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Abstract

Telomeres represent repeated DNA sequences at the ends of chromosomes, which shorten with

each cell division. Factors modulating telomere attrition and the health consequences thereof are

not fully understood. To address this, we leveraged data from 326,363 unrelated UK Biobank partici-

pants of European ancestry and used linear regression and bidirectional univariable and multivariable

Mendelian randomization (MR and MVMR) to elucidate the relationships between leukocyte telomere

length (LTL) and 141 complex traits, including diseases, biomarkers, and lifestyle factors. We confirm

that telomeres shorten with age and show a stronger decline in males than in females, which cannot

be explained by hormonal or lifestyle differences. MR revealed 23 traits modulating LTL; e.g., smoking

cessation and high educational attainment associated with longer LTL, while weekly alcohol intake,

body mass index, urate levels, and female reproductive events, such as childbirth, associated with

shorter LTL. We also identified 26 traits affected by LTL, with risk for cardiovascular, pulmonary, renal,

and some autoimmune diseases being increased by short LTL, while longer LTL increased risk for other

autoimmune conditions and cancers. Through MVMR, we show that LTL partially mediates the impact

of educational attainment, body mass index, and female age at childbirth on lifespan. These results

provide new insights into the biology of telomere regulation by shedding light on the modulators, con-

sequences, and the mediatory role of telomere shortening, portraying an intricate relationship between

LTL, diseases, lifestyle, and socio-economic factors.

Keywords— Telomeres; Mendelian randomization; UK Biobank; lifespan; complex traits; aging; lifestlye; female

reproduction; sex-differences
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Introduction1

Aging represents a leading risk factor for diseases such as cancer, cardiovascular diseases, and neurodegenera-2

tion [1]. Chronological age fails to account for individual differences in aging rates and vulnerability to diseases [2].3

Biological age intends to address this limitation by reflecting the physiological state of an individual and accounting4

for variations in cellular and tissue health. Several biomarkers can be used to estimate biological age, with DNA5

methylation being particularly popular due to its availability across tissues, and its sensitivity to both disease states6

and environmental factors [3, 4, 5]. However, given the complex nature of the aging process, additional biomarkers7

beyond DNA methylation are required to fully understand the underlying causes and mechanisms of aging and8

age-related diseases [6].9

10

One such biomarker is telomere length. Telomeres are DNA repeats at chromosome ends that act as protec-11

tive caps against genomic degradation. As organisms age, they undergo an increasing number of cell divisions,12

leading to an incremental decrease in telomere length. Acting as mitotic clocks, telomeres shorten until they reach13

a critical length, triggering cellular senescence and/or apoptosis [7]. Consequently, shorter telomeres have been14

associated with lifestyle factors, including smoking [8], reduced physical activity [9], high processed meat and low15

fruit consumption [10, 11], as well as a wide range of diseases, from pulmonary [12], renal [13], and metabolic [14]16

disorders to cancer [15, 16]. Paradoxically, longer telomeres have also been associated with poor health outcomes,17

especially cancers [17]. However, most studies so far were limited in the number of studied traits, relied on small18

sample sizes, and did not probe the directionality of the established associations.19

20

Recently, efforts to assess leukocyte telomere length (LTL) in large population biobanks have allowed compre-21

hensive exploration of its relationships with lifestyle factors and health outcomes. Performing an LTL phenome-wide22

association study in 62,271 participants from the Vanderbilt University and Marshfield Clinic biobanks, Allaire et23

al., identified associations with 67 phenotypes and showed that both shorter and longer telomeres associated with24

increased mortality [18]. Release of LTL measurements for ∼500,000 UK Biobank (UKBB) participants [19] and the25

companion first large-scale telomere length genome-wide association study (GWAS) [20] prompted investigation of26

the impact of LTL on hundreds of traits using phenome-wide Mendelian randomization (MR) [20, 21]. These studies27

showed that longer LTL increases risk for neoplastic and genitourinary diseases while lowering risk for respira-28

tory, digestive, and cardiovascular disorders [20, 21], with about 40% of these associations confirmed when using29

FinnGen disease association summary statistics [21].30
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31

Our study builds on this body of work by dissecting observational correlations between LTL and 141 traits into32

causes and consequences through a bidirectional MR causal framework (Figure 1). Additionally, we performed sex-33

stratified analyses and used multivariable Mendelian Randomization (MVMR) to disentangle the interplay between34

LTL and various traits, with a particular focus on the mediating role of LTL in longevity. Together, we identify traits35

influencing LTL, and how in turn the latter impacts the human phenome, contributing to a deeper understanding of36

telomere biology and its relation to health.37

Figure 1. Schematic representation of the study’s workflow.
Red and light green boxes denote steps using individual-level phenotypic data from the UK Biobank and GWAS summary statistics,
respectively. Top: Data extraction process. Middle: Analyses focused on LTL trait relationships including observational correlation
(β; black), Mendelian randomization to assess the impact of LTL on traits (αLTL→T ; red), and Mendelian randomization to assess
the impact of traits on LTL (αT→LTL; blue). LTL covariates comprise age, age2, array, sex, and the interaction of the latter with
the priors. U = unmeasured confounding factors; IVs = instrumental variables (i.e., genetic variants with genome-wide significant
association to the considered trait). SNP = single nucleotide polymorphism. Bottom: Follow-up analyses including sex-specific
LTL effects and LTL mediation analysis through multivariable Mendelian randomization.

