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Abstract  

Childhood obesity represents a significant global health concern and identifying risk factors is 

crucial for developing intervention programs. Many ‘omics’ factors associated with the risk of 

developing obesity have been identified, including genomic, microbiomic, and epigenomic 

factors. Here, using a sample of 48 infants, we investigated how the methylation profiles in 

cord blood and placenta at birth were associated with weight outcomes (specifically, 

conditional weight gain, body mass index, and weight-for-length ratio) at age six months. We 

characterized genome-wide DNA methylation profiles using the Illumina Infinium 

MethylationEpic chip, and incorporated information on child and maternal health, and various 

environmental factors into the analysis. We used regression analysis to identify genes with 

methylation profiles most predictive of infant weight outcomes, finding a total of 23 relevant 

genes in cord blood and 10 in placenta. Notably, in cord blood, the methylation profiles of three 

genes (PLIN4, UBE2F, and PPP1R16B) were associated with all three weight outcomes, 

which are also associated with weight outcomes in an independent cohort suggesting a strong 

relationship with weight trajectories in the first six months after birth. Additionally, we 

developed a Methylation Risk Score (MRS) that could be used to identify children most at risk 

for developing childhood obesity. While many of the genes identified by our analysis have 

been associated with weight-related traits (e.g., glucose metabolism, BMI, or hip-to-waist ratio) 

in previous genome-wide association and variant studies, our analysis implicated several 

others, whose involvement in the obesity phenotype should be evaluated in future functional 

investigations. 
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Introduction 

Obesity affects over 40% of Americans1, including nearly 20% of children2. Childhood obesity 

is associated with various disorders across the life course, including hypertension, 

hypercholesterolemia, and insulin resistance3,4,5. To maximize the benefit of preventive 

interventions6,7,8, early identification of children who are most at risk for developing obesity is 

paramount.  

 

Weight is a complex trait influenced by many factors, including the environment (e.g., diet, 

activity level, medications), genetics, epigenetics, the microbiome, and the metabolome of 

individuals. Previous studies have indicated that 40-80% of variation in BMI can be explained 

by genetic factors9,10. However, the cumulative effect of single nucleotide polymorphisms 

(SNPs) identified so far does not account for all of the variation attributed to genetics. 

Specifically, earlier genome-wide association studies (GWASs) have only been able to explain 

approximately 3% of variation in BMI, and more recent studies11 considering SNPs significant 

at the genome-wide level explain up to 6% of such variation. Less stringent studies or meta-

analyses raised this percentage to over 20% (reviewed in Bouchard et al. 202110), but still 

failed to explain the observed heritability in obesity, which approaches 50%10. Despite this 

gap, polygenic risk scores (PRSs) are being widely developed to combine variants from 

GWASs to assess an individual’s risk for disease12. These scores have been developed for 

adults13 and more recently for children14. 

 

In addition to genetic factors, epigenetic modifications could provide important insights into an 

individual’s risk for obesity because they can be heritable when located in the germline, and 

modifiable by environmental factors15. Epigenomics, the study of epigenetic modifications on 

a genome-wide scale, is a field of research that links genes and disease to provide a complex 

picture accounting for changes due to environmental influences across the lifetime. The most 

common epigenetic modification of DNA is cytosine methylation at CpG sites. Methylation 

plays a role in repressing gene expression when located in regulatory regions16 and has been 

linked to active gene transcription when located within the gene body17. The proposed 

molecular mechanisms of gene body methylation range from silencing of repetitive elements18 

to affecting nucleosome positioning19 and histone modifications20. Analogous to constructing 

PRSs with SNP data, methylation risk scores (MRSs) have been recently developed21,22. 

MRSs are linear combinations of methylation states across multiple CpG sites and may be 

useful in the clinical setting as these epigenetic marks can be influenced by environmental 

conditions and thus could be used to monitor changes in disease risk over time21. 

 

In the context of childhood obesity, some studies have shown differences in peripheral blood 

methylation profiles between children with and without overweight23,24. Other studies have 

identified CpG loci whose methylation status in cord blood is linked to adiposity in children 

between 3 and 7 years of age23, as well as up to 18 years of age24. Cord blood methylation 

profiles in children were shown to be influenced by maternal methylation profiles and by 

environmental factors that impact pregnancy25,26. Additionally, MRSs have been found to be 

associated with BMI in adults27, as well as in children28. However, the MRSs used in previous 

children studies were informed by BMI Epigenome Wide Association Studies (EWASs) in 

adults28,29, so it is still not known whether there are specific gene methylation patterns at birth 

that are linked to early childhood growth.  
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In this work, we capitalized on a cohort of second-born siblings to participants in the 

Intervention Nurses Start Infants Growing on Healthy Trajectories (INSIGHT) Study6,8. 

