
DR-GPT: a large language model for medical report analysis
of diabetic retinopathy patients

Joel Jaskari1, Jaakko Sahlsten1, Paula Summanen2, Jukka Moilanen2, Erika Lehtola2,
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Abstract

Diabetic retinopathy (DR) is a sight-threatening condition caused by diabetes.
Screening programmes for DR include eye examinations, where the patient’s fundi are
photographed, and the findings, including DR severity, are recorded in the medical
report. However, statistical analyses based on DR severity require structured labels that
calls for laborious manual annotation process if the report format is unstructured. In
this work, we propose a large language model DR-GPT for classification of the DR
severity from unstructured medical reports. On a clinical set of medical reports,
DR-GPT reaches 0.975 quadratic weighted Cohen’s kappa using truncated Early
Treatment Diabetic Retinopathy Study scale. When DR-GPT annotations for unlabeled
data are paired with corresponding fundus images, the additional data improves image
classifier performance with statistical significance. Our analysis shows that large
language models can be applied for unstructured medical report databases to classify
diabetic retinopathy with a variety of applications.

Introduction 1

Diabetic retinopathy (DR) is a sight-threatening eye disease that develops as a result of 2

diabetes. As a standard practice, ophthalmologists first identify signs of the disease by 3

observation and then classify the disease based on the combination and severity of the 4

visible signs. In Finland, the photographer and physician record the findings and 5

resulting DR classification in the patient’s electronic health records, possibly in an 6

unstructured manner depending on the healthcare provider. In order to perform any 7

computational analyses on a patient or population level, the DR classification label is 8

required. However, manual labeling of retrospectively collected medical reports can 9

become prohibitive when dealing with large scale studies involving tens of thousands of 10

patients. 11

Recently, large language models (LLMs) have gained widespread popularity among 12

the public with the rise of chat-based applications, such as OpenAI’s ChatGPT, Meta’s 13

Llama, and Google’s Bard. In the medical domain, LLMs are being developed for 14
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Fig 1. Graphical illustration of our experimental pipeline for the DR-GPT large
language model.

various classification tasks based on medical text, such as automatic extraction of 15

significant findings in chest radiograph reports [1], disease ICD-code and treating 16

department prediction based on patients’ self-reports [2], and COVID-19 diagnosis 17

based on chemosensory reports [3]. As such, the LLM-based approach shows promise for 18

automatic determination of the DR classification label from unstructured text reports. 19

In the present study, we develop and evaluate a Finnish GPT-based system 20

(DR-GPT) for auto-labeling the severity and gradability of diabetic retinopathy from 21

clinician’s reports with unstructured text format. In addition, we evaluate quantitatively 22

the classification performance of the system using established measures and the utility 23

of such system to generate weakly annotated data for training a convolutional neural 24

network. As a result, we demonstrate that the DR-GPT can accurately determine the 25

DR classification label from unstructured medical reports, and furthermore, that it can 26

be used to annotate unlabeled sets of data to improve image-based classifiers with 27

statistically significant difference compared to a standard supervised approach. A 28

graphical illustration of our experimental pipeline is presented in Fig. 1. 29

Materials and methods 30

In this section we present the dataset used in our analyses, the data preprocessing 31

methods, our experimental setup, and the measures used to evaluate the results. 32

Patient data 33

The research was conducted as a retrospective and registry-based study using a 34

pseudonymized dataset of diabetic patient screening and follow-up studies as well as 35

special healthcare visits at the Helsinki University Hospital (HUS) region over a period 36

from 2016 to 2019. The dataset consists in total of 40236 studies from 31292 patients. 37

During each visitation, both retinal fundi of a patient were photographed, and a 38

physician examined the fundus images to describe the visible signs and severity of the 39

patient’s DR in unstructured medical reports using the Early Treatment Diabetic 40

Retinopathy Study (ETDRS) grading system [4]. According to the Finnish law 41

(Medical Research Act (488/1999) and Act on Secondary Use of Health and Social Data 42

