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Abstract: 
Accurately predicting the impact of genetic variants is essential for interpreting genomic data, yet no 
consensus exists on how to measure classifier performance. We prepared the most comprehensive set 
of benchmarks to date and applied them to the recently published models PrimateAI-3D and 
AlphaMissense. PrimateAI-3D outperforms AlphaMissense on rare-disease cohort and biobank 
benchmarks, indicating that performance on clinical databases or in vitro assays does not reliably 
generalize to real-world cohorts. 

Main 
Genetic variants underlie many of the inter-individual differences in disease susceptibility in the 
human population, yet the clinical significance of most of the ~70-million possible missense variants 
in the genome remain unknown. The scale of this problem has motivated the development of 
numerous computational algorithms for variant effect prediction, but there remains no agreed standard 
for benchmarking their accuracy, which hinders advancements in the field. Clinical labels from 
variant annotation databases, such as ClinVar and HGMD, are widely used as truth sets for model 
evaluation despite the acknowledgment of a range of biases and circularities leading to overoptimistic 
performance measures for models that may not generalize well to real-world data1,2. We previously 
developed a comprehensive set of six clinical benchmarks to evaluate the accuracy of PrimateAI-3D 
alongside other variant classifiers3, with a focus on performance in real-world cohorts. In addition to 
updating these previous benchmarks with the latest data, we introduce the largest benchmark to date, 
measuring the effects of genetic variants on 701 plasma proteins in participants from the UK Biobank 
Pharma Proteomics Project4, for a total of 29.3 million individual protein measurements. We use these 
benchmarks to compare the performance of PrimateAI-3D versus the recently published 
AlphaMissense tool, which was published after PrimateAI-3D, and hence has not been evaluated on 
comprehensive real-world cohorts. 

First, we compared PrimateAI-3D with AlphaMissense on updated versions of the six benchmarks 
which had previously been used to benchmark PrimateAI-3D and 16 other computational algorithms 
in Gao et al.3 (Methods).  PrimateAI-3D had been shown to outperform each of the other algorithms 
in all six benchmarks, but had not been benchmarked against AlphaMissense, which was published 
after PrimateAI-3D and only included a limited set of benchmarks. We found that PrimateAI-3D 
outperformed AlphaMissense in all four large clinical cohorts consisting of half a million individuals 
(DDD, ASD, CHD and UKBB, Figure 1 and Table S1). Although the AlphaMissense paper stated that 
they used clinically annotated variants from the ClinVar database for model selection and 
hyperparameter optimization, and evaluation data to select the optimal training iteration (including 
saturation mutagenesis data from ProteinGym) , we did not attempt to remove variants that had 
previously been utilized by AlphaMissense.  For the 31 genes tested with in vitro saturation 
mutagenesis assays, AlphaMissense performed better in 16 genes, while PrimateAI-3D performed 
better in 15 of the genes.  AlphaMissense also performed slightly better on the ClinVar benchmark 
(mean AUC = 0.951 vs 0.940). 
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Figure 1. PrimateAI-3D versus AlphaMissense performance on six previously published 
benchmarks. Performance for AlphaMissense (gray), published PrimateAI-3D scores (dark orange), and 
updated PrimateAI-3D scores to include training on human variant data (light orange) are shown. 

We devised a new proteomics benchmark from the UK Biobank where we correlated classifier scores 
with decreases in protein levels detected in blood plasma (Methods), as pathogenic protein-coding 
variants frequently decrease protein levels5. This comprises the largest ever real-world benchmarking 
dataset with combined protein measurements and sequence data from 41,836 individuals across 701 
genes, with 29.3 million unique protein observations. Because this benchmark had not been 
previously tested, we assessed the performance of 16 other classifiers alongside PrimateAI-3D and 
AlphaMissense (Figure 2A, Table S2). PrimateAI-3D showed the highest mean inverse correlation 
with protein levels out of all methods tested.  Notably, the top 4 computational predictors were all 
deep learning models. 

 

Figure 2. Classifier performance on a new UK Biobank proteomics benchmark. (A) Correlation 
between protein levels in blood plasma and classifier score. (B) Example PrimateAI-3D score correlations 
with disease-associated proteins IDUA and GLB1. 

