (A +T+). 

Individuals with high Aβ42 and low pTau levels were defined as controls (A -T-).  Detail description of the 
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dichotomization and cut-off determination for each cohort can be found elsewhere 36 and in the 

supplementary materials. 

 

CSF proteomic data collection, processing, and quality control (QC)  

The Somascan® 7K Platform is the aptamer-based technology with modified DNA aptamers 

(SOMAmers), that measures relative protein levels in a multiplex fashion.37 This technology has several 

advantages compared to other classic approaches (ELISA and MS) because it theoretically suffers less 

from the challenges of dynamic range and missing value.   CSF samples were collected from each cohort 

via lumbar puncture in the morning following an overnight fasting. All samples underwent the same 

preparation and processing protocols and were stored at -80 °C. We started to measure a total of 7,584 

aptamers across 495 DIAN samples and 1,763 sAD and controls using SomaLogic’s Somascan® Platform. 

The samples were sent together to SomaLogic to minimize batch effects and randomly distributed 

across plates. Protein abundance levels were measured using the SomaLogic aptamer-based Somascan® 

platform, which utilizes a multiplexed-based single-stranded DNA aptamer assay for protein 

quantification. The protein levels were reported as relative intensity units (RFU or Relative Fluorescence 

Unit). For data normalization, SomaLogic conducted an initial step using hybridization controls to 

account for intra-plate variability and median signal to address inter-plate variability.38 Additionally, 

SomaLogic performed an additional normalization step by comparing the data against an external 

reference to control for biological variation.39 To ensure data quality, individual-level quality control (QC) 

was carried out to detect and exclude outlier aptamers and samples, as described previously. 34,39 

In summary, after rigorous quality control, 476 samples from the DIAN study and 1,763 samples from 

sporadic Alzheimer's disease (sAD) were retained for further analyses. These samples were examined 

using 7,029 protein aptamers in sAD, among which 23 protein aptamers did not have corresponding 

protein. In the DIAN cohort, 7,008 aptamers were examined, and two protein aptamers targeted HIV 

proteins (HIV-2 Rev, C34 gp41 HIV Fragment). These two HIV proteins were not analyzed in sAD. Overall, 

in DIAN and sAD cohorts, there were 845 and 866 aptamers targeting more than one protein, 

respectively; and in total, we included 6,163 unique proteins in the analysis.  

In addition, levels of CSF Aβ42, total Tau (Tau), and pTau, not present on the SomaLogic panel were also 

available for the DIAN and sAD samples that  were measured using Lumipulse® G Assays (Fujirebio) on 

the Lumipulse® G platform.40,41 

DIAN plasma proteomics data collection, processing, and quality control 

Blood samples were collected at the time of the visit, immediately centrifuged, and the plasma stored at 

− 80°C. Clinical status (case-control) was determined by the CDR® at the time of draw. We measured 

7,584 aptamers in 580 plasma samples from DIAN participants using SomaLogic’s Somascan® Platform. 

Initial data normalization and QC was performed as described above. Ultimately, 564 samples and 6,985 

aptamers targeting 6,022 unique proteins were kept for downstream analysis. In the subsequent 

description, we will only talk about unique proteins for both CSF and plasma, instead of protein 

aptamers. 

 

Statistical analysis  

Cohorts Demographics 
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We processed demographic characteristics using GraphPad Prism 9. To compare cohorts characteristics 

between MCs' and NCs' groups we used unpaired student t-tests and Chi-squared tests for continuous 

and binary variables, respectively. Continuous variables were reported as mean ± standard deviation. P 

values of <0·05 after the false discovery rate correction method was considered significant. 

 

Differential pseudo-trajectory analysis 

To study how alterations in protein levels changes over time, we employed a multi-layer regression 
model to infer the pseudo-temporal trajectory from the cross-sectional proteomic data, called pseudo-
trajectory analysis. This model constructed a more comprehensive framework, capable of capturing 
proteins with significant pseudo-trajectory differences between MCs and NCs. In the pseudo-trajectory 
calculation model, we incorporated the first two surrogate variables (SVs) to correct for unmeasured 
heterogeneity. These SVs were generated by applying the sva() function within the R (version 4·1·3) 
package sva (version 3·42·0). Pseudo-trajectory calculations were performed in three steps: (1) we used 
a linear regression, lm() function from the stats package, to build the model with log 10-transformed 
proteins as the dependent variable, EYO as the independent variable, sex, and the first two SV as 
covariates for MCs and NCs, separately (Formula 1;  supplementary materials); (2) we compared the 
coefficient-estimates (β) of EYOs between MCs and NCs (Formula 2); and (3) we calculated when the 
pseudo-trajectories significantly deviate from each other in EYO by student t-test (Formula 3, 4). All the 
formulas are presented in the “Differential pseudo-trajectory analysis” section in the supplementary 
materials. Bonferroni correction was used for the CSF analyses and False Discovery Rate (FDR) correction 
(FDR p < 0.05) for plasma, as the plasma analyses were exploratory. 
 
 
Pseudo-trajectory intersections in ADAD 
For each protein that displayed substantial differences, we calculated the pseudo-trajectory intersection 

point between MCs and NCs. This was done to calculate the exact moment when the protein levels 

between these two groups started to diverge significantly. We followed a two-step process to derive 

pseudo-trajectory intersections for each protein (Model 2, formula 3 and 4; supplementary materials). In 

the initial step, we utilized the predict() function to generate the predicted 95% confidence intervals (CI) 

for MCs and NCs independently (Formula 5). In the second step, we extracted the lower bound and 

upper bound values from the predicted 95% CIs of both MCs and NCs, assembling them into a new 

matrix. We established another linear regression model from this new matrix by selecting either the 

predicted lower bound or upper bound values for significant protein based on each protein's specific β. 

If the β for a particular protein were > 0, indicating that its protein level was higher in MCs than NCs, we 

opted for the lower bound from the MCs matrix and the upper bound from the NCs matrix. Conversely, 

if the β < 0, indicating that the protein level was higher in NCs than MCs, we selected the upper bound 

from the MCs matrix and the lower bound from the NCs matrix. Following this selection, we extracted 

the two βs from the new linear regression models (Formula 6).  

 

ADAD protein change and sAD protein change analysis in ADAD and sAD  

Protein level changes between mutation status groups (MCs vs. NCs) in the DIAN cohort and between 

ATN status in sporadic late-onset AD cohorts (A+T+ vs. A-T-) were identified using the linear regression 

model. In these models, the log 10-transformed protein levels served as the dependent variable, 

mutation or ATN and the group status as the independent variable, and age at CSF draw, sex and the 

first two SVs included as covariates (see supplementary materials).  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301242doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301242


Proteomic comparison across studies 
To compare the analyses and results across cohorts and analyses, we evaluated the consistency of CSF 
ADAD results with other studies by comparing the effect sizes for each protein.  These comparisons 
included (1) another two publicly available CSF ADAD studies,15,16 (2) the analyses for CSF in sporadic AD 
and (3) DIAN plasma ADAD results. We obtained correlation (R2) and significance (p value) by 
performing correlation tests using Pearson’s correlation test from the cor.test() function in R to test 
effect sizes of studies. The prediction line and regression line's 95% confidence interval were utilized to 
assess the effect size of significant proteins between ADAD and sAD.  
 