(552/2019)) and European General Data Protection Regulation (GDPR) rules 216/679, 43

a retrospective and registry-based study does not need ethical permission or informed 44

consent from subjects. The research permit was granted by the Helsinki University 45

Hospital Chief Medical Officer (decision number 67/2020), Helsinki, Finland, July 1, 46

2020. The data was accessed March 4, 2021 and the authors did not have access to 47

identifying information. 48

For the present study, one optician, one optometrist, and two specialists in 49

ophthalmology have manually analyzed 26626 (≈ 66.2%) of the reports, such that the 50

ETDRS severity of both the left and right eye mentioned in each report was converted 51

to the corresponding numeric level of the system. The reports that mentioned an 52

ETDRS severity of at most 35 were annotated by the optician or the optometrist. The 53

cases with a higher ETDRS severity and those cases with any abnormalities, such as 54

other pathologies or ungradable reports, were evaluated by one of the two specialists in 55

ophthalmology. The abnormal reports were also evaluated for ambiguity of the grade, 56

i.e., if there was ambiguity regarding the severity of DR or which eye the DR severity 57

corresponded to, and if visible laser scars or laser treatment was mentioned. The lateral 58
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ambiguity prevents the determination of the correct label for each of the eyes, and the 59

DR that manifests after laser treatment is not captured by the ETDRS scale because it 60

alters the natural progression of diabetic retinopathy. The ambiguous and laser treated 61

cases were assigned an auxiliary Ungradable label, while the fully gradable cases were 62

assigned the Gradable label. 63

The dataset of patients were divided to model training, validation, and test sets with 64

a greedy search algorithm that performed the division such that a) the reports from 65

each patient could only reside in one of the sets, b) the distribution of ETDRS classes 66

was to be as similar as possible in all of the sets, and c) the proportion of data in the 67

sets was to be matched with 70%, 10%, and 20% for training, validation, and test sets, 68

respectively. Avoiding the overlap of patients between the sets avoids overoptimistic 69

results by the deep learning neural network memorizing possible spurious patient level 70

patterns. The ETDRS distributions are presented in detail in the table in S1 Table. 71

We used a truncated version of the ETDRS (ETDRS-T), which includes the four 72

least severe ETDRS classes, i.e., 10, 20, 35, and 43, and a single class that is a 73

combination of the most severe ETDRS classes in our dataset, i.e., 47, 53A-D, 53E, 61, 74

65, and 71. This simplification of the grading scheme was applied to balance between 75

the number of samples present in each class and the clinical relevance for separating 76

class severity. Although ETDRS-T cannot differentiate the ETDRS classes ≥ 47 from 77

one another, the cases with the ETDRS class 47 are among the first that can require 78

treatment in the coming years, thus making this system suitable to be applied in 79

healthcare. The class distributions of ETDRS-T in patient, report, and eye -level are 80

presented in Table 1. In addition, we have also evaluated the DR-GPT on a binary DR 81

classification system (RDR) used in previous studies [5, 6, 7]. The RDR system is 82

defined as moderate or worse diabetic retinopathy on the proposed international 83

diabetic retinopathy classification (ICDR) system [8], with ICDR classes lower than 84

moderate DR assigned the label 0 and moderate or worse the label 1. 85

Table 1. ETDRS-T distributions for the medical report data.

Label Development Set∗ Test Set
ETDRS-T / Gradable Patients∗∗ Reports† Eyes Patients∗∗ Reports† Eyes

10 14124 15563 29994 3506 3885 7507
20 1658 1934 2558 411 477 644
35 823 1093 1499 206 265 371
43 303 475 706 69 118 180
≥47 127 164 267 27 41 66

Gradable 15325 17512 35024 4219 4786 8786

Ungradable 2998 3487 6473 802 841 1694
* Development set denotes training and validation data.
**A patient is counted for a label if the label is mentioned in any of the reports of the
patient.
† A report is counted for a label if the label is mentioned for either of the eyes.

