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Abstract 

Background 

Idiopathic pulmonary fibrosis (IPF) is a chronic lung condition that is more prevalent in males than 

females. The reasons for this are not fully understood, with differing environmental exposures due 

to historically sex-biased occupations, or diagnostic bias, being possible explanations. To date, over 

20 independent genetic variants have been identified to be associated with IPF susceptibility, but 

these have been discovered when combining males and females. Our aim was to test for the 

presence of sex-specific associations with IPF susceptibility and assess whether there is a need to 

consider sex-specific effects when evaluating genetic risk in clinical prediction models for IPF. 

Methods 

We performed genome-wide single nucleotide polymorphism (SNP)-by-sex interaction studies of IPF 

risk in six independent IPF case-control studies and combined them using inverse-variance weighted 

fixed effect meta-analysis. In total, 4,561 cases (1,280 females and 2,281 males) and 23,500 controls 

(8,360 females and 14,528 males) of European genetic ancestry were analysed. We used polygenic 

risk scores (PRS) to assess differences in genetic risk prediction between males and females. 

Findings 

Three independent genetic association signals were identified. All showed a consistent direction of 

effect across all individual IPF studies and an opposite direction of effect in IPF susceptibility 

between females and males. None had been previously identified in IPF susceptibility genome-wide 

association studies (GWAS). The predictive accuracy of the PRSs were similar between males and 

females, regardless of whether using combined or sex-specific GWAS results. 

Interpretation 

We prioritised three genetic variants whose effect on IPF risk may be modified by sex, however 

these require further study. We found no evidence that the predictive accuracy of common SNP-

based PRSs varies significantly between males and females.  
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Research in context 

Evidence before this study 

The prevalence of IPF is higher in males than females. IPF risk has a genetic component, but analyses 

have only been performed in studies where males and females have been combined. One previous 

study reported sex-specific differences in association for the MUC5B promoter variant, rs35705950, 

however the finding was not replicated in an independent study. No genome-wide association 

studies assessing for different genetic risk factors between males and females have been conducted 

for IPF. It is not known whether approaches to predict individuals at risk of IPF should take sex-

specific genetic risk into consideration.  

Added value of this study 

This was the largest study to test whether there are genetic variants whose effects on IPF 

susceptibility are different in males and females. The MUC5B promotor variant rs35705950 did not 

show a different magnitude of effect in males vs females. We identified three genetic variants with 

opposite directions of effect on IPF risk in males vs females. Our polygenic risk score analyses 

suggested that genetic prediction based on data from males and females separately did not perform 

better than when males and females were combined.  

Implications of all available evidence 

Although we found some preliminary evidence of genetic variants with sex-specific effects on IPF 

risk, our analyses suggest that genome-wide genetic risk from common single nucleotide 

polymorphisms is similar in males and females.  This is important when considering integration of 

polygenic risk scores into clinical prediction models for IPF. There may be other forms of genetic 

variation, such as complex structural variation or rare variants, not captured in this analysis, that 

may improve risk prediction for males and females separately. 
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Introduction 
Idiopathic pulmonary fibrosis (IPF) is a progressively fibrotic lung disease with a median survival time 

after diagnosis of 3-5 years1. In the USA and Europe, IPF is estimated to have a disease prevalence of 

0.63 to 7.6 per 100,000 people2. The number of people diagnosed with IPF is increasing and males 

are more likely to be diagnosed than women3,4. However, the reason why the disease is more 

prevalent in males is not understood. Different environmental exposures between males and 

females, notably occupations such as carpentry which have traditionally been more common 

amongst men5, could explain some of the observed difference. Diagnostic bias may also play a role 

with men being over diagnosed and women being undiagnosed with IPF6. As well as prevalence 

differences, there are survival differences with men having worse survival after IPF diagnosis than 

females7. Differences in genetic predisposition between males and females may be an additional 

factor in prevalence differences, however, this has not yet been extensively studied. 