3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301196doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301196
http://creativecommons.org/licenses/by/4.0/


Materials and methods38

Data39

Individual-level UK Biobank data40

Observational analyses were carried out in the UK Biobank (UKBB), a cohort of ∼500,000 volunteers from the41

general UK population aged between 40–69 years at recruitment [22]. Phenotype data were accessed through ap-42

proved application 16389. Analyses were conducted on 326,363 participants with known sex, age, and LTL after the43

exclusion of individuals of non-white and non-British ancestry (self-reported + genetically defined), relatives (≤ 3rd44

degree), and gender mismatches (see UKBB Resource 531), as well as those who retracted their participation.45

Given that LTL measurements are derived from blood, we further excluded 4,376 individuals with blood malignan-46

cies, based on self-reports (UKBB field #20001 codes 1047, 1048, 1050, 1051, 1052, 1053, 1055, 1056, 1058) or47

hospital diagnoses (#41270; International Classification of Diseases 10th Revision [ICD10] codes mapping to the48

PheCode ”cancer of lymphatic and hematopoietic tissue” [23]).49

50

We used technically adjusted and standardized LTL (#22192) [19] and assessed its relation to 166 complex51

traits (Table S1). These include 60 common diseases defined based on hospital diagnoses (#41270; last diag-52

nosis September 2021), while excluding from controls individuals with self-reported (#20001, #20002) or hospital-53

diagnosed (#41270) conditions related to the investigated disease [24]. Disease phenotypes were used to calculate54

a disease burden phenotype, i.e., the total number of diseases diagnosed in an individual among the 60 considered55

ones. The remaining 105 traits include 11 anthropometric traits (e.g., weight), 41 biomarkers (e.g., serum lipids),56

18 life events (e.g., age at menarche and menopause), 26 lifestyles (e.g., beef intake) and socio-economic factors57

(e.g., Townsend deprivation index), and 9 miscellaneous traits. Definitions of composite phenotypes are described58

in the Supplementary Note. Briefly, continuous traits with multiple instances were averaged, while the first instance59

was used for integers or factors. To minimize noise, outliers (mean ± 5 standard deviations [SD]) in continuous traits60

were removed. Factorial variables were numerically converted for efficient integration into the regression model. All61

traits, including binary predictors, were then scaled to have zero mean and unit variance to obtain more comparable62

effect sizes. As the 167 assessed traits (i.e., 166 above-mentioned + blood cancer) were partially correlated we63

estimated the number of effective tests [25], i.e., the number of tests needed to explain 99.5% of the variance in64

our phenotypic dataset, to 141, resulting in a significance threshold of p < 0.05/141 = 3.5e−4 for observational65

correlation and MR analyses.66
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GWAS summary statistics67

When available (i.e., for non-composite traits), genome-wide association study (GWAS) summary statistics origi-

nate from the Neale group (file release July 2018; http://www.nealelab.is/uk-biobank) (Table S2). Summary

statistics for reproductive lifespan were derived from GWAS on age at menopause and menarche by first back-

transforming the effects on year-scale and then computing their difference:

β = SDmenopause × βmenopause − SDmenarche × βmenarche

SE =
√

SD2
menopause × SE2

menopause + SD2
menarche × SE2

menarche

The sample size for the resulting summary statistic was set to the lowest of the two (i.e., age at menopause;68

N = 111, 593) and p-values were computed with a two-sided test based on a t-statistic obtained by dividing the69

effect size by its standard error. For diseases, a set of previously compiled GWAS summary statistics [26] of pre-70

dominantly European-descent consortia meta-analyses was used (Table S2). Summary statistics were harmonized71

with the UK10K reference panel [27] and restricted to autosomal chromosomes. After excluding palindromic single-72

nucleotide polymorphisms (SNP) and adjusting strand-flipped SNPs, effect sizes were standardized to represent73

the square root of the explained variance [28].74

Observational correlation75

Predictors of LTL variability76

To estimate the fraction of LTL variability explained by the human phenome, we used Lasso regression (glmnet77

package in R [29]) with unadjusted normalized LTL as the outcome variable and traits with less than 5%, 7%, and78

10% missing data as possible predictors in a joint model. Given the non-deterministic choice of the optimized79

regularisation parameter (one SE rule lambda), 50 regressions were fitted and traits that were selected in at least80

95% of the cases were considered as predictors.81

Single trait linear regression82

We adjusted LTL for age, age2, genotyping array, sex, and the interaction of the latter with the priors and used83

this variable as the outcome in 166 linear regression models with the traits described in Table S1 as explanatory84

variables. Effect sizes reported in text are in SDLTL/SDTrait, except for the effect of age, in which case effects85

are reported in SDLTL/year. We followed up on specific associations with sensitivity analyses to identify possible86
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confounders:87

• In individuals using cholesterol-lowering drugs (#6177 and #6153), serum lipids levels were corrected for88

the average simvastatin effect, i.e., + 1.6 mmol/L, 1.4 mmol/L, 0.4 mmol/L, -0.1 mmol/L of total cholesterol,89

low-density lipoprotein (LDL), triglycerides and high-density lipoprotein (HDL), respectively [30].90

• Reproductive traits showing significant (p < 0.05/141) association with LTL were corrected for socioeconomic91

status (SES; i.e., Townsend deprivation index (TDI; #189), average total household income before tax (#738),92

and educational attainment (EA; see Supplementary Note)).93

• In addition to age, sex, and array, LTL was corrected for eosinophil (#30150), lymphocyte (#30120), monocyte94

(#30130), neutrophil (#30140), platelet (#30080), red blood cell (#30010), reticulocyte (#30250), and white95

blood cell (#30000) counts and linear regressions with non-blood trait count traits were performed anew to96

ensure the LTL associations were unbiased. As a result, the available sample size reduced to N = 308, 346.97

Sex-stratified analysis98

Sex-stratified linear regression of LTL on age was assessed, as well as of LTL corrected for age, age2, and genotyp-99

ing array on non-sex-specific traits. Sex-specific differences were identified by comparing male and female effects100

and deemed strictly significant at p < 0.05/141 and nominally significant at p < 0.05 (see Effect size compari-101

son). We investigated the possible impact of sex hormone levels (i.e., sex hormone-binding globulin (SHBG) and102

testosterone), as well as lifestyle factors (i.e., fruit (#1309), vegetable (#1289), beef (#1369), alcohol intake fre-103

quency (#1558), smoking status (#20116) and weekly alcohol intake (see Supplementary Note)) on sex differences104

in age-dependent telomere shortening by controlling for these factors in our regression models.105