Specifically, these “SIBSIGHT” study participants were part of an observation-only longitudinal 

evaluation of second-born siblings. For this study, we investigated whether early childhood 

growth is associated with methylation in cord blood and placenta samples of 48 children from 

the SIBSIGHT cohort. Early childhood growth of children from the INSIGHT and SIBSIGHT 

cohorts has been extensively studied, providing evidence for a successful early-life 

intervention aimed at preventing childhood obesity for both siblings7,8,30. Along with insights 

into the effects of dietary intake31,32, sleep33,34, and infant temperament35, prior findings by our 

group have identified associations between early childhood growth and the composition of the 

oral microbiome36, the gut metabolome37, the stool micro-transcriptome38, and the genome14. 

Characterizing an association between gene methylation at birth and weight outcomes in 

children complements such studies, providing another avenue for identifying risk factors, 

adapting interventions–and thus preventing early life obesity and later life comorbidities. Here 

we used Illumina methylEpic arrays to establish genome-wide methylation profiles for placenta 

and cord blood tissues, and leveraged a wealth of additional information collected by 

SIBSIGHT. We tested a hypothesis that gene body methylation profiles at birth could be 

associated with weight outcomes in the first six months after birth.  

Results 

We collected placenta and cord blood samples at the time of birth from 48 SIBSIGHT study 

participants6,32. For each sample, we used the Illumina MethylationEPIC array to determine 

methylation profiles across 575,132 CpG sites genome-wide. After quality control and 

clustering (see Methods for details), we grouped methylation signals from 293,090 CpGs into 

20,108 genes. The number of CpG sites per gene ranged from 1 to 814, with average and 

median counts of 15 and 7, respectively. 

 

We evaluated three weight outcomes of participating children: the conditional weight gain z-

score (CWG, a standardized measure of change in weight from birth to six months of age, see 

Methods for details), BMI (weight/length^2) at six months, and the ratio of weight-for-length at 

six months. All three measures showed regular, Gaussian-like distributions across our 

participants (Figure S1; the Shapiro-Wilk test did not reject normality; CWG p-value = 0.416, 

BMI p-value = 0.529, weight-for-length p-value = 0.269). Weight outcomes at six months were 

chosen as they are the first outcomes we measured after collection of samples at birth; 

methylation patterns may change over time and could be modifiable39,40. 

Impact of covariates on weight outcomes 

Prior to evaluating the associations between methylation profiles and weight outcomes, we 

assessed whether non-epigenetic covariates showed significant associations with the latter 

and should therefore be taken into account in downstream analyses. The non-epigenetic 

covariates we considered (Table 1) were maternal BMI and health-related variables 

(presence/absence of gestational diabetes, gestational weight gain, presence/absence of 

illness, and medication usage during pregnancy), gestational length, sex of the child, and 

infant feeding mode (i.e. breastfeeding or formula) at the age of 4, 16, and 28 weeks. Only 
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one participating mother reported smoking, so this variable was excluded from the analysis. 

In order to determine which, if any, of the non-epigenetic covariates had an association with 

the infant weight outcomes, LASSO regressions were performed41 using each of the three 

weight outcomes as the response and the above-listed covariates as predictors. The only 

significant associations found were those of the sex of the child with weight-for-length and BMI 

(Figure S2). To account for this, we standardized these two weight outcomes by sex (see 

Methods for details). The CWG calculation already accounts for sex. 

Differences in methylation profiles between cord blood and placenta  

The methylation state of a CpG site is determined by calculating the ratio between the 

methylated and unmethylated fluorescent signals from the microarray. This ratio is referred to 

as the methylation Beta signal42. The distribution of the methylation Beta signals across CpG 

sites differed between the two tissues analyzed (shown for each of the 48 children in Figure 

1). The cord blood samples had the expected bimodal Beta value distribution with a strong 

peak at β<0.2 (hypomethylated CpGs) and a less pronounced peak at β>0.7 (hypermethylated 

CpGs). However, the placenta samples had a poorly defined peak at β>0.7, with more CpGs 

having values between β=0.2 to β=0.7. This suggests that our placenta samples contained 

either hemimethylated CpGs or heterogeneous cells with a mix of CpG methylation profiles.  