IPF is a complex polygenic disease with multiple genes implicated in susceptibility. The genetic 
variant rs35705950 in the MUC5B gene promoter has been shown to increase a person’s risk of IPF 
5-fold for each copy of the risk allele8-11 and has been estimated to explain more than three times 
more disease liability than the other known common IPF risk variants combined12. In recent years, 
genome-wide association studies (GWAS), examining genetic variants across the genome, have 
identified over 20 genetic loci associated with IPF risk13-16. In addition to providing new insight into 
disease biology, polygenic risk scores (PRS) derived from GWAS data have shown potential utility in 
identifying individuals at highest risk of pulmonary fibrosis17. 
 
We hypothesised that there might be different biological mechanisms that promote IPF 

susceptibility in males and females, and that genetic associations that differ between males and 

females, may pinpoint the genes and pathways involved. To test this, we performed a genome-wide 

single nucleotide polymorphism (SNP)-by-sex interaction meta-analysis of IPF risk in six independent 

clinically-defined IPF case-control studies. Given the increasing interest in the use of PRS as a clinical 

tool for diagnosis in complex diseases18, we additionally tested whether PRS derived from sex-

combined association data performed differently in males and females or whether derivation of PRS 

from sex-specific data might improve predictive accuracy. 

Methods 
Studies 
We performed a SNP-by-sex interaction meta-analysis for IPF risk using six independent IPF case-

control studies, all of which have been previously described; US19 (formerly referred to as Chicago), 

Colorado13, UK20, UUS11, Genentech21 and CleanUP-UCD22,23 (Table 1). In short, unrelated participants 

from the six studies were included in this analysis if they were of genetically-determined European 

ancestry and had sex-at-birth recorded. We only included participants who passed genotyping 

quality control and cases were defined using the relevant American Thoracic Society/European 

Respiratory Society guidelines24,25 (Supplementary Methods).  

Genome-wide SNP-by-sex Interaction Analyses 
Genome-wide SNP-by-sex interaction analyses of IPF risk were performed separately in each of the 

six studies and meta-analysed using PLINK 1.9 (www.cog-genomics.org/plink/1.9/)26 (Supplementary 

Methods). Analyses were performed using autosomal SNPs. We used P<5x10-8 as the threshold for 

genome-wide significance and P<1x10-6 for suggestive significance in the meta-analysis. Independent 

sentinel variants were defined using distance-based and conditional analysis methods 

(Supplementary Methods).  
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As all available datasets with both male and female participants were included within the genome-

wide discovery analysis to maximise statistical power, we applied Meta-Analysis Model-based 

Assessment of replicability (MAMBA27) to assess the posterior probability of replication for all SNPs 

with a meta-analysis P<1×10−6. SNPs with a MAMBA posterior probability of replication (PPR) >90% 

were considered to be robust across the contributing studies and likely to replicate in future studies.  

Male-specific and female-specific effect estimates were calculated for all sentinel variants passing 

the above criteria. We sought validation of male-specific effect sizes and direction in a male-only IPF 

case control study, IPFJES (IPF Job Exposure Study)28, comprising 416 male IPF cases and 2,465 male 

controls (Figure 1, Supplementary Methods). No independent female-only datasets were available 

at the time of conducting this study.  

Bioinformatic investigation of significant signals 
Annotation of variants was performed using Variant Effect Predictor (VEP)29. We used GTEx to assess 

whether the sentinel variants were eQTLs for gene expression in up to 49 tissues (including lung and 

non-lung tissues) and the coloc package30 in R version 4.2.1 to test if sentinel variants were eQTLs for 

gene expression in lung or cultured fibroblasts (Figure 1, Supplementary Methods). We conducted 

phenome-wide association studies (PheWAS) using PhenoScanner31,32 and Open Targets33 to 

examine whether the signals were also associated with other phenotypes.  