Predictive models 
We used the least absolute shrinkage and selection operator (LASSO – L1 regularization) regression 

model with five-fold cross-validation to identify the minimum set of the most informative proteins to 

build a predictive model for ADAD mutations status. We used the train() function in the caret R package 

version 6·0 to employ the LASSO regression model. Starting from an initial set of 125 differential pseudo-

trajectory proteins, we identified a final subset of nine to create the ADAD-specific predictive model. We 

used the traditional AD markers for benchmarking the newly generated model.  

The predictive model was trained using 70% of complete dataset (discovery data) by setting random 

seeds to split DIAN cohort, and tested on the remaining 30% of the data (replication data). The 

sensitivity (true-positive rate) and specificity (true-negative rate) of the developed ADAD predictive 

model were assessed by plotting the receiver operator characteristic (ROC) curves using  pROC R 

package version 1·18·2.42 To further evaluate the performance of these proteins, we generated areas 

under the curves (AUC) and estimated the positive predictive value (PPV) and negative predictive value 

(NPV) based on Youden’s J statistic optimal cut-off using “cords” function in the pROC R package.43  

 

Functional Analysis 

Pathway enrichment analysis  

We performed pathway enrichment analysis to identify biological functions of proteins using 
ClusterProfiler R package version 4·8·0.44 Default parameters were used for the analysis, with FDR P-
value <0.05 to define the significantly enriched pathways; a minimum count of three were collected and 
grouped into clusters based on their membership similarities. In each module, all the enriched pathways 
were grouped into different categories.  This categorization was based on the "Event Hierarchy" within 
the Reactome database, a decision driven by the recognition of numerous repetitive branch pathways 
that were enriched with the same proteins.  We used enrichDGN() function to examine the associations 
of identified proteins with other diseases based on the DisGeNET database.45 Biological pathway 
enrichment analysis was performed using the enrichPathway() function within the ClusterProfiler 
environment and the Reactome database.46 The top 20 pathways were shown graphically using the 
barplot() and emapplot() functions from the ClusterProfiler package. The STRING database was used to 
build the protein-protein interactions and describe the subcellular structures and macromolecular 
complexes by integrating with the cellular component ontology database.47 FDR P-value <0.05 was used 
to define the significant enriched protein-protein interaction. Druggable genome was used to map the 
targetable genes in modules.48  

 
Weighted Gene Correlation Network Analysis (WGCNA) 

We used the WGCNA R package (Version 1·72·1)49 algorithm to generate a central network of co-

expression modules for identified proteins. The pickSoftThreshold() function was leveraged to establish 

the soft threshold power at 12, with a minimum module size of five. The resulting correlation matrix was 
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transformed into a signed adjacency matrix, which calculates a topological overlap matrix (TOM), 

representing expression similarity across samples for all proteins in the network. This approach uses 

hierarchical clustering analysis as one minus TOM, and dynamic tree cutting leads to module 

identification. Following construction, module eigenprotein (ME) values were defined —representative 

abundance values for a module explaining modular protein covariance. Pearson correlation between 

proteins and MEs was used as a module membership measure, defined as kME. 

Cell type Enrichment Analysis 

The cell marker data used in our research was sourced from the study conducted by Zhang Y, et al.  50  

This data included markers specific to human astrocytes, neurons, oligodendrocytes, 

microglia/macrophages, and endothelial cells. The purpose of using this data was to evaluate the 

specificity of the proteins included in the Somascan® 7K panel in relation to these relevant cell types. 

The data downloaded contained multiple subtypes of astrocytes; we focused only on human mature 

astrocytes for our analysis. For each cell type, we determined the average expression level across 

individuals for each gene. We then added the averages from each cell type to get a total expression level 

for that gene across the five cell types. We then calculated the percentage of the total expression that 

each cell type contributed. A gene was reported to be cell-type specific if the percentage of its full 

expression contributed by the top cell type was 1.5× higher than the second top cell type. To determine 

enrichment, we first matched each of the proteins in the Somascan® 7K platform to their Gene Symbols 

using the SomaLogic-provided documentation. Using the above ratio-based strategy, we determined the 

cell-type specificity for all Gene Symbols and counted the number of genes specific to each cell type. In 

total, 5,743 proteins had host genes included in the cell-type expression data. For each protein subset, 

we determined the number of related genes specific to each cell type. We then tested for enrichment by 

comparing the background gene with fold count change. Log2 transformed fold count change  was used 

to plot the cell type enrichment. 

Data visualization  

Data visualization plots were mainly generated by ggplot2 R package version 3·4·2. Specifically, the 

results of the differential proteins analysis in the form of significantly up- and down-regulated proteins 

were visualized as a volcano plot using the geom_point() function. Pseudo-trajectory curve and 

trajectory intersections were visualized by stat_smooth() function with 'loess’ method. 

 

Results 

Study Design  

The primary goal of this study was to identify proteins that present early changes in ADAD mutation 

carriers (MCs) compared to non-carriers (NCs) in both CSF and plasma. We aimed to identify the earliest 

biomarkers of ADAD, with the potential to provide valuable insights into the pre-symptomatic phases of 

ADAD and potentially enable early intervention strategies. By leveraging these proteins, our ultimate 

goal was to contribute to the development of more effective treatment monitoring techniques and 

propose novel therapeutic strategies for ADAD patients. This research has the capacity to advance our 

understanding of the disease and improve the prospects for those at risk.  

We generated and leveraged large-scale unbiased proteomics from CSF (6,163 proteins) and plasma 

(6,022 proteins; Fig. 1). Our analytical approach centered on utilizing well-designed informatics models, 
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enabling us to extract proteins exhibiting statistically significant differences in their trajectories between 

MCs and NCs. This method was chosen for its capacity to closely approximate the pseudo-trajectory of 

protein alterations in these two distinct groups. Subsequently, we pinpointed when these significant 

protein changes commenced, providing invaluable insights into the disease progression. We applied co-

expression network analysis to cluster the significant proteins for a more comprehensive perspective. 

Further, we conducted a thorough pathway enrichment analysis with multiple resources to enhance our 

understanding of the biological implications of these significant proteins within their distinct clusters.  

For the DIAN plasma samples, we utilized the same analytical pipeline that we applied to the CSF. Our 

goal was to determine whether plasma samples could provide information consistent with that obtained 

from CSF samples. Crucially, both the CSF and plasma samples were sourced from the same cohort.  We 

then employed publicly accessible ADAD datasets to validate our findings from CSF proteomics. 

Additionally, we investigated whether the proteins associated with ADAD were also linked to sporadic 

late-onset Alzheimer's disease (sAD). In the final phase, we applied the power of the LASSO model on 

the most representative significant proteins, which could serve as promising biomarkers for ADAD. This 

project holds substantial promise for advancing our understanding of ADAD and improving diagnostic 

and therapeutic strategies. 

Baseline characteristics of the DIAN participants were summarized in Table 1.  MCs include symptomatic 

and presymptomatic DIAN participants with pathogenic variants in one of three ADAD genes (APP, 

PSEN1, and PSEN2).51 Presymptomatic carriers are MCs with CDR® = 0 at CSF draw date.  The matched 

NCs were sourced from the families of the MCs. This control group shares similar genetics background 

and environmental influences, further enhancing the power of our study to detect reliable proteomic 

alterations.  