We have observed that there were a number of duplicate reports in the dataset, 86

despite them having been recorded in an unstructured manner. Specifically, there were 87

a number of reports with identical contents for some of the patients with milder severity 88

classes, e.g., the reports merely indicating that there was no DR to be observed. There 89

were in total of 3818 such duplicate reports in the test set, with 3117 reports having 90

ETDRS-T class 10 for both eyes, 351 reports with ETDRS-T class 20 for both eyes, 300 91

reports with ETDRS-T class 35 for both eyes, and 50 reports where there the severity 92

was different for each eye, but at most ETDRS-T class 35. To examine the performance 93
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of DR-GPT more in depth, we formed two test datasets. One of the sets was the test 94

data as-is, i.e., following the empirical distribution of the reports, and the other set was 95

formed with report stratification, i.e., keeping only one example of each unique report. 96

The DR-GPT performance on the former set measures how well it performs on the 97

population level, whereas the latter set measures how well the DR-GPT performs on a 98

report level. 99

The medical reports are based on the fundus images taken during the patient visits. 100

In a standard visitation, four 50◦ field-of-view fundus photographs are taken from both 101

eyes. The four images consist of a macula centered color image and three red-free 102

filtered images with one of them centered at the macula, one centered temporal to the 103

macula, and one is centered nasal to the optic disc. However, some of the patient visits 104

include more than four images per eye due to various reasons, e.g., patient requiring 105

additional images due to previous laser treatment or patient requiring anterior segment 106

images to visualise optic media opacities in detail. Additionally, some of the patients 107

have missing images, e.g., when an eye cannot be imaged due to advanced eye disease or 108

due to technical issues during photography. For our image classification experiments we 109

included the eye image sets with exactly four images of a standard visitation to simplify 110

the analysis. In total, the image-based experiments included annotations for 41738 eyes 111

of 19293 patients from 22056 visitations and 18032 eyes of 7765 patients from 10026 112

visitations with no annotations. We used the same training, validation, and test splits 113

for the patients as with the report classification experiments. Full description of the 114

ETDRS-T class distributions for the image classification experiments is shown in 115

Table 2. 116

Table 2. ETDRS-T distributions for the labelled images.

Label Development Set∗ Test Set
ETDRS-T Patients∗∗ Eyes Patients∗∗ Eyes

10 14120 28594 3553 7210
20 1626 2441 405 622
35 790 1406 201 348
43 293 651 64 160
≥47 129 240 28 66

* Development set denotes training and validation data.
** A patient is counted for a label if the label is mentioned
in any of the reports of the patient.

Data preprocessing 117

In order to limit the number of tokens, i.e., the text representations used as input to 118

large language models, that require processing and to prevent the DR-GPT from 119

learning spurious correlations between uninformative tokens and the class, we 120

preprocessed the text data with multiple rules. The portions of the medical reports that 121

consider observations regarding the patient’s fundus are in a free-form text, whereas 122

there are some automatically added parts that are structured. For example, the 123

beginning and the end of the report have structured information, such as time and date 124

of the clinical examination and the name of the examiner. Since this information does 125

not consider the patient’s health, we removed these parts from the texts. In addition, 126

unnecessary characters added for visual purposes were automatically removed, e.g., 127

multiple line-breaks. Finally, we utilized the text-tokenizer of TurkuNLP 128

gpt3-finnish-small to convert the text strings to token indices for DR-GPT. 129
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For our experiments with weakly annotated image data, we performed various 130

preprocessing and data augmentation methods. The original fundus images were 131

rectangular in shape with the fundus being visible as a circular region in the middle of 132

the image and surrounded by black borders. We cropped each image to the smallest 133

square image that contained the fundus entirely to remove as much of the black borders 134

as possible. We then resized each image to a standard resolution of 512× 512. During 135

the training of the convolutional neural networks, we utilized training augmentations 136

based on recent literature [5, 7, 9], i.e., random spatial flips both vertically and 137

horizontally (p=0.5), random rotations uniformly within the range of [−180◦, 180◦], 138

random translations within the range of [-25,25] pixels in both spatial axes, and random 139

zooms within range [90%,110%]. Finally, the image pixel values were mapped to the 140

range [-1,1], during both the training and inference. 141

Deep learning models 142

As our large language model, we utilize the recently proposed Finnish GPT-3 143

model [10], namely the pretrained ”Small” version of the architecture. The model is 144

based on the BLOOM architecture [11], which is similar to the GPT-3, and the 145

pretrained model has been trained in the next token prediction paradigm with various 146