Polygenic risk score analyses 
As well as looking at the effect individual genetic variants have on disease risk, the effect multiple 

SNPs have can be explored using PRS. The scores are constructed by taking the weighted sum 

(usually weighted by the SNP effects from a GWAS data) across many SNPs. It can then be tested 

whether these scores are predictors of disease risk. We wanted to test whether the predictive 

accuracy of PRS in predicting IPF risk differed between males and females. The predictive accuracy of 

PRS was evaluated in two ways: 1) the predictive performance of the PRS derived from sex-

combined IPF susceptibility GWAS14 was evaluated in males and females separately (‘standard PRS’) 

and 2) the predictive performance of the PRS derived from sex-specific GWAS was evaluated in 

males and females separately (‘sex-specific PRS’) (Figure 1). For 1) we first evaluated a 19-variant 

PRS representing previously reported common genome-wide significant (P<5x10-8) signals of 

association with IPF14. For both 1) and 2) we further incorporated genome-wide data using an 

approach that varied the threshold used for inclusion of variants in the PRS (PRSice v2.3.534). ‘Base 

data’ were derived from sex-combined and sex-specific meta-analyses of the US, Colorado, UK, UUS 

and Genentech datasets. The ‘target dataset’ was the independent CleanUP-UCD study comprising 

465 cases (93 females and 372 males) and 2,455 controls (530 females and 1,925 males). Area Under 

the Curve (AUC) differences were tested using DeLong’s test (Supplementary Methods).  

Results 
The genome-wide sex interaction analysis of IPF risk was performed in up to 4,561 cases (comprising 

1,280 females and 2,281 males) and 23,500 controls (8,360 females and 14,528 males). A total of 

8,485,642 genetic variants were included in the meta-analysis and there was no evidence of inflated 

test statistics (Figure 2 & Figure S1). 

Three independent sentinel variants with interaction P<1×10−6 and MAMBA PPR>90% were 

identified (Table S1). All three variants had consistent direction of effect across all contributing 

studies (Figure 3a, b, c).  
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The sentinel variant rs62040020, which resided within an intron of JPT2 (Jupiter microtubule 

associated homolog 2) on chromosome 16 (effect allele frequency (EAF) = 10.6%), was measured in 

all six studies with a high imputation quality (R2 > 0.88 across all six studies) and was nominally 

significant (P<0.05) in four of the six studies (Table S1 & Figure 4a). When tested for association with 

IPF risk in females and males separately, the minor allele (allele = C) of rs62040020 was associated 

with increased risk of IPF in females (odds ratio (OR) 1.34, 95% confidence intervals (CI) 1.15-1.55, 

P=1x10-4) and decreased risk in males (OR 0.82, 95% CI 0.74-0.92, P=1x10-3) (Figure 5). Accordingly, if 

we instead took the major allele to be the effect allele (allele = G), the direction of effect would be in 

the opposite direction (i.e., increased risk of IPF in males and decreased risk in females). In the male-

only IPFJES study, the association effect was close to the null and non-significant (OR 0.99, 95% CI 

0.77-1.27, P=0.939) (Figure S2a). In lung and/or cultured fibroblasts, the C allele of rs62040020 

(associated with increased IPF risk in females, decreased risk in males) was associated with increased 

expression of FAHD1 (Fumarylacetoacetate Hydrolase Domain Containing 1), MEIOB (meiosis specific 

with OB-fold) and NUBP2 (NUBP Iron-Sulfur Cluster Assembly Factor 2, Cytosolic) and decreased 

expression of MRPS34 (mitochondrial ribosomal protein S34) (Table S2). This allele was also related 

to changes in splicing of HAGH (hydroxyacylglutathione hydrolase) in lung, cultured fibroblasts and a 

range of other tissues. However, rs62040020 was not the most significant variant associated with 

expression of these genes at this locus, with colocalisation analyses for male sex-specific GWAS 

results suggesting the GWAS and eQTL association signals were driven by different variants (Figure 

S3 & Table S3, Supplementary Methods). The C allele of this variant was previously associated with 

reduced monocyte percentage in UK Biobank (NEALE round 2 results: http://www.nealelab.is/uk-

biobank/, P=1.7x10-4) (Table S2). 