Female reproductive phases106

To assess the impact of childbearing and menopause on LTL, we identified three distinct female reproductive107

phases: (1) years before first childbirth, (2) premenopausal years after first childbirth, and (3) postmenopausal108

years. Number of years spent in each phase was derived from current age (#21003), age at first childbirth (#2754),109

and age at menopause onset (#3581). Phases (2) and (3) were set to 0 for females with no children (#2734: num-110

ber of births = 0) and premenopausal women, respectively. The joint linear regression model included time spent111

in each phase and two indicator variables for whether the women carried a pregnancy to term and experienced112

menopause. Female participants who had their first child post-menopause, lacked a menopausal status (#2724)113

or age at menopause (#3581), or did not specify childbirth events (#2734) or age at first childbirth (#2754) were114

6
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excluded from this analysis.115

Mendelian randomization116

Bidirectional univariable Mendelian randomization117

GWAS summary statistics were used to conduct bidirectional two-sample Mendelian randomization (MR), with118

αLTL→T representing the causal impact of LTL (exposure) on complex traits (outcome) and αT→LTL the causal119

impact of complex traits (exposure) on LTL (outcome) (Figure 1). Harmonized SNPs significantly associated120

(p < 5e−8) with the exposure were clumped (p1 = 0.0001, p2 = 0.01, kb = 250, and r2 = 0.01) with PLINK v1.9 [31]121

and retained as instrumental variables (IVs). As the HBB gene was used as a control for the LTL measurements122

[20], we removed the single SNP (rs1609812, p = 3.9e−65) associated with this gene (chr11:5’246’696-5’248’301;123

GRCh37/hg19) to prevent spurious associations. Due to the complex long-range linkage disequilibrium (LD) struc-124

ture of the HLA locus, 30 SNPs found on the extended HLA region (chr6:25’000’000–37’000’000; GRCh37/hg19)125

were also removed from our IVs [32]. Further IVs were removed based on exposure-outcome harmonization, differ-126

ence in allele frequency (≥ 0.05), and Steiger filtering (Z ≤ −1.96). Bidirectional MR analyses were carried out with127

the TwoSampleMR R package (v0.5.6) [33], primarily through the inverse variance weighted (IVW) method. LTL on128

trait and trait on LTL MR effects were computed for 151 and 141 traits, respectively, with at least two IVs.129

130

Sensitivity analyses were conducted using additional MR methods, i.e., MR Egger, simple mode, weighted131

median, and weighted mode, to ensure robustness of the results. LTL on trait and trait on LTL MR analyses with132

these methods were carried out for 151 and 134 traits with at least three IVs, respectively. Heterogeneity was133

assessed using Cochran’s Q-statistics. Given a high proportion of elevated Q-statistics, we additionally run MR-134

PRESSO [34] for relationships with significant IVW MR effects. To further ensure that our results are not biased by135

pleiotropy - which violates the MR assumption that IVs only affect the outcome through the exposure [35] - we first136

filtered genome-wide significant exposure SNPs and harmonized these SNPs across all 152 traits with available137

GWAS summary statistics (i.e., 151 traits + LTL). Harmonized GWAS data were clumped. We next applied Steiger138

filtering between the exposure and all other traits to ensure that the selected SNPs are more strongly associated139

with the exposure than with any of the other included traits. SNPs that passed filtering for all traits were retained as140

IVs and MR analyses were conducted on these. This approach serves as a reasonable pleiotropy filter due to the141

diverse nature of our phenotypes.142
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LTL mediation analysis143

Excluding hematological traits due to potential confounding, we used multivariable MR (MVMR) to assess the medi-144

ating role of LTL between 18 LTL-associated traits (p < 0.05/141) and lifespan (proxied from parental lifespan [36]).145

We further examined the global mediatory role of LTL between these 18 LTL-affecting traits and 19 traits causally im-146

pacted by LTL (p < 0.05/141). This corresponded to 359 pairs (18 * 20 (i.e., 19 traits + lifespan), excluding one pair147

as insulin-like growth factor 1 (IGF-1) associated with LTL as both exposure and outcome), setting the significance148

threshold for the total and indirect effects at p < 0.05/359 = 1.4e−4. During SNP harmonization, exposure IVs (i.e.,149

trait IVs) were prioritized over mediator IVs (i.e., LTL IVs). Steiger filtering was applied to both exposure IVs with150

respect to outcome and mediator and to mediator IVs in relation to the outcome. Indirect effects were determined151

through two strategies: difference in coefficients and product of coefficients [37]. The former subtracts the direct152

effect (MVMR) from the total effect (IVW), while the latter multiplies the univariable MR estimates from the exposure153

on the mediator by the MVMR effect of the mediator on the outcome. Both approaches generated consistent results154

and we present the product of coefficients method due to easier interpretability in the main text. We further cor-155

rected these estimates for regression dilution bias [28]. Mediation proportions (PM) represent the ratio of the indirect156

(αindirect) to total (αtotal) effect with 95% confidence intervals (upper limit capped at 100%) estimated from the 2.5th157

and 97.5th quantiles of the distribution of 10,000 simulated ratios drawn from α̃indirect ∼ N
(
α̂indirect, ŜE(α̂indirect)

)
and158

α̃total ∼ N
(
α̂total, ŜE(α̂total)

)
.159

Multi-trait analysis for direct effect estimation160

For MVMR with multiple exposures and no predefined mediator, IVs were selected through a two-step process161