AlphaMissense shares many similarities with PrimateAI-3D, such as adopting PrimateAI’s method of 
training the model using common primate variants as benign labels versus mutation rate-matched 
unobserved variants as pathogenic labels, and utilizing 3-D structural information and protein 
language models. Hence, the two scores are highly correlated (Pearson correlation = 0.83, Figure S1), 
partially explaining their close performance in the proteomics benchmark. A notable difference 
between the two methods is that AlphaMissense uses predominantly human missense variants for 
training while most of PrimateAI-3D’s training data comes from non-human primate sequencing. We 
therefore decided to assess the performance of PrimateAI-3D when trained exclusively with human 
variant data and ensembled with the model trained with predominantly primate data (Methods). This 
new version, “PrimateAI-3D-plus-human” demonstrated improved performance on all seven 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301193doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301193
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

benchmarks (Figure 1, 2A) indicating that the model can learn from both primate and human variant 
datasets. Further work is needed to investigate the complementary nature of these variant training sets 
and may provide novel insights into features discriminating benign from pathogenic variation. 

Herein we describe the most comprehensive set of real-world cohorts for benchmarking missense 
variant classification to date, tabulating the effects of variants in nearly half a million individuals, 
which we provide to the community as a resource to further accelerate the development of 
computational tools. Importantly, these benchmarking cohorts are independent of human labels and 
their inherent biases. We find that PrimateAI-3D outperforms AlphaMissense in all real-world 
cohorts, including on both biobank benchmarks, which directly assess variant impacts on clinical 
phenotypes and blood protein levels, and on three rare disease cohorts, which evaluate the classifier’s 
ability to distinguish de novo mutations observed in disease patients compared to a healthy control 
population. Although AlphaMissense did not do as well in real-world cohorts, it performed best on 
clinically annotated variants from ClinVar and in vitro saturation mutagenesis assays, which may be 
explained by its use of ClinVar for model selection and hyperparameter tuning during training and use 
of evaluation data for early stopping. These two datasets also display higher evolutionary conservation 
than the genome wide average (Figure S2) suggesting that optimal performance on these benchmarks 
may not generalize to the rest of the proteome where evolutionary signals are not so strong. Our 
results show the importance of testing variant classifiers on real-world cohorts when assessing their 
clinical utility. It also emphasizes the need to benchmark scores on a wide range of datasets to ensure 
scores do not overfit to specific use-cases. 

Notably, for UK Biobank clinical phenotype3 and proteomics benchmarks, both based on direct 
measurements and not influenced by manually curated clinical labels, deep-learning models all 
outperform more basic classifiers. The superior performance of these models on these benchmarks 
suggests that deep-learning strategies are better able to identify biologically relevant effects of 
missense variation and are a leading avenue for future developments. 
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Methods 
De novo Mutation Benchmarks 
We gathered de novo mutations (DNMs) from published studies of developmental disorders (DDD)6–
9, autism spectrum disorders (ASD)10–18 and congenital heart disorders (CHD)19. DDD had 27,030 
DNMs from 18,066 patients, ASD 11,824 DNMs from 8,089 patients and CHD 1,855 DNMs from 
1,350 patients.  Each cohort was compared against 4,389 DNMs from 2,997 healthy controls gathered 
from multiple studies11–13,15,17,18,20 using the Mann-Whitney U test to evaluate how well each classifier 
can distinguish missense DNMs observed in disease cohorts from those in healthy controls. 

ClinVar Benchmark 
Missense variants labelled as either benign, likely benign, likely pathogenic or pathogenic and with at 
least a 1-star review status were selected from ClinVar (downloaded September 19th 2021). The ability 
of each classifier to discriminate between benign/likely benign and pathogenic/likely pathogenic 
variants was determined per-gene using the area under the receiver operating characteristic curve 
(AUC). Genes were limited to those with at least 5 (likely) pathogenic and 5 (likely) benign variants 
scored by both classifiers. 