Finnish text resources. The model takes a sequence of tokens as an input and it outputs 147

a sequence of probability distributions with the distribution at an index i representing 148

the conditional probability of the token at index i+ 1 given all the previous tokens. 149

The DR-GPT model consists of two Finnish GPT-3 neural networks, one of which 150

classifies the degree of diabetic retinopathy on the ETDRS-T scale for the left and right 151

eyes, and the other determines the gradability of the left and right eyes. In order to 152

adapt the model for these classification tasks, we replace the final, i.e., the next token 153

prediction, layer of the model with two parallel layers that predict the ETDRS-T level or 154

gradability for each eye. Additionally, when feeding the tokenized text to the model, we 155

only utilize the predictions on the last index of the sequence due to the causal masking 156

used within the model, which ensures that all the text data is visible for the prediction. 157

We use the cross-entropy loss function and regularize the models with 0.2 dropout rate 158

that turned out to have the best performance from a grid-search with the values 159

[0.0, 0.1, . . . , 0.9]. All model parameters were fine-tuned with Adam optimizer [12] with 160

learning rate 3× 10−6 that was found to be the best in the range [1× 10−3, 1× 10−6]. 161

We also examined AdamW optimizer [13] during our hyperparameter search, but as it 162

turned out to perform similarly to Adam, we selected the latter for our main results. 163

As for the image classification experiment with weakly annotated data, we utilize an 164

ImageNet [14] pretrained EfficientNet-B6 [15] convolutional neural network (CNN). In 165

order to enable multi-view classification based on the four retinal images, we consider a 166

combination of the sum and maximum multi-view fusion methods, described in detail 167

in [16]. It first feeds each of the four fundus images to the CNN to create four output 168

vectors. The output vectors are then processed by calculating the sum and maximum 169

features in an element-wise manner across the four outputs. Lastly, the sum and 170

maximum vectors are concatenated and fed to a multilayer perceptron with a softmax 171

activation to output the conditional class probabilities. We slightly modified the original 172

sum multi-view fusion approach by instead calculating the element-wise mean, as it 173

turned out to be more numerically stable. We use the cross-entropy loss function, and 174

AdamW optimizer with learning rate 3× 10−5, which we found to result in the best 175

performance in the task. 176
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Experiments and evaluation measures 177

To evaluate the classification performance of the five class ETDRS-T quantitatively, we 178

use the quadratic weighted Cohen’s kappa (QWK) [17], accuracy, and balanced 179

accuracy measures. The QWK measure has previously been used in the evaluation of 180

the deep learning algorithms for diabetic retinopathy classification with the five-class 181

ICDR system [7, 18, 19], whereas the accuracy and balanced accuracy are common 182

classification evaluation measures. For the binary classification tasks of RDR and 183

gradability classification, we use the area under the receiver operating characteristic 184

curve (AUROC), accuracy, and balanced accuracy. We trained 10 DR-GPTs and report 185

the mean and standard deviation of the results with both empirical and report stratified 186

distributions of test data. 187

The DR-GPT model outputs two vectors of probabilities that represent the
conditional distribution of the classes for the left and right eyes given the text input. To
calculate QWK, accuracy, and balanced accuracy, we select the label with the maximum
probability as the prediction for each eye, i.e., ŷleft = argmaxc p(yleft = c | x) and
ŷright = argmaxc p(yright = c | x). For multi-class classification with K categories, a set
of N ground truth labels {y1, . . . , yN}, and DR-GPT predicted labels {ŷ1, . . . , ŷN},
where the laterality of the label and prediction have been omitted for clarity, the QWK
is defined as follows:

QWK = 1−
∑K

i=1

∑K
j=1(i− j)2Ci,j∑K

i=1

∑K
j=1(i− j)2Ei,j

,

Ci,j =
N∑

n=1

I[yn = i] · I[ŷn = j],

Ei,j =
1

N

K∑
a=1

Ci,a

K∑
b=1

Cb,j ,

where I[·] is the indicator function, C is the confusion matrix, and E the expected
agreement matrix. Accuracy and balanced accuracy are defined as:

Accuracy =
1

N

N∑
n=1

I[yn = ŷn],

Balanced Accuracy =
1

K

K∑
k=1

∑N
n=1 I[yn = k] · I[ŷn = k]∑N

n=1 I[yn = k]
.

To obtain the binary classification measure AUROC, one needs to evaluate the
sensitivity and specificity of a classifier at multiple probability thresholds τ , such that
at each threshold the predicted label is defined as:

ŷ =

{
1 if p(y | x) > τ,

0 else.

The area under the curve defined by the sensitivities and specificities on thresholds 188

τ ∈ [0, 1] is the AUROC measure. When evaluating the AUROC of RDR classification 189

performance (RDR AUROC), we formed the probability of RDR positive by adding the 190

probabilities of ETDRS-T classes 35, 43, and ≥ 47 together. 191

To evaluate if there are differences between an EfficientNet-B6 model trained with 192

manually annotated data and one trained with the data augmented with DR-GPT weak 193

annotations, we used the 10 DR-GPTs of medical report classification experiments to 194

January 10, 2024 6/12

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.12.24301230doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301230
http://creativecommons.org/licenses/by/4.0/


generate weak annotations on the unlabelled set of 10026 reports. Specifically, we took 195

an ensemble of the models and filtered out the reports that the ensemble DR-GPT 196

predicted as being ungradable. For the rest of the reports, the maximum probability 197

label was assigned as the target label. We trained 10 EfficientNet-B6 models on both 198

manually annotated data and on manually annotated data augmented with weak 199

annotations, and determined statistically significant differences with two-tailed 200

Wilcoxon signed rank tests [20], by considering the p-values less than 0.05 as significant. 201

To control the false discovery rate of multiple hypotheses, Benjamini-Hochberg 202

procedure [21] was used to declare significant results, which accounted for the various 203

classification measures used to compare the approaches. These classification measures 204

were implemented in Python (3.9.12) using the scikit-learn (1.3.0) [22] and Wilcoxon 205

signed rank tests were calculated using SciPy (1.8.0) [23]. 206

Results 207

This section presents the results for the DR-GPT on classifying patients’ medical 208

reports, and for the EfficientNet-B6 on image classification with and without the 209

DR-GPT generated weakly supervised data. 210

Classification of patient’s medical reports 211

The results of ETDRS-T classification with the DR-GPT are presented in Table 3. On 212

the empirical dataset, the DR-GPT reached 0.975 QWK, 0.987 accuracy, and 0.937 213

balanced accuracy in the ETDRS-T classification task, and 0.999 AUROC in the RDR 214

classification. It turned out that the performance degraded slightly when evaluating the 215

performance on the report stratified i.e., only a unique sentence, test data, the QWK 216

value decreased to 0.962, accuracy to 0.952, and the balanced accuracy to 0.930. In 217

addition, the RDR AUROC turned out to decrease to 0.994. 218

Table 3. ETDRS-T and RDR classification results of DR-GPT.