[38]. First, SNPs for each exposure were ranked according to their p-values (more significant p-values receiving162

lower ranks) and minimum rank across all exposures was determined for each SNP. This minimum rank was used163

to prioritize SNPs in a subsequent clumping process. IVs were filtered as previously described. Finally, MVMR164

regression estimates were compared to univariable MR estimates (see Effect size comparison). For the univariable165

MR, we either used the same IVs as in the MVMR or employed a subset of IVs, which were retained after Steiger166

filtering between both the outcome and the exposure of interest, as well as between the exposure of interest and167

the other exposures. We report weak instrument bias via conditional F-statistics [39] and heterogeneity through168

Cochran’s Q-statistic [40] (see Table S3).169
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Effect size comparison170

Significant differences between two estimated effect sizes β̂X and β̂Y were assessed with a two-sided p-value (pdiff.)171

derived from:172

t =
β̂X − β̂Y√
SE2

X + SE2
Y

which assumes that the two estimates are uncorrelated. Often these estimates have a positive correlation (as esti-173

mated from the same data) and hence the t-statistic has a variance smaller than one, thus the test is conservative.174

This approach was used throughout the study to assess the effect of sensitivity analyses, compare sex-specific175

regression estimates, and compare univariable MR and MVMR results.176
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Results177

Age and sex are the main predictors of LTL variability178

Consistent with previous research [41], LTL significantly associated with both age (β = −0.023; p < 2.2e−308) and179

sex (β = 0.091; p < 2.2e−308), with a stronger (pdiff. = 1.4e−25) decline in males (βmales = −0.025) than in females180

(βfemales = −0.021) (Figure S1). To further explore factors contributing to LTL variability, we included 80 traits (Table181

S1) with < 7% missingness rates as predictor variables in a Lasso regression model. Traits retained included age,182

sex, educational attainment (EA), waist-to-hip ratio (WHR), insulin-like growth factor 1 (IGF-1), urate, and cystatin183

C levels, along with four blood parameters (Table 1). Among these, LTL was found to be positively associated with184

female sex, higher EA, and higher IGF-1 levels, while it negatively correlated with the remaining traits. Age and185

sex accounted for 4.33% of the observed variance in LTL. Incorporating the nine additional above-mentioned traits186

increased the explained variance to 5.39%. Repeating the analysis with missingness rate thresholds of 5% and 10%187

retained twelve and seven traits in addition to age and sex, which together explain 5.42% and 5.36% of variability in188

LTL, respectively, confirming the limited predictive power of the phenome over LTL variability.189

Table 1. Main determinants of leukocyte telomere length.
Effect sizes with 95% confidence intervals from a joint linear regression model for traits with less than 7% missing data retained as
significant LTL predictors by lasso analysis. EA = educational attainment; IGF-1 = insulin-like growth factor 1; WHR = waist-to-hip
ratio; MCH = mean corpuscular hemoglobin.

Trait Estimate Lower 95% CI Upper 95% CI P-value

Female 0.071 0.066 0.077 2.33× 10−160

EA 0.042 0.038 0.046 1.95× 10−111

IGF-1 0.028 0.024 0.032 3.57× 10−49

WHR −0.002 −0.007 0.004 5.43× 10−1

Urate −0.009 −0.014 −0.004 1.16× 10−4

Monocyte count −0.017 −0.021 −0.013 4.89× 10−17

Eosinophil count −0.021 −0.025 −0.017 1.00× 10−28

Cystatin C −0.026 −0.030 −0.022 4.93× 10−33

Lymphocyte count −0.039 −0.043 −0.035 7.43× 10−87

MCH −0.058 −0.062 −0.055 4.98× 10−223

Age −0.155 −0.159 −0.151 < 2.2× 10−308

LTL broadly associates with complex traits190

Age and sex being the major determinants of LTL, we adjusted LTL for age, age2, genotyping array, sex, and the191

interaction of the latter with the priors and regressed adjusted LTL on 166 traits through linear regression, identifying192

100 significant associations (p < 0.05/141; Table S4). We observed a negative association between the disease193

burden and LTL (β = −0.027; p = 1.2e−52), suggesting that LTL acts as a global health indicator. The largest effect194

sizes were noted for father’s (β = 0.094; p = 4.4e−144) and mother’s (β = 0.088; p = 8.5e−216) age at birth, which195

10
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positively associated with LTL (Figure 2a). In jointly modeling LTL as a function of both parental ages at birth and the196

participant’s age, sex, their interaction, and EA, we found that the observed associations were independent of the197

participant’s education level (Figure S2). Participant’s education level likely echoes parental EA [42] and indirectly198

affects parental age at birth, indicating that the association is likely not confounded by socio-economic factors and199

genuinely driven by older parental age at birth. Next, for the 141 traits with available GWAS summary statistics200

and at least two IVs, we inferred bidirectional causal relationships through univariable MR, identifying 23 significant201

causal effects of traits on LTL (αT→LTL) and 26 significant effects of LTL on traits (αLTL→T ) (p < 0.05/141; Fig-202

ure 2; Table S4). As a sensitivity analysis, we re-analyzed IVW-significant relations with MR Egger, simple mode,203

weighted median, weighted mode, and MR-PRESSO (Figures S3-4). Furthermore, we ran IVW MR with a restricted204

set of IVs stringently selected to minimize the pleiotropy assumption violation (see Methods; Figure S5).205

206

Modulators of LTL207

Lifestyle and environmental factors208

Our results are overall concordant with deleterious lifestyle habits leading to shorter LTL (Figure 2b). A negative209

correlation was observed between smoking cessation and LTL (β = −0.039; p = 9.4e−50), mirrored by a detrimental210

causal effect of failure to quit smoking on LTL (αT→LTL = −0.142; p = 1.8e−4). Alcohol consumption, measured as211

total weekly intake of alcohol units, also exhibited a negative causal effect on LTL (αT→LTL = −0.086; p = 1.3e−4),212

while beef consumption showed a mere associative (β = −0.012; p = 2.4e−11) but no causal link (p = 0.223).213