Significantly different pseudo-trajectory protein identification in CSF samples 

We analyzed 6,163 proteins that passed quality check from 291 MCs and 185 NCs. Following stringent 

Bonferroni threshold (p < 7·13×10⁻⁶), we identified 125 proteins (132 protein aptamers) that exhibited 

significantly distinct trajectories between MC vs NCs. In addition, 1,069 proteins showed nominal (P < 

0·05) significance (Fig. 2A, Table S1). Additionally, Aβ, p-tau, and tau were included for comparison as 

they are known and well validated AD biomarkers.40,41  

 
The top 30 hits included proteins known to be associated with AD, such as neurofilament (NEFH, NEFL), 

calcineurin complex (PPP3CA, PPP3R1), and 14-3-3 proteins (14-3-3 beta, gamma, zeta). Other proteins 

that have not been previously associated with AD, but were significant in our analyses, included the 

extracellular matrix binding (SMOC2, SLIT2), negative regulation of protein metabolic process (PEBP1, 

GPI, PTPA, CRKL, PIN1), cytoskeletal protein binding (PDLIM4, PDCD5, STMN2, TMOD3, MAPRE3, 

MAP1LC3A), cytosol function proteins (CHN1, DLG2),52 and other protein binding (TCEAL5, GARS1).52,53 

However, other reported AD markers, including GFAP (p = 1·25×10-05) or TREM2 (p = 9·79×10-03), did not 

pass Bonferroni threshold (Fig. S1A). 

 

To determine the reliability of our pseudo-trajectory analysis, we also conducted an analysis based on 

mutation status as a phenotype, comparing carriers and non-carriers, regardless of clinical status (Fig. 

2B, Table S2). We identified 246 proteins to be associated with mutation status after Bonferroni 

correction (Fig. S1B). We found that all proteins associated with the pseudo-trajectory (n=125) were 
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also significant in this analysis (see supplementary materials). The top upregulated proteins associated 

with mutation status include CHIT1 (p= 7·97×10-17), NEFL (p=2·66×10-18), YWHAG (p=2·72×10-26), 

ITGA1/ITGB1 (p=1·18×10-13), and PPP3CA/PPP3R1 (p=1·10×10-26). There were two proteins that displayed 

downregulation in ADAD mutation carriers: NPTX2 (p = 1·61×10-07) and LRFN2 (p = 1·30×10-06; Fig. S1C).  

When comparing the effect size of the proteins associated with both pseudo-trajectory and mutations 

status, we found strong correlation (R2 = 0·88, p = 9·79×10-121; Fig. S1C), indicating that both methods 

captured the same overall findings, even though mutation status analysis seems to provide more 

statistical power, as 122 additional proteins passed Bonferroni threshold in this particular analysis 

(turquoise blue dots in Fig.S1B, S1C). 

 

To confirm the reliability of our findings, we analyzed two other ADAD proteomic studies. 15,16 One study 

represents a technical replication as it used a different proteomics approach in the same patient cohort, 

and the other is a replication in an entirely independent dataset. Johnson et al., employed a Mass 

Spectrometry approach to measure 59 proteins in 286 mutation carriers and 184 noncarriers from 

DIAN.16 This study identified 33 proteins significantly associated with mutation status after correcting for 

EYO. There were 12 of our 125 pseudo-trajectory-significant proteins included on the Johnson study and 

all of them also significant and with consistent direction (Table S3, Fig. S1D). These proteins displayed a 

moderate effect size correlation, with an R² of 0·62 and a p-value of 2·30×10⁻³ (Fig. S1D). Of the 

remaining 21 proteins identified in Johnson's study, 14 were present in our proteomic data and five 

exhibited nominal significance in our analysis (Table S3). These 14 proteins presented an effect size 

correlation (R²) of 0·51 with a p-value of 4·30×10⁻³ (Fig. S1D). Similar results were found when analyzing 

all proteins associated with mutation status in our analysis (See in the supplementary materials). 

In the other ADAD proteomic study, Van de Ende et al. used Olink-based proteomics to measure 808 

proteins in 22 MCs and 20 age- and sex-matched controls. They identified a total of 66 proteins passing 

significance after FDR correction.15 Of the 125 pseudo-trajectory significant proteins, 17 were present on 

the Olink panel (Table S4). Of these 17 proteins, 15 proteins also passed FDR correction in Van de Ende 

et al.'s study. Among the remaining two, SFRP1 exhibited nominal significance, while SPP1 was not 

found significant in this analysis despite being significant in the Johnson et al.’s study. These 17 proteins 

showed a very high effect size correlation (R2 = 0·83, p = 4·54×10-07; Fig. S1E). Regarding the other 51 

significant proteins identified in van de Ende et al.'s study, 42 of them were also present in the 

SomaLogic panel, with 16 of them showing nominal significance in our analysis (Table S4). These 42 

proteins showed a low effect size correlation (R2 = 0·07, p = 0·10; Fig. S1E). Similar results were found 

when analyzing all proteins associated with mutation status in our analysis (See in the supplementary 

materials). 

 

When we integrated the data from both Johnson and van de Ende et al., out of the 125 pseudo-

trajectories proteins, 24 unique proteins were present in at least one of these studies, and all of them 

exhibit nominal associations in one of those studies and consistent direction of association (Table S5), 

supporting the robustness of our findings. Similar results were found when comparing the 246 

associated with mutation status. The results of these comparisons were included in the supplementary 

materials, supplementary figures (Fig. S1F, S1G) and Tables (Table S6, S7).  
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Comparison of significantly altered proteins in ADAD and sAD 

We then, determined if the proteins associated with ADAD mutation status exhibit an association with 

sAD. This analysis aimed to provide additional validation for the proteins we initially identified in ADAD 

and identify potential differences and commonalities with sAD. To investigate this, we generated and 

analyzed proteomic data from the CSF samples obtained from 1,763 individuals diagnosed with sAD 

(A+T+: 848, A-T-: 915) from multiple cohorts (see in supplementary materials). Among the identified 125 

significant pseudo-trajectory significant proteins, all of them were also significant after Bonferroni-

correction in sAD with consistent direction of effect. 

When looking at the 246 proteins associated with mutation status in DIAN, we found a very high 

correlation in the effect sizes between sAD and ADAD mutation status analyses (R2 = 0·67, p = 4·71×10-63, 

Fig. S1H). There were five proteins that were associated with sAD, also after Bonferroni correction, but 

in the opposite direction (Table S8, Fig. S1H): DLK2 (ADAD p = 1·99×10-07, β =- 0·025; sAD p = 2·77×10-05, 

β = 0·022), LRFN2 (ADAD p = 1·30×10-06, β = -0·054, sAD p = 3·34×10-03, β = 0·023), RELT (ADAD p = 

2·27×10-06, β = - 0·020, sAD p = 1.34×10-03, β = 0·016), GAGE2A (ADAD p = 4·37×10-06, β = -0·024, sAD p = 

4·2×10-03, β = 0·018) and EPHA4 (ADAD p = 5·22×10-06, β = -0·030, sAD p = 1·08×10-07, β = 0·0569; Fig. 

S1H). DLK2, is implicated in neurite outgrowth,54 synaptic plasticity,55 and neuroprotection,56,57 and has 

been associated with anxiety and depression.58 EPHA4 has been reported to be involved in the 

progression of AD due to synaptic dysfunction, and enriched in neurons. GAGE2A has been widely 

studied in its immune system function in cancer, but its role in neurological disease remains unclear. 