For the other two SNPs, rs1756167317 and rs1663078846, the sentinel variants were of low 

frequency (EAF: 1-5%) and were nominally significant in 3 out of 5 contributing studies and 2 out of 5 

contributing studies, respectively (Figures 3b, 3c & Table S1). The A allele of rs1756167317, located 

in an intron of PRR7 (Proline rich 7, synaptic) at chromosome 5 (Figure 4b), was associated with 

increased risk of IPF in females (OR 2.18, 95% CI 1.56-3.04, P=5x10-6) and decreased risk in males (OR 

0.63, 95% CI 0.47-0.86, P=3x10-3) (Figure 5). This SNP showed a consistent direction and size of effect 

in the male only IPFJES study (OR 0.68, 95% CI 0.36-1.30, P=0.247) (Figure S2b). For the sentinel 

variant of the signal on chromosome 2, rs1663078846, the C allele was associated with increased 

risk of IPF in females (OR 1.69, 95% CI 1.33-2.14, P=2x10-5) and decreased risk in males (OR 0.76, CI 

0.63-0.92, P=6x10-3) (Figure 5). This intergenic variant (Figure 4c) did not show a consistent effect in 

males in the IPFJES study (OR 1.07, 95% CI 0.74-1.55, P=0.702)(Figure S2c). In PhenoScanner and 

Open Targets no associations with other traits for rs1756167317 or rs1663078846 were found. 

No variants met genome-wide significance (P<5×10−8), one was borderline genome-wide significant 

(rs1756167317, P = 5.76x10-8). None of the common previously reported IPF susceptibility variants, 

including the MUC5B promoter variant rs35705950, were observed to have a significant sex 

interaction effect when accounting for multiple testing (Table S4) although the DSP (desmoplakin) 

variant, rs2076295, had a nominally significant interaction effect (P=0.03) (Figure S4).  

Polygenic risk scores 
For the ‘standard PRS’ analysis, there was no difference in the AUC between males and females for 

the 19-variant PRS (AUC males: 80.3% vs AUC females: 80.8%, DeLong P = 0.85) (Table S5). When 

constructing multiple PRS (i.e., not limiting to published IPF susceptibility variants) the most 

predictive p-value threshold (PT ) was PT<4.5×10-4 for males and PT<5×10-4 for females (Figure S5a & 

Figure S5b), and whilst the AUC estimated was slightly lower for males than for females, the 

difference was not statistically significant (male AUC: 80.2% vs female AUC: 81.8%, DeLong P = 0.54).   
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For the ‘sex-specific PRS’ analysis, the male specific PRS predictive accuracy was slightly higher than 

the female specific PRS predictive accuracy, but the difference was not statistically significant (male-

specific PRS AUC: 78.2% vs female-specific PRS AUC: 76%, DeLong P = 0.47) (Table S5) (Figure S5c & 

Figure S5d). The AUCs observed in this analysis were smaller than those generated in the ‘standard 

PRS’ analysis, which might be explained by the decrease in sample size of the training set (i.e., less 

accurate effect sizes).  

The PRS results suggest that the predictive accuracy of IPF PRSs is not statistically different between 

males and females, regardless whether using combined or sex-specific GWAS results. 

Discussion 
We performed the first genome-wide SNP-by-sex interaction analysis of IPF risk in clinically-defined 

cases and identified three independent signals that were suggestively significant at P<1×10−6. To test 

whether a combination of variant effects (including known IPF susceptibility variants, as well as 

those not reaching statistical significance) predict IPF susceptibility in males and females differently, 

we performed PRS analyses. We found that the predictive accuracies of PRSs were not sex-

dependent suggesting that PRS developed from sex-combined association statistics are largely 

generalisable across sexes.  