Conversely, healthy habits such as high fresh fruit intake (β = 0.014; p = 6.4e−15) and physical activity (β =214

0.007; p = 1.7e−4) displayed positive associations with LTL, as did SES captured by average household income215

(β = 0.025; p = 1.1e−40) or EA (β = 0.047; p = 1.9e−155), even though only the latter showed clear causal216

evidence (αT→LTL = 0.075; p = 2.2e−15). Our data also suggest that the psychological state of an individual can217

impact LTL as depression causes shorter LTL (αT→LTL = −0.112; p = 4.4e−6). One possible explanation for this218

observation is that depression promotes oxidative stress and inflammation, both of which are critical modulators of219

LTL [7, 43, 44]. The latter is supported by a negative causal effect of the inflammation marker C-reactive Protein220

(CRP) on LTL (αT→LTL = −0.037; p = 9.3e−10). Overall, these results highlight the significant impact of lifestyle221

and environmental factors on LTL and support the paradigm that exposures typically considered as deleterious lead222

to shorter LTL.223
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Figure 2. Observational and causal associations between traits and LTL.
Estimates (x-axis) with 95% confidence intervals (CI) for traits (y-axis) with at least one strictly significant (p < 0.05/141) associ-
ation with LTL across the observational correlation (linear regression; β; black) and inverse weighted-variance (IVW) Mendelian
randomization (MR) estimates of LTL on trait (α; red) and trait on LTL (α; blue) are shown. Strictly significant effects are shown
as full circles; otherwise as empty circles. For diseases (*), one SD change in LTL corresponds to one log(OR) change, implying
a scale of SDLTL/ log(OR) for the effects of diseases on LTL, and log(OR)/SDLTL for the effect of LTL on the disease, so that
observational effects and MR effects are not directly comparable (see Table S4).

Anthropometric traits224

We detect several associations with anthropometric traits (Figure 2c). Body metrics such as body mass index225

(BMI) and body fat mass (BFM) demonstrated significant negative observational correlation (BMI: β = −0.032; p =226

12

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301196doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301196
http://creativecommons.org/licenses/by/4.0/


2.4e−75; BFM: β = −0.029; p = 1.2e−60) and causal effects on LTL (BMI: αT→LTL = −0.048; p = 4.9e−10;227

BFM: αT→LTL = −0.050; p = 7.6e−9). Conversely, a positive correlation was observed between LTL and height228

(β = 0.018; p = 2.2e−24), with MR analysis revealing a nominally significant effect of LTL on height (αLTL→T =229

0.062; p = 4.5e−4) and strictly significant effect of height on LTL (αT→LTL = 0.014; p = 4.0e−5).230

Female reproductive traits231

Observational correlation between LTL and female reproductive traits including age at first (AFB; β = 0.042; p =232

1.4e−54) and last (ALB; β = 0.034; p = 2.5e−36) birth, reproductive lifespan (β = 0.023; p = 3.7e−13), age at233

menopause (β = 0.026; p = 1.5e−16), and menstrual disorders (β = 0.011; p = 1.7e−5) were observed (Figure 2d).234

Only the effect of AFB (pdiff. = 8.0e−10) and ALB (pdiff. = 0.001) were significantly reduced after accounting for235

SES, even though they remained significant (Figure S7a). Both traits also causally influenced LTL (AFB: αT→LTL =236

0.167; p = 1.2e−5; ALB: αT→LTL = 0.272; p = 6.1e−6), suggesting that timing of female reproductive events237

could modulate LTL. To explore this, we compared LTL in women with and without children, finding shorter LTL in238

women who had given birth (Welch two-sample t-test: p = 7.4e−11), suggesting that childbirth could accelerate239

LTL shortening. We next divided female participants’ age into three reproductive periods: (1) premenopausal before240

childbirth, (2) premenopausal after childbirth, and (3) postmenopausal, and used the number of years spent in each241

period as predictors for LTL. LTL shortening accelerated over the course of these periods, with the weakest effect242

on LTL found for premenopausal years before childbirth (β = −0.013; p = 3.6e−120), followed by premenopausal243

years after childbirth (β = −0.020; p = 7.1e−233), and postmenopausal years (β = −0.024; p < 2.2e−308) (Figure244

3), in line with the hypothesis that female reproductive events trigger acceleration in LTL shortening.245
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Figure 3. Schematic representation of LTL shortening across different female reproductive life phases.
Relation (β) between standardized LTL (y-axis) and age (x-axis) across three female reproductive life periods (red). Dotted vertical
lines indicate mean age of first birth (26 years) and mean age at menopause (50 years). As a comparison, we depict the quadratic
LTL regression in males (βage; βage2 ; blue). 95% confidence intervals are shown for the linear predictions. Yellow background
indicates the age range for which data is available (40-70 years) and used to build predictions; regions outside this range are
extrapolated for males and estimated from age at first birth and age at menopause information for females.