However, the other two proteins seem to play a role in the blood-brain barrier (BBB). LRFN2 is an 

endothelial-specific protein that shows a significant decrease in protein levels in neurodegenerative 

diseases, including AD, Parkinson’s disease, and Lewy body dementia.59 Moreover, LRFN2 as one of GBA 

variants have been linked to dysregulation of glucocerebrosidase, an enzyme that has been reported to 

be dysregulated in Gaucher disease, which is one of the most common lysosome storage diseases. 60  

RELT, a member of the tumor necrosis factor receptor superfamily, has been shown to contribute to the 

acquisition and development of barrier properties in the blood-brain barrier (BBB). Both TNFRSF21 and 

RELT (TNFRSF19) are downstream targets of the Wnt/beta-catenin signaling pathway in BBB endothelial 

cells. When the TNFRSF21/TNFRSF19 signaling is dysregulated, it can result in the breakdown of the 

BBB's endothelial layer. It's worth noting that the Wnt/beta-catenin signaling pathway is essential for 

central nervous system (CNS) angiogenesis but not for the development of peripheral vasculature. 61,62  

These data highlight how the differential regulation of distinct proteins and alterations in endothelial 

cells and the BBB result in different disease outcomes (ADAD and sAD). 

To investigate which proteins presented different effect sizes between sAD and ADAD, we identified  

proteins with effect sizes outside of the 95% CI for the regression for all the 246 proteins associated with 

ADAD. There were six proteins (CHIT1, SMOC1, SMOC2, NEFL, CAND1, PTPN11) that showed significantly 

higher effect size in ADAD compared to sAD (Table S8, Fig. S1H). The protein with the highest difference 

in ADAD was CHIT1 (p = 7·97×10-17, β = 0·29). Chitotriosidase (CHIT1), a putative marker of microglial 

activation,63 has already been shown to be elevated in the CSF and peripheral blood of AD patients.64 

Another protein with higher effect size in ADAD is CAND1 (p = 1·39×10-14, β = 0·09), which has been 

involved in modulating the ubiquitin-proteasome pathway (UPP).65 This pathway is pivotal in removing 

proteins, including the clearance of misfolded proteins, and plays a crucial role in controlling various 
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cellular functions. CAND1 directly interacts with Cullins in their unneddylated form, regulating the 

assembly of Cullin-RING ligase complexes (CRLs). When Cullins are neddylated, CAND1 dissociates, 

allowing Cullins to form active CRLs, which are essential for targeting specific substrates for 

ubiquitination. Additionally, the Gain-of-Function mutation of PTPN11 (p = 4·32×10-07, β = 0·48) has been 

reported to associate the developing human brain, memory, and attention.66 Two other proteins with 

higher effect size in ADAD are SMOC1 and NEFL, that have already been proposed as AD biomarkers in 

previous studies.15,67,68 The only protein that exhibited a significantly lower effect size in ADAD was 

NPTX2, that is downregulated in both ADAD and sAD. NPTX2, known as a glutamate receptor, found in 

established synapses, has been implicated in non-apoptotic cell death of dopaminergic nerve cells 

(Table S8, Fig. S1H).69   

In summary, this analysis revealed a significant degree of overlap between ADAD and sAD, while also 

validating the mutation carrier proteomic analyses in sAD and highlighted several proteins and potential 

mechanisms that are different between sAD and ADAD. 

 

Earliest CSF proteomic changes  

Due to the study design, that leverages mutation status and EYO, we estimated when proteins levels 

start changing in MCs compared to NCs in relationship of the EYO. Of the 125 identified proteins, 124 

began to change before the estimated year of onset, with approximately 93% of these changes 

occurring within the range of -20 and -3 years (Fig. 2C, Fig. S2).  DOC2B was the only protein displaying 

changes one year after the estimated onset (change +1 yrs in relationship to EYO; Table S9). Established 

biomarkers changed between 11 to 17 years before onset: pTau (-17 yrs), total Tau (-12 yrs), and Aβ42 (-

11 yrs). Among the 125 proteins significant in the pseudo-trajectory analyses, 12 initiated changes 

earlier than established biomarkers, such as, SMOC1 (-31 years), followed by SMOC2 at -28 years and 

PPP3R1, GAGE2D at -19 years (Fig. 2A). Several proteins began to change around -18 years (SLIT2, 

PLCB1, TXNRD1) and -17 years (TMOD3, SPON1, MAPRE3, RABL6, PPP3CA, PPP3R1).  Compared to the 

33 significant proteins associated with EYO in Johnson et al., we reported 116 additional proteins with  

significant trajectories changes (Table S1).  

 

Significant proteins in plasma suggest alterations in the presynaptic function  

We employed an identical model to perform pseudo-trajectory and mutation status analysis between 

325 MCs and 217 NCs from ADAD plasma samples. In the pseudo-trajectory analysis, out of 6,022 

proteins, three proteins were significant after FDR correction (FDR p-value < 0·05; Table S9, Fig. S3A). 

Complexin-2 (CPLX2, p = 0·049) and Syntaxin 1A (STX1A, p = 0·049) were upregulated, while Vesicle 

Amine Transport 1 (VAT1, p = 0·049) was downregulated in MCs. In examining the time to symptom 

onset, CPLX2's pseudo-trajectory began changing approximately seven years before symptom onset, 

whereas alterations in STX1A's started around four years before symptom onset (Fig. S3B).   

 

In the mutation carriers vs. non-carriers analyses, nine proteins were associated with mutation status 

after FDR (Fig. S3C, Table S10), including CPLX2 and STX1A. Additional proteins identified in this analysis 

include MAD1L1, SMOC1, PPP4R3A, CPLX1, and CAST that were upregulated, while two proteins (SSBP1, 
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VOPP1) were downregulated. SMOC1 was the only protein identified in both plasma and cerebrospinal 

fluid specimens (Fig. S3D).  

 

Overall, we identified a limited number of significant proteins associated with ADAD in plasma 

compared to CSF (Fig. S3E, S3F). However, they revealed novel associations previously unreported in 

ADAD, highlighting differences from sAD. Pathway enrichment for the nine proteins of mutation carriers 

vs. non-carriers analyses point to alterations in the presynaptic function (see in the supplementary 

materials, Fig. S4A, Table S11). 

 

 

Dysregulated proteins are enriched in several known neurodegenerative diseases. 

We analyzed if the proteins identified in our analyses were reported to be implicated in other diseases 

by performing gene-disease network enrichment analysis. Of the 125 proteins identified on pseudo-

trajectory analyses, 73 have been reported to be implicated on 55 different diseases (Table S12). As 

expected, “Familial Alzheimer Disease (FAD)” was one of the top hits, with ten of the proteins being 

associated (MAP1LC3B, VSNL1, TPT1, PEBP1, NRGN, NEFL, HPRT1, ENO2, DLG4, ACHE; p = 6.28×10-04, 

log2 Fold Change (LogFC) =2·77, Fig. S5A). 