Test Set QWK Accuracy Balanced Accuracy RDR AUROC

Empirical 0.975 (0.002) 0.987 (0.001) 0.937 (0.006) 0.999 (0.000)
Stratified 0.962 (0.004) 0.952 (0.004) 0.930 (0.006) 0.994 (0.001)

In the case of binary classification for gradability, the DR-GPT resulted in an 219

AUROC value of 0.996, accuracy value of 0.986, and balanced accuracy value of 0.971, 220

when evaluating the full test data. The performance on the report stratified set of 221

patient data showed that the performance decreases slightly with AUROC being 0.960, 222

accuracy 0.952, and balanced accuracy 0.894. The results are illustrated in full on 223

Table 4. 224

Table 4. Gradability classification results of DR-GPT.

Test Set AUROC Accuracy Balanced Accuracy

Empirical 0.996 (0.000) 0.986 (0.000) 0.971 (0.003)
Stratified 0.960 (0.003) 0.952 (0.001) 0.894 (0.013)

In the case of the ensemble DR-GPT model, created by taking an ensemble of the 10 225

repetitions, the evaluation yielded 0.977 QWK, 0.988 accuracy, and 0.943 balanced 226

accuracy in the ETDRS-T classification, and 0.999 AUROC in the RDR classification 227

on the empirical set of test data. As for the report stratified test data, the DR 228

classification performance resulted in 0.966 QWK, 0.957 accuracy, and 0.936 balanced 229
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(a) (b)

(c)

Fig 2. Ensemble DR-GPT confusion matrices on the empirical set of test data. (a)
ETDRS-T classification, (b) RDR classification derived from the ETDRS-T, and (c)
gradability classification.

accuracy in the ETDRS-T classification, and 0.995 AUROC in the RDR classification. 230

In turn the ensemble DR-GPT model had gradability classification performance of 0.997 231

AUROC, 0.988 accuracy, and 0.974 balanced accuracy on the empirical test set, and 232

0.965 AUROC, 0.956 accuracy, and 0.903 balanced accuracy on the report stratified test 233

set. The ensemble DR-GPT ETDRS-T and gradability confusion matrices, evaluated on 234

the empirical set, are presented in Fig. 2. The DR-GPT ensemble predictions on the 235

unlabelled data, used in the image classification experiments, resulted in 5627 patients 236

with 9949 eyes in the ETDTS-T class 10, 1650 patients with 2429 eyes in class 20, 1460 237

patients with 2808 eyes in class 35, 922 patients with 2182 eyes in class 43, and 341 238

patients with 664 eyes in class ≥ 47. 239

Image classification with weak supervision 240

As for the image classification results with the EfficientNet-B6 CNN model, when 241

trained with manually annotated data for ETDRS-T classification, it had the mean 242

(standard deviation) value of 0.890 (0.005) for QWK, 0.924 (0.002) for accuracy, and 243

0.579 (0.030) for the balanced accuracy. In addition, when the model was evaluated for 244

RDR classification, it had an RDR AUROC of 0.979 (0.003). It turned out that when 245

the model was trained with the DR-GPT generated weak annotations, in addition to 246

the manual annotations, the ETDRS-T classification performance improved to 0.892 247

(0.004) for QWK, 0.924 (0.003) for accuracy, and 0.604 (0.017) for balanced accuracy, in 248

terms of the mean (standard deviation) of these measures. Furthermore, the RDR 249

AUROC improved to 0.984 (0.001). Additionally, all the differences between the 250

baseline supervised and the DR-GPT augmented model were statistically significant. A 251

summary of the results are presented in Table 5 and the confusion matrices of 252

ensembled models from both the experiments in Fig. 3. 253

Table 5. Diabetic retinopathy classification from fundus images.
Experiment QWK p-value Accuracy p-value Balanced Accuracy p-value RDR AUROC p-value

Supervised 0.886 (0.005)
0.003

0.922 (0.002)
0.002

0.642 (0.030)
0.014

0.979 (0.003)
1.8× 10−4

+ DR-GPT 0.893 (0.004)∗ 0.926 (0.002)∗ 0.667 (0.014)∗ 0.984 (0.001)∗

* Statistically significant differences (p < 0.05).