Serum lipids246

We found predominantly positive associations between LTL and serum lipid levels, i.e., apolipoprotein B (ApoB;247

β = 0.019; p = 9.4e−25), total cholesterol (β = 0.019; p = 2.9e−27), and LDL-cholesterol (β = 0.022; p = 4.2e−35)248

(Figure 2e). After adjusting for cholesterol-lowering drug use, the positive relation between LTL and both total and249

LDL-cholesterol decreased but remained significant (Figure S7b). LDL-cholesterol (αT→LTL = 0.036; p = 4.7e−10)250

and ApoB (αT→LTL = 0.029; p = 2.6e−10) levels also causally influenced LTL, which was corroborated by weighted251

mode MR, weighted median MR, and MR-Egger (Figure S3). Consistently, our findings suggest that disorders of252

lipid metabolism contribute to longer LTL (αT→LTL = 0.057; p = 1.4e−6), reiterating the association between253

increased LTL and high serum lipid levels. Due to their correlated nature, MVMR including levels of LDL-cholesterol,254

ApoB, and triglycerides as exposures could not disentangle their individual contribution to LTL (Figure S6).255

Renal health256

Lasso analysis retained both urate (β = −0.025; p = 2.1e−44) and cystatin C (β = −0.033; p = 2.2e−75) levels as257

relevant predictors of LTL (Table 1), highlighting the link between kidney function and LTL. As previously reported258

[45], MR analyses showed that elevated urate levels decreased LTL (αT→LTL = −0.042; p = 9.4e−18), possibly due259

to increased cellular stress and reactive oxygen species production [46]. The urate-LTL association was significantly260
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mediated by CRP, confirming the role of inflammation in this process (PM = 34.7%; 95%-CI[17.1%; 55.6%]). We also261

found that shorter LTL increased the risk for chronic kidney disease (CKD; αLTL→T = −0.031; p = 1.5e−4) (Figure262

2f). Urate levels, which are frequently elevated in CKD patients [47], causally affected CKD risk (α = 0.034; p =263

1.5e−8) but this link was not mediated by LTL (PM = 4.5%; 95%-CI[−8.3%; 18.5%]) (Table S5).264

Consequences of altered LTL265

Blood cell counts266

Hematological traits (e.g., white blood cell count: β = −0.042; p = 2.9e−120; and mean corpuscular hemoglobin267

(MCH): β = −0.054; p = 1.7e−200) are among the ones showcasing the strongest observational correlation with268

LTL (Figure 2g). For 4 out of 11 significantly correlated blood traits, we identified bidirectional causal relationships269

with LTL, with less pronounced effects from traits on LTL (e.g., MCH: αLTL→T = −0.195; p = 2.2e−24; αT→LTL =270

−0.034; p = 5.2e−10). While for MCH, eosinophil, platelet, and red blood cell counts, the effects from LTL on271

the latter traits were robust across multiple MR methods (Figure S4), only white blood cell count (αT→LTL =272

−0.042; p = 6.7e−9) demonstrated a consistent effect on LTL (Figure S3). As telomere length was measured in273

leukocytes, we cannot exclude that observed associations with blood traits are confounded by other factors, such as274

blood cell counts. We therefore adjusted LTL for eosinophil, lymphocyte, monocyte, neutrophil, platelet, red blood275

cell, reticulocyte, and white blood cell counts in addition to core covariates. Regressing this new variable on the276

same 158 traits (i.e., 166 traits, excluding the 8 blood count traits we corrected for), we obtained highly similar effect277

sizes (ρ = 0.98). Only associations with smoking status (pdiff. = 1.4e−9), smoking cessation (pdiff. = 5.7e−6), as278

well as MCH (pdiff. = 3.3e−26) were significantly reduced, yet remained significant. Association with total bilirubin279

(pdiff. = 1.4e−5) was lost, while the one with phosphate levels (pdiff. = 8.0e−5) became significant (Figure S8).280

Hepatic biomarkers281

LTL associated with levels of the hepatic biomarkers aspartate aminotransferase (AST; β = −0.023; p = 1.6e−37)282

and albumin (β = 0.007; p = 7.2e−5) (Figure 2h). Accordingly, finding that shorter LTL causally associated with283

higher AST (αLTL→T = −0.082; p = 3.7e−11) and lower albumin levels (αLTL→T = 0.050; p = 9.1e−5), telltales of284

underlying liver or inflammatory conditions. Overall, these results underscore the potential role of telomere-driven285

cellular aging in hepatic function deterioration and/or inflammatory processes.286
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Diseases287

Short LTL correlated with increased risk for cardiovascular and pulmonary conditions, reflecting previous findings288

[12, 48]. For instance, LTL had a negative causal impact on aneurysm risk (αLTL→T = −0.200; p = 1.2e−5) and289

a positive one on forced vital capacity (αLTL→T = 0.072; p = 3.2e−6). In line with that, we observed a negative290

correlation with risk for pulmonary diseases such as emphysema (β = −0.013; p = 3.5e−12) or chronic obstructive291

pulmonary disease (COPD; β = −0.025; p = 9.0e−40). While the MR effects of LTL on emphysema (αLTL→T =292

−0.115; p = 0.005) or COPD (αLTL→T = −0.036; p = 0.014) were concordant, they did not survive multiple testing293

correction. In addition to replicating a previously established correlation between short LTL and increased risk for294

ischemic heart disease (β = −0.024; p = 6.6e−41) [48], we also found causal evidence for the effect of LTL on295

ischemic heart disease (αLTL→T = −0.061; p = 1.9e − 09). Hematological cancer risk negatively correlated with296

LTL (β = −0.015; p = 5.8e−14), while longer LTL correlated with kidney (β = 0.008; p = 9.4e − 05) and prostate297

(β = 0.029; p = 2.1e − 23) cancer risk. While we do not have causal estimates for the former, MR confirmed that298

LTL causally increased risk for kidney (αLTL→T = 0.048; p = 8.1e−10) and prostate (αLTL→T = 0.089; p = 1.0e−4)299

cancers (Figure 2k), aligning with previous findings [49, 17, 20, 50]. This paradox, in which both longer and shorter300

LTL impact disease risk, was also observed in disorders with an autoimmune component, where shorter LTL is a risk301

factor for rheumatoid arthritis (αLTL→T = −0.086; p = 9.2e−5) and Alzheimer’s disease (αLTL→T = −0.037; p =302

1.3e−4), while longer LTL increased risk for systemic lupus erythematosus (αLTL→T = 0.167; p = 5.8e−5) (Figure303