 

The top ten enriched diseases predominantly were neurodegenerative and neurological disorders (Table 

S12), such as “Creutzfeldt-Jakob disease“ (p = 1·73×10-05, logFC =3·70), “Frontotemporal Dementia“ (FTD, 

p = 2·26×10-04, logFC=2·74), and “senile plaques“ (p = 5·20×10-04, logFC=2·83), involving a total of 40 

proteins. Among these proteins, CHIT1, STMN2, NRGN, NEFL, GPI, ENO2, ACHE, YWHAZ, PIN1, GAP43, 

and PPIA served as critical connectors in the network of the 15 neurodegenerative diseases (Fig. S5B). 

These key connectors play roles in various cellular functions such as postsynaptic signaling (NRGN, NEFL, 

GAP43, PIN1), neuron projection (STMN2, ENO2, GPI), and cell junction (PPIA, YWHAZ, ACHE) ,52 

suggesting they may be common contributors across these diseases.  

We then investigated the overlapping proteins across the top ten diseases and observed that NEFL, 

ACHE, and GAP43 were the top three proteins recurrently enriched in these conditions (Fig. 2D). These 

proteins are known to influence inflammatory responses, apoptosis, and oxidative stress .70-73 Moreover, 

GAP43 has been reported to be associated with rapid hippocampal atrophy, AD-signature 

hypometabolism, and AD-signature hypometabolism-related cognitive decline.74 Still, its link to ADAD 

was identified for the first time in our analysis. The unique proteins associated with each disease were 

also investigated (See the supplementary materials).75-78  

 

Finally, we determined if the proteins enriched in specific diseases showed a distinct pattern in relation 

to the ADAD EYO (Fig. 2E, Table S13). Mild cognitive disorder (MCD; p = 5·01×10-03, logFC=2·05) and 

neuropathy (p = 3·70×10-03, logFC=2·14) were characterized with significantly decreased NPTX2 (EYO -

10·09 yrs, β= -4·15×10-03, p = 1·34×10-06) protein level, and an increased NEFL (EYO -11·57 yrs, β=9·11×10-

03, p=3·44×10-19) and ACHE (EYO –3·98 yrs, β=3·96×10-03, p=2·45×10-07) protein expression. On the other 

hand, proteins enriched in vascular dementia (DV, p = 5·01×10-03, logFC=2·74) and mild cognitive 

disorder (MCD, p = 5·01×10-03, logFC=2·05) showed the earlier EYO ( < -15 yrs). These early changes were 

driven by TXNRD1 (EYO -17·82 yrs, β = 2·93×10-03, p = 4·05×10-08) and VSNL1 (EYO -15·72 yrs, β = 3·10×10-
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03, p = 3·18×10-08), followed by GAP43 (EYO -14·99 yrs, β = 4·45×10-03, p=1·35×10-08; Fig. 2E).  However, 

other disease groups such as FAD (p = 6·28×10-04, logFC =2·77) and FTD (p = 2·26×10-04, logFC=2·74) 

showed consistent effect sizes in all ranges of EYO and includes proteins such as NRGN (EYO -15·18 yrs, 

β=5·31×10-03, p = 3·24×10-08), SMURF1 (EYO -14·73 yrs, β=9·91×10-04, p = 2·14×10-08) and CHIT1 (EYO -

13·53, β=1·75×10-02, p = 7·30×10-10).  

 

Co-expression network analysis identified modules that capture the chronological progression in 

ADAD 

Our analyses suggest that there are many pathways dysregulated in ADAD (Table S14, Fig. S5C, S5D, the 

overview of pathway enrichment for 125 proteins can be found in the supplementary materials), and 

their disruption may happen at different times during the disease curse. In order to disentangle this 

complexity, we performed co-expression network analyses and then pathway analyses in each module.  

 

Co-expression network analysis identified four modules for the 125 significant pseudo-trajectory 

proteins: MEgrey (n=6 proteins), MEchocolate (M1, n=58), MEhotpink (M2, n=24), and MEdeepskyblue 

(M3, n=47; Fig. S6A-S6C, Table S15, Fig. 3A). The MEgrey module comprised proteins not clustered into 

the other three modules, and therefore was not included for further analyses. We found that the nodes 

presented significantly different mean EYO, with M1 being enriched in proteins with the earliest  changes 

(mean were EYO: -11·44 ± 5·92yrs), followed by M2 (-11·08 ± 3·52yrs), and M3 (-8·00 ±4·39 yrs; Table 

S15, Fig. S6D). The difference between the mean EYO for M1 and M2 was not statistically significant, 

however, significant differences were observed when comparing the mean EYO of M1 and M3 (t-test: P 

=0·001) as well as M2 and M3 (t-test: P=0·004).  

 

The M1 module, which showed the earliest proteomic changes, was mainly enriched in neuronal-specific 

proteins (p= 1·07 ×10-09, logFC = 1·54) (Fig. 3B, Table S16). Protein-protein interaction revealed 

enrichment in calcineurin complex (p =1·80×10-02, FC= 2·08), autophagosome membrane, p = 3·30×10-03, 

FC=1·44), depletion in postsynaptic density (p = 4·80×10-03, FC=0·89), and glutamatergic synapse (p = 

5·20×10-03, FC=0·88) pathways (Table S17, Fig. S7A).  Of the 58 proteins present in M1, 21 proteins 

displayed significant enrichment in 27 different pathways. This subset of 21 proteins showed a mean 

EYO = -12·99±3·87 yrs) (Fig 3C, Table S18). These 27 pathways were summarized into 10 super-pathways 

(the super-pathways are denoted as C1-C10, Table S19).  The top pathway categories include NMDA 

receptor synapse signaling (C1: p =1·23×10-02 , logFC=2·60), calcineurin/NFAT pathway (C2: p=1·53×10-02, 

logFC= 5·6), cellular stress (C3: p=1·71×10-02 , logFC=4·47), Macroautophagy & Mitophagy (C5: p=1·53×10-

02, logFC=5·63) and mitochondrial damage (C6: p=4·81×10-03, logFC=5·77; Table S18, S19, Fig. 3D, 3E). In 

these pathways, nine out of 21 proteins were present in the tier 1 or tier 2 of druggable genome 

database, such as proteins in the NMDA receptor synapse signaling (super-pathway C1; ACHE, PRKCG, 

GLUL), Glutathione Metabolism (C4: p=4·96×10-02, logFC= 3·05; GSR, TXNRD1, HPRT1), C6 (PPP3R1, 

YWHAG) and C10 (SFRP1; Table S18). The mitochondrial damage pathway (C6) was driven by the 14-3-3 

gamma (p=8·42×10-08, EYO -14·79 yrs) and 14-3-3 eta (p=6·21×10-06, EYO -10·65 yrs), which were some of 

the most significant associated proteins also with lowest EYO. The identified microtubule associated 

proteins (MAP1LC3A, MAP1LC3B) enriched in Macroautophagy & Mitophagy (C5, Fig. 3D) and the 

neuronal proteins (Fig.3E, Table S18) suggest that early neuron pathology changes may involve 
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microtubule dysfunctions. Several proteins in this module are known to be part of the AD pathogenesis 

and not just mere biomarkers such as ACHE, HOMER1, 79 and calcineurin (PPP3R1/PPP3CA)80. Other 

proteins such as NRGN are known and validated AD biomarkers and also part of this module.81 In 

summary, this module seems to capture very early neuronal dysfunction due to the presence of ADAD 

mutations. 
 