Although none of the genetic variants analysed reached genome-wide significance in our interaction 

analysis, three sentinel variants met a less stringent threshold for significance and were consistent 

across all studies included in the meta-analysis. None of the variants replicated in the male-only 

IPFJES study, but this could have been because the study was under-powered to validate the male-

specific effects. Further data are needed to provide confidence in these signals and to confirm the 

likely causal genes at these loci. These new signals however may offer further insight into sex-

specific mechanisms in IPF. FAHD1, HAGH and MRPS34 have all been implicated in mitochondrial 

function; mitochondrial dysfunction has been widely implicated in age-related disease such as IPF35. 

HAGH was also amongst 2,940 genes differentially expressed between IPF cases and controls36. 

However, the sex-specific effect of these genes has not been investigated. 

None of the 19 previously reported common IPF genetic variants14 demonstrated a suggestively 

significant sex-interaction (P < 1×10−6). Previously, a sex-stratified meta-analysis conducted across six 

biobank studies15 observed a larger effect size in males compared with females for the MUC5B 

variant rs35705950. The effect was not replicated in a clinically-defined IPF sub-study of FinnGen or 

in the four clinically-defined case-control studies (four of the six studies used were included in our 

present study). We also did not observe this difference in our analysis (which included additional 

datasets). We have previously highlighted differences in genetic association effect sizes when 

defining IPF from routine electronic healthcare records compared to clinically defined cohorts37 

suggesting that case definition heterogeneity might account for the biobank finding.   

Studies of interaction effects require larger sample sizes than GWAS of main effects on disease risk 

as we are testing for a difference in effect size between two subgroups of participants; we cannot 

exclude the possibility that there are additional sex-specific genetic association signals yet to be 

discovered with larger sample sizes. However, our PRS analysis also included variants not meeting 

stringent statistical significance and did not suggest that there were any large effect sex-specific 

signals yet to be detected. There were more males than females in the analysis, which would affect 

the 95% CI of the AUC, with females having a wider AUC 95% CI than males.  

It could be that there are sex differences, but we might not see these differences on the autosomal 

chromosomes as sex chromosomes were not analysed. Furthermore, given the known role of 
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mitochondrial function it may be that sex differences might be observed in mitochondrial DNA. Our 

PRS analysis was not intended to define the optimum PRS for IPF in either or both sexes, but rather 

to indicate whether future efforts should focus on sex-specific PRS development. Our study was 

limited to variants with MAF>1% and as such we cannot exclude the potential for rare variants with 

sex-specific effects. All data included in this study was derived from individuals of European 

ancestry; our findings may not be generalisable to other ancestries and larger genetic studies of ILD 

in non-European ancestry populations, with appropriate representation of both sexes, are urgently 

needed. 

In summary, our genome-wide SNP-by-sex interaction analysis identified three potential sex-

interaction signals which require further validation and functional investigation. Our polygenic risk 

score analysis suggests that PRS derived from sex-combined IPF SNP association studies perform 

similarly in males and females with no significant benefit in deriving sex-specific PRS. 

Data Availability 
Full summary statistics for genome-wide SNP-sex interaction meta-analyse can be accessed from 

https://github.com/genomicsITER/PFgenetics. 

Ethics 
This research was conducted with appropriate ethics approval. 

The PROFILE study (which provided samples for the UK and UUS studies) had institutional ethics 

approval at the University of Nottingham (NCT01134822 – ethics reference 10/H0402/2) and Royal 

Brompton and Harefield NHS Foundation Trust (NCT01110694 – ethics reference 10/H0720/12). UK 

samples were recruited across multiple sites with individual ethics approval (University of Edinburgh 

Research Ethics Committee [The Edinburgh Lung Fibrosis Molecular Endotyping (ELFMEN) Study 

NCT04016181] 17/ES/0075, NRES Committee South West – Southmead, Yorkshire and Humber 

Research Ethics Committee 08/H1304/54 and Nottingham Research Ethics Committee 

09/H0403/59). Spanish samples were recruited under ethics approval by ethics committee from the 