2l-o). Overall, these results highlight the disease-promoting role of both long and short LTL.304

Mediating role of LTL305

Analogously to DNA methylation, LTL represents a marker of biological age that can be viewed as a clock in-306

tegrating a broad range of lifestyle and health parameters [51]. This raises the question whether LTL mediates307

the relation between complex traits and lifespan. We tested the mediating role of LTL for the relation between308

18 non-hematological LTL-modulating traits and lifespan, the latter being affected by LTL at nominal significance309

(αLTL→T = 0.023; p = 0.006). We identified five significant indirect effects (pindirect < 0.05/359), i.e., mediated310

through LTL (Figure 4a; Table S5). For instance, the negative impact of BMI (PM = 7.2%; 95%-CI[3.9%; 10.6%]) or311

the positive effect of EA (PM = 18.8%; 95%-CI[12.3%; 25.7%]) on lifespan were partially mediated by LTL. Given the312

considerable mediation of AFB (PM = 80.8%; 95%-CI[39.4%; 100%]) and ALB (PM = 100%; 95%-CI[70.1%; 100%]) on313

lifespan by LTL, we further investigated these traits through an iterative MVMR approach to build a causal network314

(Figure 4b; Table S3). Results emphasized the partial mediating role of LTL and EA on the effect of AFB on lifespan.315
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316

Given that lifestyle factors were found to affect LTL, which in turn influences risk for many diseases, we next used317

MVMR to assess the LTL mediatory effect for all pairs of 18 LTL modulators and 19 LTL-affected traits. We identified318

23 significant (pindirect < 0.05/359) LTL-mediated relationships (Figure 4c; Table S5). Effects on ischemic heart319

disease, total protein levels, and forced vital capacity were the most frequently mediated by LTL, whereas urate lev-320

els, BMI, and EA were the most common exposures. Overall, while we do detect a substantial number of significant321

mediations through LTL, the average mediation proportion is 5.45%, only accounting for a fraction of these relations.322

323
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Figure 4. Mediating role of LTL
a) Mediation analysis of 18 LTL-affecting exposures (y-axis; left) on lifespan (y-axis; right) through LTL with effect size estimates
and 95% confidence intervals (CI; x-axis) of the total effect (i.e., IVW MR estimate of exposure on outcome; purple), direct effect
(i.e., not mediated by LTL; MVMR estimate; pink) and indirect effect (i.e., LTL mediation by product method; orange) as displayed
in the scheme in the bottom right corner of the figure. Displayed are relationships with significant (p < 0.05/359) total and indirect
effects. b) Schematic illustration of the magnitude and direction of nominally significant MVMR effects (p < 0.05). Arrow thickness
is proportional to the effect size. Significant effects from lifespan to EA are not displayed. c) Mediation analysis of 18 LTL-affecting
exposures (y-axis; left) on 19 LTL-affected outcomes (y-axis; right) through LTL. Legend as in (a). EA = educational attainment;
LDL = low-density lipoprotein; BMI = body mass index; IGF-1 = insulin-like growth factor 1; SHBG = sex hormone binding globulin;
LTL = leukocyte telomere length.

Sex differences in LTL biology324

Finally, we explored sex differences in LTL biology. We note that overall, there is high concordance between male325

and female effect estimates, which are highly correlated (ρ = 0.92; Figure 5). We sought to identify factors that could326
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explain the stronger age-related decline in LTL observed in males (Figure S1). Given that female reproductive events327

seemed to impact the rate of telomere shortening in females (Figure 3), we explored whether hormonal effects328

could account for this difference. Testosterone displayed a stronger association with LTL in males (pdiff. = 4.8e−3),329

while sex hormone binding globulin (SHBG) was associated with LTL in males but not in females (pdiff. = 2.2e−18).330

Correcting LTL for SHBG and testosterone in our sex-stratified regression with age did not abolish the sex difference331

(pdiff. = 1.3e−23). Alternatively, lifestyle factors could account for part of the difference, given that beer consumption332

(pdiff. = 2.8e−6) and smoking status (pdiff. = 3.6e−3) showed stronger negative associations with LTL in males, while333

the association with fruit consumption was more pronounced in females (pdiff. = 9.6e−4). After correction for weekly334

alcohol consumption, alcohol intake frequency, smoking status, as well as beef, vegetable, and fruit consumption,335

the observed sex difference (pdiff. = 1.0e−17) was reduced but not in a significant way (Table S3). Other traits336

showing a different association with LTL in males versus females include MCH (pdiff. = 8.2e−12) and IGF-1 (pdiff. =337

5.1e−8) which were more strongly associated in males, while hip circumference was more strongly associated in338

females (pdiff. = 3.3e−4). The association with aneurysm was male-specific (pdiff. = 1.5e−4), while urea levels339

(pdiff. = 1.0e−4) exhibited a slight negative correlation in females and a positive one in males. Correcting LTL340

for each of these traits and comparing sex-stratified regression with age did not account for observed differences.341

Hence, the sex-specific LTL associations identified in our study do not appear to majorly contribute to sex differences342

in LTL shortening.343
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Figure 5. Sex-specific phenome-wide LTL associations.
Female-specific (y-axis) against male-specific (x-axis) LTL-trait correlation estimates with 95% confidence intervals. Purple, pink,
and smaller gray data points indicate traits with strictly significantly (pdiff. < 0.05/141), nominally significantly (pdiff. < 0.05),
and non-significantly divergent estimates, respectively. Strictly significant traits are labeled in purple, while nominally significant
lifestyles or hormonal traits are labeled in gray. Dashed grey and black lines represent the identity line and null effect sizes,
respectively. Orange triangles in the top right corner denote non-significant differences in father’s and mother’s age at birth, which
are beyond the plotting range (see Table S4).
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Discussion344