Similar to M1, proteins in M2 enriched in neuronal and endothelial cells (Fig.3B, Table S18), but also 

with proteins that change trajectories after those from M1, suggesting the capture of later processes. Of 

the 24 proteins in M2, 13 were enriched in biological pathways (Table S18-S19), and showed a mean 

EYO of -10·28 ± 3·87 years (Fig. 3C). Pathway analyses revealed many processes related with apoptosis 

(C2: p=8·36×10-02, logFC= 7·65, Fig. 3F, Table S19), neuronal death (C4: p=2·96×10-02, logFC=6·66) and 

very early immune response (C12: p=2·96×10-02, logFC=6·24). Protein-protein interaction analysis 

revealed that 14-3-3 proteins (beta, epsilon, eta, gamma, zeta) interact with CAMK2B and neurofilament 

proteins (NEFH, NEFL) within the postsynaptic intermediate filament cytoskeleton ( Fig. S7B). Unlike the 

other two modules, M2 is significantly marked by its involvement in inflammation signaling transduction 

pathways, and early immune responses. The eight identified proteins (the four 14-3-3 proteins, 

CAMK2B, NEFL, and PEA15) participated in and a part a complex biology pathway interaction (Fig. 3G). 

The networks include MAPK family signaling cascades and signal transduction pathways involving G 

protein coupled receptors (GPCR), Hippo, Notch, neurotrophic tropomyosin-receptor kinase (NTRKs), 

and Rho GTPases (C4: p=5·41×10-06, logFC=4·99), as well as cell injury/death pathways, such as apoptosis 

(C2: p=8·36×10-02, logFC=7·65), and Rap1 signaling (C12: p=2·96×10-02, logFC=6·24). 

 

The M3 module, which is closer to symptom onset, was enriched in microglia and astrocyte-specific 

proteins, along with pathways linked to the innate immune system (C2: p=4·35×10-03, logFC=2·62) and 

inflammation/infection (C9: p=4·00×10-02, logFC=2·14). Of the 47 proteins in M3, 20 were part of specific 

biological pathways, and showed an EYO of -6·65 ± 3·41 years (Fig. 3C).  Proteins enriched in microglia, 

such as CAB39/CAB39L, CRK/CRKL, EIF4B, and SPP1, were found to interact within signaling pathways of 

mammalian target of rapamycin (mTOR), MET,82 NTRKs,83 and Platelet-derived growth factor (PDGF),84  

which are known to be involved in neurodegenerative disorders (Fig. 3H). Additionally, ubiquitin 

proteins like UBE2N, UBE2V1, and UBE2V2, enriched in C2 (innate immune system, p=4.35×10-03, 

logFC=2·62) and C10 (Autophagy, p=4·71×10-02, logFC=4·08), were found to interact with the integrin 

alpha1-beta1 complex (ITGA1, ITGB1), involving intermediates like PPIA and CRK. This complex further 

interacts with the MPP7-DLG1-LIN7 complex (LIN7A, LIN7B) through DLG4 (Fig. 3H, 3I, Fig. S7C). 

Pathways related to cell-cell communication (C3: p=4·35×10-03, logFC=7·50), developmental biology (C5: 

p=9·71×10-03, logFC=6·34), and extracellular matrix organization (C7: p=2·22×10-02, logFC=3·68) appeared 

to reflect an effort to regain functionality by rebuilding and establishing new connections to maintain 

communication. PARVA, part of the cell-cell communication pathway, is involved in reorganizing the 

actin cytoskeleton and cell polarity, was identified for the first time in the context of ADAD. 85,86 In 

summary, by performing network and subsequent pathway analyses, we were able to provide a better 

overview of the pathways that are disrupted in ADAD at different stages of the disease.  
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Predictive models of ADAD 

We determined if the proteins identified in this study could predict mutation status (MCs vs NCs; 

independently of the clinical status). We used machine-learning approaches to identify the minimum 

number of proteins that maximizes the prediction power. We randomly split the CSF DIAN cohort into 

training (70%) and testing (30%) five times and used it for an iterative feature selection process. The 

LASSO model reduced the initial set of 125 proteins to nine key predictors that also showed a nominal or 

suggestive (p<0·1) association with ADAD in the multi-variate model (Table S20). The identified 

proteomic signature included some of the previously identified CSF AD-associated proteins, such as 

SMOC1, 13,16 calcineurin (PPP3CA/PPP3R1) or NPTX2, among others. 87 This model was validated in the 

testing set (30% of the DIAN CSF samples; n=143, MCs=94, NCs=49), showing strong prediction power 

for classifying ADAD mutation carriers, with an area under the curve (AUC) of 0·95 in the training set and 

0.89 in the testing sets (Fig. 4A, Table S21). The AUC of this proteomic signature was significantly better 

than those for pTau181 (AUC: 0·80, p = 9·72×10-03), Aβ42 (AUC:0·72, p = 1·24×10-02) and pTau/Aβ42 

(AUC: 0·80, p = 6·87×10-06) (Table S21). Negative predictive values (NPV) were > 0·93 and positive 

predictive values (PPV) were > 0·70 in both training and testing and performing better than the classical 

AD biomarkers. 

 

Taking this analysis further, we categorized MCs into subgroups based on their clinical status at CSF 

draw date. Within the MCs there were 186 individuals without clinical symptoms (Pre-symptomatic) and 

105 symptomatic individuals. We tested if this model could also distinguish the pre -symptomatic from 

the symptomatic individuals. We used the same proteomic signature (nine proteins) with the same  

weights and cut-offs values (Table S20, S21). The nine proteins predictive model showed an AUC =0·79 

(Fig. 4B), the NPV (0·4) and the sensitivity (0.21; Table S21) were significantly lower than pTau181/Aβ42 

(NPV 0·90 and sensitivity 0·83), suggesting that the nine proteins (Fig. 4C,4D) signature might be 

capturing very early disease changes.  

 

Discussion 

In this study, we conducted an extensive analysis of CSF proteomics in the DIAN cohort (Fig.1). Our goal 

was to uncover early changes in protein abundances, understand the underlying biology, and develop 

effective predictive models for the early diagnosis. We measured 6,163 proteins in 476 CSF samples and 

6,022 proteins in 538 plasma samples from DIAN by Somascan® 7K Platform. We adopted a novel 

methodology, setting our work apart in the field of ADAD research. Firstly, we analyzed the CSF 

proteome changes in individuals with ADAD mutations, leveraging a high-throughput unbiased 

proteomic technology and a stringent pseudo-trajectory approach. In addition, our approach, unlike a 

previous study 15 that merely compared MCs to NCs, fully integrate the EYO to identify early proteomic 

changes. We broadened our analyses by including 1,763 CSF samples from sAD (6,163 proteins) from 

four independent cohorts, to serve as unbiased validation datasets. 

We have identified 125 proteins (Fig.2A, Table S1) significantly different in pseudo-trajectories analysis 

and 246 significant proteins (Fig.2B, Table S2) associated with ADAD mutations status. These pseudo-

trajectory changes could be traced back to 30 years before symptom onset (Fig.2C, Table S1). For 
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example, SMOC1 undergoes alterations as early as 15 years prior to established AD biomarkers like 

pTau, total Tau, and Aβ42. Some of the top findings include some known AD biomarkers such as NEFL 

and NRGN. However, most of the proteins identified in our analyses are novel findings, such as PPP3R1, 

which has been associated with disease progression and ptau levels in sAD,80 or GAGE2D that also 

showed protein changes 19 years before clinical onset. One recent study has reported high correlation 

between Somascan® and immunoassay measures (r > 0·9) 34, validating the robustness of platform used 

for proteomic profiling in this study.  