Deep Mutational Scan Benchmark 
We downloaded deep mutagenesis assays for human proteins from the September 2022 versions of 
ProteinGym21 and MaveDB22 (89 assays). We filtered assays so that any two assays from the same 
gene had <80% overlap in variants or <80% correlation in assay score (52 assays). For each protein, 
we then only kept the assay with highest average correlation to PrimateAI-3D and AlphaMissense (31 
assays and genes). Model performance was evaluated by computing the absolute Spearman rank 
correlation between model prediction scores and assay scores for each assay and then taking the mean 
across all assays. 
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UK Biobank Clinical Phenotyping Benchmark 
The use of UK Biobank data was approved by the UK Biobank under application no. 33751. The UK 
Biobank clinical phenotyping benchmark used data from 454,712 individuals with both exome 
sequencing data and broad clinical phenotyping from the UK Biobank. This dataset consists of gene-
phenotype pairs where presence of rare protein-coding variants (protein-truncating or missense) is 
significantly associated with a quantitative phenotype on burden testing (P < 10-10), without stratifying 
missense variants by pathogenicity. When a gene was associated with multiple phenotypes the 
phenotype with the most significant association was chosen. In total 76 gene-phenotype pairs were 
used consisting of phenotype data for 33 unique traits. Quantitative traits were standardized by inverse 
rank normal-transformation and model performance evaluated by computing the absolute Spearman 
rank correlation between model prediction scores and mean standardized phenotype scores for carriers 
of variants in each gene. The mean per-gene correlations were compared between tools. 

UK Biobank Plasma Proteome Benchmark 
We utilized data for plasma protein levels of 1,453 proteins in conjunction with whole exome 
sequencing in 41,836 unrelated individuals of European descent from the UK Biobank. We selected a 
subset of 829 genes where protein truncating variants had a significant negative effect on plasma 
levels in the rare variant burden test at Bonferroni corrected p-value threshold of 5% after testing 
1,453 gene-protein pairs. In Figure 2A, we additionally restricted the evaluation to missense variants 
that are scored by all classifiers and genes with at least 10 such variants, which reduced the number of 
genes to 701 with 42,409 variants assessed in total. Plasma protein levels were corrected for a range 
of covariates including age, sex, ancestry and medication use as described previously23. Subsequently, 
plasma levels were adjusted for the top 20 proteomics principal components and inverse rank normal 
transformed. Spearman correlation was computed on variant level between pathogenicity scores and 
the average plasma levels across all carriers.   

Training PrimateAI-3D with Additional Human Variant Data 
We trained PrimateAI-3D as described previously3 but modified one of the three training objectives so 
that instead of differentiating common primate and human variants (>0.1% AF) from unobserved 
variants it was tasked with separating only human variants with a minimum allele frequency of 
0.001% from unobserved variants. Ensembled scores were generated by averaging the ranks of 
published PrimateAI-3D scores and the new human-only trained model scores. 
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Supplementary Information 
 

 

Figure S1. Pairwise correlations of classifier scores. 

 

 

Figure S2: Evolutionary conservation of benchmark genes. The mean phyloP score from 100 
vertebrates was calculated for the coding region of each gene either genome-wide or for each gene in 
the corresponding benchmark dataset. P-values are from Mann-Whitney U tests comparing mean 
coding region phyloP scores for genes in each evaluation dataset versus all genes. 
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Table S1. PrimateAI-3D and AlphaMissense comparisons on six benchmarks. 

Benchmark AlphaMissense PrimateAI-3D PrimateAI-3D + Human 

DDD (-log10 P) 69.4 70.5 71.8 

ASD (-log10 P) 7.35 8.39 8.85 

CHD (-log10 P) 2.22 4.37 5.01 

Biobank Phenotypes (mean |Spearman ρ|)  0.286 0.288 0.290 

Assays (mean |Spearman ρ|) 0.427 0.403 0.407 

ClinVar (mean AUC)  0.951 0.940 0.940 

 

Table S2. PrimateAI-3D comparison against 17 pathogenicity classifiers on proteomics data from the 
UK Biobank  

Score Mean Proteomics Z-score 
Spearman Correlation 

Standard Error 

PrimateAI-3D-plus-Human -0.290278 0.009071 

PrimateAI-3D -0.288154 0.009054 

AlphaMissense -0.283781 0.00939 

ESM1v -0.275245 0.009096 

EVE* -0.274739 0.009346 

BayesDel -0.270052 0.008828 

VEST4 -0.266177 0.009064 

DEOGEN2 -0.260764 0.008891 

REVEL -0.260702 0.008995 

ClinPred -0.259851 0.008688 

MutationAssessor -0.259603 0.0089 

PROVEAN -0.253448 0.008589 

CADD -0.249388 0.008949 

Polyphen2 -0.248185 0.008844 

SIFT -0.243338 0.00852 

M-CAP -0.237486 0.008658 

MetaLR -0.237139 0.008686 

FATHMM-XF -0.21911 0.008674 

MetaSVM -0.199805 0.008708 
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