We comprehensively examined the bidirectional causal relationships between LTL and complex traits, diseases,345

and lifestyle factors and used MVMR to examine causal effect mediation. Our study reiterates age and sex as major346

determinants of LTL variability [41, 18] and while hormonal and lifestyle variations showed different associations347

between males and females, they could not account for the observed sex differences. Still, the fact that lifestyle348

factors causally affect LTL emphasizes their influence on aging at a physiological and molecular level. Furthermore,349

we provide evidence for a causal role of abnormal LTL in a broad spectrum of clinically relevant traits, including can-350

cer, autoimmune disorders, lung diseases, and cardiovascular conditions. Lastly, our results show that LTL partially351

mediates the effect of BMI, EA, and reproductive traits on lifespan.352

353

Others [20, 21] have also used MR to estimate the impact of LTL on 25 traits assessed in our study, all showing354

concordant effects in our analyses. Notably, we identified a causal effect of LTL on CKD risk that was previously355

missed, likely due to the reliance of these studies on UKBB summary statistics that were generated based on much356

lower case counts than the consortia summary statistics used in our study. Earlier research suggested bidirectional357

causality between telomere attrition and CKD [52]. While we replicated the deleterious impact of shorter LTL on358

CKD risk, we did not find evidence for a reverse causal effect. Our study also supports the Alzheimer’s disease359

risk-increasing effect of shorter LTL [53, 54, 55, 56, 57] which was proposed to be driven by promotion of cellular360

senescence. Paralleling a recent report [58], our results suggest that LTL variation increases the risk for some361

autoimmune conditions, e.g., risk of systemic lupus erythematosus being increased by longer LTL. Overall, this362

supports the deleterious role of both long and short telomeres in shaping human health.363

364

Our study also estimated the causal effects of phenotypes on LTL. In line with prior research, alcohol consump-365

tion [59], smoking [8, 60], obesity [61], and socioeconomic disadvantages [62] emerged as significant contributors366

to telomere shortening, underscoring the potential benefits of lifestyle modifications. Some of these factors, such as367

BMI and EA, were found to exert a small, albeit significant proportion of their impact on longevity through LTL. Sur-368

prisingly, the positive influence of serum lipid levels on LTL often attenuated the total effect of lipid-trait relationships.369

These results are unexpected as high cholesterol levels promote oxidative stress [63], which in turn accelerates LTL370

shortening [64], warranting further studies to determine mechanisms through which higher lipid levels could favor371

longer telomeres.372

373
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Lifestyle factors modulating LTL, such as alcohol intake, smoking, and dietary habits - which present with strong374

sex differences and differentially impact LTL in males versus females - represent good candidates to explain the375

increased rate of LTL shortening in males. Still, we could not demonstrate that these factors were responsible for376

the differential rate of LTL shortening between sexes. These negative results might be driven by the fact that these377

results rely on self-reported data that is inherently prone to reporting error [65] and thus represent imperfect proxies378

of true behaviors, so that further investigations will be required to fully understand sex disparity in LTL shortening.379

Importance in sex-specific LTL regulators is further highlighted by the finding that delayed AFB and ALB causally380

associated with longer LTL, an association that was only partially confounded by SES. These results align with the381

intensified LTL shortening rate we observed after childbirth, which further exacerbated post-menopause. Although382

we did not observe an association between oestradiol levels - measured only in ∼49,000 individuals - and LTL, we383

hypothesize that hormonal shifts following pregnancy and menopause could accelerate LTL shortening [66]. An384

alternative explanation is that LTL shortening is driven by the stress imposed by such events on the body. While385

further research is required to test these hypotheses, our results highlight the prominent role of life history events in386

LTL shortening rates. Overall, this emphasizes how hormonal and lifestyle factors can influence LTL, which in turn387

impacts global health and disease risk through complex networks.388

389

Our study is subject to several limitations. First, the use of cross-sectional bulk LTL limits our capacity to390

analyze individual telomere shortening rates, which might be a critical factor in disease prediction [51]. Second,391

although LTL and telomere length in other tissues are correlated [67], this proxy might miss more subtle and tissue-392

specific relations between telomere length and the phenome. Furthermore, we cannot exclude that the tissue393

in which telomere length was measured (i.e., leukocytes) biases the observed associations with hematological394

traits, even if accounting for blood cell type traits did not seem to affect association estimates between LTL and395

other traits. Third, our study focused on White-British ancestry, meaning the results may not necessarily apply396

to other ethnicities. In the future, single-cell telomere length measured at chromosomal resolution through long-397

read sequencing approaches across a wide variety of tissues, time points, and ancestral groups should provide a398

more refined view of telomere dynamics. Fourth, MR presents with inherent restrictions, notably susceptibility to399

horizontal pleiotropy violations, especially given the considerable heterogeneity across our IVs. In that optic, we400

used a broad range of sensitivity analyses and focused on results robust across these various methods. Another401

limitation of MR is that detection power is bound by the number of available IVs, so that our power to detect causal402

relations between traits and LTL is variable across phenotypes and might be lower or larger than for the reverse LTL403

on trait relation, depending on whether the trait has less or more IVs than LTL, respectively. Finally, MR does not404
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account for dynamic spatiotemporal changes in LTL that occur over lifetime and/or in the context of some diseases405

such as cancer.406

Conclusion407

Through usage of univariable and multivariable bidirectional Mendelian randomization, we identify a complex net-408

work of causal relations wherein both exogenous and endogenous environmental factors modulate LTL, which in409

turn influences the risk for numerous diseases and mediates the impact of some of these traits on lifespan. Still,410

based on currently available data, its mediatory role between unfavorable lifestyle and disease is estimated to be411

modest, and further research is needed to explore the relation between LTL and other aging biomarkers, such as412

DNA methylation, in order to understand its clinical value as a proxy of biological age.413
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