We leveraged two previous studies15,16 to replicate our findings from the ADAD trajectory analysis. Of 

the 125 proteins identified in our analysis, 24 proteins were included in either of the previous studies 

(Table S5), and all of them displayed significant associations in the same direction. Johnson et al.,  12 

represents a technical replication, as the same samples were analyzed to measure the levels of 33 

proteins using Mass Spectrometry. The van der Ende et al. study13 represents a biological replication as 

808 proteins were analyzed using Olink in 22 MCs and 20 controls not included in this study. These 

validation by mass spectrometry and Olink platforms, add confidence that the protein is reliably 

measured using different targeting methods.15,16 We also found that most of the proteins associated 

with different trajectories in MCs vs. NCs were also found to be associated with sporadic AD in a large 

dataset measured by Somascan 7K® (Table S8). These results support our findings and indicate a large 

overlap between ADAD and sAD. However, during these analyses, we identified five proteins (DLK2, 

LRFN2, RELT, GAGE2A, EPHA4) that exhibited opposite directions between ADAD and sAD. One potential 

explanation of this opposite effect could be due to the dynamic changes of these proteins in relation to 

disease status. In the pre-symptomatic phase of ADAD, some metabolic and synaptic plasticity markers 

(DLK2, LRFN2) 55,88 are observed to decreased in our analysis, possibly as a compensatory response to 

early pathological changes. A zebrafish study indicates that the loss of DLK2 is likely to impair neural 

stem cell function with long-term consequences for the telencephalon morphology.89 However, as ADAD 

progresses to the symptomatic phase, these markers might show an increase, indicative of deteriorating 

neuronal function and synaptic integrity. This hypothesis aligns with observations about heightened 

activation of EPHA4 signaling, which directly impacts motor neurons leading to their degeneration. 90 

This pattern contrasts with the more linear progression seen in sAD, suggesting that the timing and 

progression of disease stages in ADAD vs. sAD could be a key factor in understanding these disparate 

protein change directions. Additionally, we found six proteins (CHIT1, SMOC1, NEFL, SMOC2, CAND1, 

PTPN11) with a higher effect size in ADAD. These findings suggest that there are distinct and diverse 

biological processes that are dysregulated in ADAD. 

By analyzing a larger number of proteins than any of the previous studies and utilizing a novel approach 

to identify proteins with different trajectories, we identified 101 novel proteins with changes starting 22 

years before onset, such as GAGE2D (EYO = -19·05 yrs) and PPP3R1 (EYO =-18·82 yrs). We then 

performed additional studies to determine the specific pathways that are implicated in disease. In order 

to disentangle the complex processes leading to disease, we first performed network analyses and then 

pathway enrichment analyses (Fig. 2D, 2E, Table S12-S19). These analyses unveiled a significant 

enrichment within three distinct modules, each linked to different stages of the disease (Fig. 5). In the 

earliest stage, the M1-module that capture early neuron pathology, displayed changes in cellular stress 

(GSR, PRDX3, TXNRD1), mitochondria damage (GABARAP, GABARAPL1, MAP1LC3A, MAP1LC3B, PPP3R1) 

and NMDA receptor synapse signaling (ACHE, PLCB1, NRGN, GLUL, DLG2, PRKCG, HOMER1). The 

proteins enriched in neurons indicated a depletion that might be caused by the cellular stress affecting 
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their mitochondria and microtubules, leading to programmed cell death in these neurons. This transition 

and process was captured by first two modules (M1 and M2). As time progresses and the disease 

trajectory transitions to the M2-Signaling Transduction stage, these stimuli begin. Many studies have 

shown evidence of excitotoxicity of glutamatergic neurotransmission through postsynaptic NMDAR on 

the neurons.91-93 Some other studies suggested that various cellular stressors, such as oxidative stress 

and endoplasmic reticulum stress, could dysregulate MAPK pathways,94,95 which we observed in the M2 

stage. These findings and evidence collectively contribute to our understanding and confirmation that 

oxidative stress or disruptions in glutamate metabolism, which initiate in the early and middle stages of 

ADAD, may promote the disease progression. Subsequently, under the regulation of cytokine, innate 

immune, and mTOR signaling pathways, microglia and macrophages become involved in an autophagy 

process that extends to other neurons and their microenvironments, as captured in the M3 module. 

However, the body consistently strives to maintain an equilibrium, attempting to repair and restore 

damaged neurons, axons, dendrites, and synapses. The presence of a dysfunction that exceeds the 

entire system's compensatory capacity, gives rise to the onset of symptoms. This was mainly 

recapitulated in the M3 stage where dysregulation of ubiquitin-conjugating enzymes (UBE2N, PEDS1-

UBE2V1) was observed. Non-degradative ubiquitin signaling is essential for homeostatic mechanisms 

crucial to neuronal function and survival96 and it plays a role in inflammatory processes,96 thus, 

supporting our hypothesis regarding self-rescue mechanisms at play during this stage. 

The proteins identified in this study were used to create a robust ADAD prediction model. We applied a 

LASSO model to narrow down the identified significant pseudo-trajectory proteins. The predictive model 

based on nine proteins accurately distinguished MCs from NCs, achieving a good performance with an 

AUC of 0·89 in the testing set, which is better than Aβ42, pTau and pTau/Aβ42 ratio (AUC < 0·80; p-value 

for AUC comparison p <0·012, Fig. 4A, Table S21). As some of the MCs were not symptomatic at the 

time of the lumbar puncture, we also analyzed if our model could distinguish between symptomatic and 

pre-symptomatic individuals carrying mutations. However, this model showed modest performance and 

low NPV (0.40) and poor performance compared to pTau/Aβ42 (p-value for AUC comparison p <0.026, 

Fig.4B, Table S21). As our protein discovery was focused on identifying proteins that showed the earlier 

changes in protein trajectories between MC and NC and not necessarily in clinical symptoms, it is 

reasonable to think that our model outperforms pTau/Aβ42 to identify MCs and not clinical symptoms. 

In the last decades, many studies have provided evidence for the prediction values of total Tau, pTau or 

pTau/Aβ42 for cognitive decline.97-99 Our model, while demonstrating lower NPV and sensitivity to 

distinguish mutation carriers with clinical symptoms against those without clinical symptoms compared 

to existing biomarkers, but the advantages of our model are quite obvious. They are mainly reflected in 

the following two aspects: 1) it is predominantly in detecting early protein changes, effectively 

distinguishing between early and late stages of ADAD. It achieves this with the highest PPV (0·87) and 

specificity (0·91) than the already known markers; 2) the nine proteins identified in our model can serve 

as secondary or confirmatory tests following initial screening with the known biomarkers that have high 

overall accuracy. This is particularly beneficial in situations where standard biomarkers are impractical, 

such as when patients cannot undergo imaging tests or when results are inconsistent with clinical 

symptoms. Overall, combining these nine proteins model with pTau/Aβ42 could have clinical utility as 

the nine proteins model could be used to identify individuals with very early changes and then 

pTau/Aβ42 could help to predict the age at onset. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301242doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301242


Despite being the largest proteomic study in ADAD, and having sAD as comparison group, this study has 

several limitations. Firstly, our primary research cohort was the DIAN study, which, despite being 

unique, the largest ADAD cohort, and the most extensive in terms of proteomic screening, lacked a 

comparable cohort for systematic validation of our findings. Secondly, our pseudo-trajectory model 

relied on a multi-layers linear regression approach, even though certain pseudo-trajectory changes 

between MCs and NCs displayed non-linear patterns. Given the immense number of proteomic variables 

involved, testing and fitting each variable with the most appropriate model proved impractical. Thirdly, 

we clumped all MCs regardless of ADAD affected gene to compare with NCs during our analysis due to 

limited sample size. Therefore, we lack granularity in the understanding of the role of each of the 

particular mutations. Despite the limitations, our study offers valuable insights and warrants further 

investigation to provide a more comprehensive understanding of proteomic changes in ADAD. 