Hospital Universitario N.S. de Candelaria (reference of the approval: PI-19/12). The UUS study also 

included individuals from clinical trials with ethics approval (ACE [NCT00957242] and PANTHER 

[NCT00650091]). For the UCSF cohort, sample and data collection were approved by the University 

of California San Francisco Committee on Human Research and all patients provided written 

informed consent. For the Vanderbilt cohort, the Institutional Review Boards from Vanderbilt 

University approved the study and all participants provided written informed consent before 

enrolment. For individuals recruited at the University of Chicago, consenting patients with IPF who 

were prospectively enrolled in the institutional review board-approved ILD registry (IRB#14163A) 

were included. Individuals recruited at the University of Pittsburgh Medical Centre had ethics 

approval from the University of Pittsburgh Human Research Protection Office 

(referenceSTUDY20030223: Genetic Polymorphisms in IPF). Individuals from the COMET 

(NCT01071707) and Lung Tissue Research Consortium (NCT02988388) studies were also included in 

the Chicago study. All subjects in the Colorado study gave written informed consent as part of IRB-

approved protocols for their recruitment at each site and the GWAS study was approved by the 

National Jewish Health IRB and Colorado Combined Institutional Review Boards (COMIRB). Subjects 

in the Genentech study provided written informed consent for whole-genome sequencing of their 

DNA. Ethical approval was provided as per the original clinical trials (INSPIRE [NCT00075998], RIFF 

[NCT01872689], CAPACITY [NCT00287729 and NCT00287716] and ASCEND [NCT01366209]). 

Individuals in the CleanUP-UCD study included individuals from clinical trials with ethics approval 
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(NCT02759120). These samples were genotyped under University of Virginia ethics approval (IRB 

20845). IPFJES involved human participants and was approved by East Midlands - Nottingham 1 

Research Ethics Committee REC reference: 17/EM/0021IRAS project ID: 203355. Participants gave 

informed consent to participate in the study before taking part. 
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Manuscript Tables 
Table 1: IPF case-control cohorts 

 Discovery cohorts  Validation cohort 

 US Colorado UK UUS CleanUP-UCD Genentech Total IPFJES 

 Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Total Cases Controls 

Males 374 241 1,017 2,289 433 2,356 597 7,210 372 1,925 488 507 3,281 14,528 17,809 416 2,465 

Females 138 269 498 2,394 179 1,010 196 2,790 93 530 176 1,367 1,280 8,360 9,640 NA NA 

Total 512 510 1,515 4,683 612 3,366 793 10,000 465 2,455 664 1,874 4,561 22,888 27,449 416 2,465 
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Manuscript Figures 
 

Figure 1: Overview of the SNP-by-sex interaction analysis and polygenic risk score analysis 
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Figure 2: Manhattan plot of meta-analysed sex-interaction results. The chromosomal position is on the x-axis and the -log(p-value) for each genetic variant 

in the sex-interaction meta-analysis is on the y-axis. Variants present in at least 3 studies are presented. The blue horizontal line represents the 1×10−6 p-

value threshold and the red horizontal line represents 5×10−8 p-value threshold (genome-wide significance threshold).   
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Figure 3: Forest plots showing SNP-sex interaction odds ratio by study and the meta-analysed results 

for a) rs62040020, b) rs1756167317 and c) rs1663078846.  

OR = odds ratio and CI = confidence interval 

a)  
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         b) 

 

 

          c)     
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Figure 4: Region plots for a) rs62040020, b) rs1756167317 and c) rs1663078846. 

The chromosomal position is on the x-axis and the -log(p-value) for each genetic variant in the sex-

interaction meta-analysis is on the y-axis. 

a)                                                                                       b)  

       

 

 

c) 
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Figure 5: Forest plot for sex stratified results meta-analysed across US, Colorado, UK, UUS, CleanUP-

UCD and Genentech. 

OR = odds ratio and CI = confidence interval 
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