(a) (b)

(c) (d)

Fig 3. ETDRS-T and RDR confusion matrices for image classification with ensembles.
(a) ETDRS-T with standard supervised approach, (b) ETDRS-T with DR-GPT weakly
supervised data, (c) RDR with standard supervised approach, (d) RDR with DR-GPT
weakly supervised data.
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Discussion 254

In this work, we have proposed a large language model DR-GPT for automatic 255

classification of diabetic retinopathy and its gradability from unstructured medical 256

patient reports. We demonstrated that DR-GPT has a high accuracy on both of the 257

classification tasks, and furthermore, that it can be used to automatically annotate 258

fundus images by analysing the corresponding unlabeled medical reports. This weakly 259

annotated data could in turn be used to augment the training data for a convolutional 260

neural network to improve its performance. 261

Overall the DR-GPT model had excellent accuracy with only a few errors. An 262

observation from the analysis is that the classification performance of all grading scales 263

degraded systematically when evaluated with the report stratified dataset in comparison 264

to the empirical dataset. This difference can be attributed to the duplicate reports being 265

more abundant during training as well as having simpler and homogeneous content e.g., 266

simply stating that there is no diabetic retinopathy, which makes their classification 267

easier. Thus, the remaining performance gains for the DR-GPT could be achieved by 268

increasing the number of the more severe cases, i.e., ETDRS-T classes 43 and ≥ 47, in 269

the training set, as they have more heterogeneous reports with unique terminology. 270

As for the image classification experiments, the EfficientNet-B6 convolutional neural 271

network with access to additional weakly supervised data generated by DR-GPT had a 272

significant improvement across all the measures, when compared to the supervised 273

baseline. This demonstrates that the DR-GPT approach can be used with practically 274

no additional cost, besides the computation, to improve the performance of an 275

image-based classifier. However, the size of the improvement was small or moderate 276

across the measures, even when the weakly supervised CNN had access to additional 277

images from 19492 eyes. This outcome can be due to the saturation of classification 278

performance with a CNN based approach, and we expect that the DR-GPT weakly 279

supervised data could improve upon the supervised baseline more when the labelled 280

dataset of fundus images is small. 281

There are some limitations to our study. Firstly, the DR-GPT was trained using 282

exclusively Helsinki University Hospital region data, which may differ in terms of how 283

structured the medical patient reports are in comparison to other national regions. This 284

poses a challenge in the generalization of DR-GPT to reports from other regions, which 285

can be analyzed further with multi-center data. Secondly, there are medical reports that 286

refer to the previous examinations that the patient has undergone, which were not 287

available to the DR-GPT during training or inference. This lack of information could be 288

remedied by architectural and data-processing development, which remains for the 289

future work. Thirdly, we utilized the truncated ETDRS-T system instead of the 290

ETDRS scale due to the limited number of cases with severe or worse background DR 291

and proliferative DR in our dataset, which limits the applicability of the approach to 292

more fine-grained analysis of DR. Lastly, our CNN experiments with DR-GPT 293

generated weakly supervised data utilised a relatively simple multi-view fusion 294

mechanism, which limited our analysis to the standard cases with exactly four images. 295

This pivotal study has shown the efficacy of LLMs with unstructured medical data 296

and the synergy in combination with CNNs for image -based analysis with diabetic 297

retinopathy screening. With the promise of the high accuracy of the method, a more 298

robust analysis with multi-center and finer diagnostic grading scale is left for future 299

work. 300
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Conclusion 301

A large language model can accurately analyze diabetics’ unstructured medical reports 302

to identify the severity and gradability of diabetic retinopathy. It can be used to 303

automatically generate structured diabetic retinopathy classification for existing 304

databases and to generate training data for other deep learning -based models. 305

Supporting information 306

S1 Table. ETDRS distributions for the medical report data. A patient is 307

counted for a label if the label is mentioned in any of the reports of the patient, and a 308

report is counted for a label if the label is mentioned for either of the eyes. Development 309

set denotes training and validation data. 310
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