In summary, our study leverages the DIAN participants and represents the most comprehensive 

proteomic analysis of ADAD to date. Our methodology employs extensive protein panels, covering a 

broad range of biological processes. The detection of numerous dysregulated proteins through a robust 

approach, exhibiting altered patterns early in the disease and maintaining statistical significance even 

after rigorous multiple testing corrections, highlights profound changes in the CSF proteome in ADAD. 

This reinforces the value of CSF proteomics in investigating the disease's pathophysiology. Additionally, 

our study draws parallels between the CSF proteomes of ADAD and sAD, indicating the notable 

similarities, but also identifies differences that can lead to personalized medicine for those carrying any 

mutation in ADAD genes. Ultimately, our results lay the groundwork for creating new predictive models 

and identifying potential therapeutic targets, enhancing our understanding of ADAD and fostering the 

development of more effective future treatments. 
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Figure 1. Study overview. In phase 1, proteins measured in the CSF sample were obtained with Somascan®, targeting 

6,163 proteins from DIAN. In this stage, the experimental cohort contains 291 MCs and 185 NCs. Differential pseudo -
trajectory analyses were performed between MCs and NCs. Trajectory intersections were calculated for significant 

pseudo-trajectory proteins. Biological functions were identified by protein co-expression network analysis and 
pathway enrichment. A total of 1,763 sAD CSF samples and 538 DIAN plasma samples wer e analyzed to validate the 
approach and contextualize the findings. Several publicly available external proteomic datasets were used to validate  
our findings as well (details in supplementary materials). Last, the LASSO model was used to select significant 

trajectory proteins and create predictive models for ADAD. 
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Figure 2. Significant pseudo-trajectory proteins and significant proteins associated with ADAD mutation status in 
CSF. (A-B) Volcano plots displaying the estimate change (x axis) against -log10 statistical differences (y axis) for all 
tested proteins. The red dots show the significantly upregulated proteins and the blue dots show the significantly 

downregulated proteins at Bonferroni threshold (p < 7.13×10⁻⁶).(A) Volcano plot for the pseudo-trajectory 

analyses comparing trajectories between MC and NC; (B) Volcano plot for the ADAD mutation status only; (C) 

Twelve significant pseudo-trajectory proteins that changed earlier than Tau, pTau, Aβ42. The ‘loess’ parameter in 
the plotting was applied to reflect the accuracy of the protein level changes between two groups;  (D-E) Disease 
gene network analysis for the significant pseudo-trajectory proteins. (D) X axis listed the enriched significant 

pseudo-trajectory proteins. The y-axis represents the disease enriched corresponding to the proteins listed at x -

axis. For each disease (y axis), we used different color to lable the disease name. And in each enriched disease, we 

used same color as the disease name(y axis) by box shape to highlight the distinct enriched protein in each disease. 
(E) . X-axis was the EYO of enriched significant pseudo-trajectory proteins; y-axis was the -log10 estimate of 
significant trajectory proteins. The color of each curve corresponds to the color of the disease name in (D).  
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Figure 3. Co-expression network analysis of significant pseudo-trajectory proteins and pathway enrichment for 

each module. (A) Module-trait associations. Each row corresponds to a module eigengene, column to a trait. Each 
cell contains the corresponding correlation and P-value. The table is color-coded by correlation according to the 
color legend; (B) Cell type enrichment analysis for MEchocolate2 (M1), Mehotpink3 (M2) and Medeepskyblue4 

(M3) clusters identified from WGCNA. The color bar showed on y-axis is consistent with the module color in (A). 
Each cell type was assigned color as showed on the legend; (C) EYO comparison for functional identified proteins 
from Reactome pathway analysis. (D-I) Reactome pathway analysis for each module. Treemap (D,F,H) was used to 
present the significantly enriched pathways with summarized categories (C #, such as C1); chord diagram (E,G,I) 

were showing the enriched proteins in categorized pathways. The colored pattern labelled at proteins represent 
the different cell types and the colors were consistent with bar colors in cell type enrichment (B).  
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Figure 4. Prediciton models for ADAD. (A) The ROC curve for the testing dataset of nine proteins. (B) predictive 

model performance of nine proteins for presymptomatic carriers vs affected carriers. Aβ42, pTau, pTau/ Aβ42 
prediction performance used as comparison (A,B). (C) Levels of the nine proteins in NCs, pre-symptomatic carriers 
and symptomatic carriers. Grey dots with extended lines in each violin plot represent the median ±SD.  (D) Pearson 
correlations for nine proteins in NCs.  
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Figure 5.  Multiple biological process trajectories summary.  (A) Highlighted pathology process and enriched 
significant trajectory proteins in each module by chronological order. (B) Hightlighted biology process of early 

stage of ADAD (M1). It included normal state and early ADAD disease stage. X axis represents the EYO in years.   
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Table 1. Demographics of participants of CSF and plasma in DIAN 

Descriptive 
CSF Plasma 

MCs NCs p-value MCs NCs p-value 

Sample size  291 185 

NT 

325 213 

NT PSEN1 (% of MCs) 216 (74) 0 240 (74) 0 
PSEN2 (% of MCs) 23 (8) 0 25 (8) 0 
APP (% of MCs) 52 (18) 0 60 (18) 0 

Affected carrier (% of MCs) 105 (36) 0 

7.58×10⁻103 

127 (39) 0 

2.77×10⁻116 
Presymptomatic carrier (% of MCs) 186 (64) 0 198 (61) 0 
AD Non-carrier (% of NCs) 0 8 (4) 0 12 (6) 

Control Non-carrier (% of NCs) 0 177 (96) 0 201 (93) 

Age mean (SD), y 40.0 (10.4) 39.6 (11.6) 0.63 40.4 (10.6) 40.7 (11.6) 0.70 

Female sex N (%) 159 (55) 109 (59) 0.36 178 (55) 127 (59) 0.38 

EYO (SD), y -6.6 (10.4) -7.8 (12.5) 0.39 -6.3 (11.06) -7.9 (11.7) 0.12 

APOE ε4+ N (%), at least one allele 83 (29) 61 (33) 0.30 97 (30) 71 (33) 0.46 

SD, standard deviation; MCs, mutaiton carriers; NCs: non-carriers; y, years;  
Chi-square test used to test subtypes differences between MCs and NCs; Not tested (NT), due to all the NCs without any 
mutation, Chi-square test dose not apply to compare the subtype of muations between MCs and NCs.  
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