 
Figure 1. Density plots of Beta values describing the methylation state of CpG sites. Each line 

corresponds to an individual sample. Smoothing was performed with the function density plot from the 

Minfi package in R. The distributions for the 48 cord blood samples are shown in green, and those for 

the 48 placenta samples are shown in orange.  

Association study to identify differentially methylated genes 

To identify genes with methylation patterns associated with children's weight outcomes, 

we again used LASSO regression. In total, we performed six regressions, one for each 

tissue type and weight outcome combination. For each regression, we computed the 
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average methylation states (Beta signals) across the CpGs for each gene, and used 

these averages as predictors. The results are summarized in Figure 2A. The LASSO 

regressions for cord blood and placenta identified, respectively, eight and ten genes 

whose methylation levels were significant predictors of CWG. Additionally, LASSO 

regressions identified four and 27 genes whose methylation levels in cord blood were 

significant predictors of BMI and weight-for-length, respectively (Table S4). In contrast, 

we did not identify any genes whose methylation in placenta was significantly associated 

with these two weight outcomes. Notably, in cord blood, there were three genes (PLIN4, 

PPP1R16B, and UBE2F) whose methylation levels were selected as significant 

predictors of all three weight outcomes, with similar coefficient estimates in the three 

regressions. There were no ‘shared genes’ among those selected for cord blood and 

placenta (Figure 2B). We report estimated coefficients from the LASSO regressions in 

Tables S3-S6; these express effect strength and sign: a positive regression coefficient 

can be interpreted as a higher methylation level being associated with an increased 

weight outcome, and a negative regression coefficient as a higher methylation level 

being associated with a decreased weight outcome.  

 

We found that several genes selected in SIBSIGHT were also significantly related to 

child weight outcomes in an independent dataset—the PROGRESS43 cohort. 

PROGRESS is a freely accessible dataset of children from Mexico City, and comprises 

both cord blood DNA methylation data and longitudinal growth information for the 

children. Considering CWG as the weight outcome, and regressing it on one gene at a 

time, seven out of the eight genes selected in SIBSIGHT had a significant p-value also 

in PROGRESS. When regressing CWG on all eight genes jointly though, only 

PPP1R16B remained marginally significant (Table S7). Considering six-month BMI as 

the weight outcome, two out of four genes (PLIN4 and UBE2F) selected in SIBSIGHT 

were significant in the joint regression in PROGRESS (Table S8). Finally, considering 

six-month weight-for-length as the weight outcome, one (SMIM20) of the 27 genes 

selected by SIBSIGHT was significant and one gene (UBE2F) was marginally significant 

in the joint regression (Table S9). It is notable that the genes that were selected using 

multiple weight outcomes in SIBSIGHT (PLIN4, PPP1R16B, and UBE2F) were also 

significantly associated with phenotypes in the independent PROGRESS cohort.  
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Figure 2. Genes whose methylation levels in cord blood and placenta are predictive of 

weight outcomes. The outcomes considered are conditional weight gain (CWG), body mass 

index (BMI), and weight-for-length (weight divided by length). (A) a Venn diagram of the relevant 

genes, as identified by LASSO regressions. (B) gene placement along the vertical axis 

corresponds to the correlation coefficient between each gene selected by the LASSO fit and the 

weight outcome. In bold are genes selected across multiple outcomes, and underlined are genes 

associated with weight outcomes in previous studies (see Discussion). Only CWG was associated 

with differentially methylated genes in the placenta.  

Methylation Risk Score 

Using results from the above LASSO regressions for the SIBSIGHT cohort, we generated a 

methylation risk score (MRS) for each growth outcome. These are weighted scores calculated 
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as linear combinations of gene methylation Beta signals weighted by regression coefficient 

estimates obtained from post-LASSO Ordinary Least Squares fits (see Methods for details). 

Figure 3 shows the relationship between each MRS and the corresponding growth outcome. 

The associations were strong and significant in all cases, with high in-sample R-squared (cord 

blood CWG, adjusted R-squared = 0.874, p-value ≤ 2.2 x 10-16, Figure 3A; placenta CWG, 

adjusted R-squared = 0.8088, p-value ≤ 2.2 x 10-16, Figure 3B; cord blood BMI, adjusted R-

squared = 0.992, p-value ≤ 2.2 x 10-16, Figure 3C; weight-for-length, adjusted R-squared = 

0.5966, p-value 7.731 x 10-11, Figure 3D). Furthermore, there was still a significant relationship 

between these scores (calculated with phenotypes at 6 months) and the corresponding 

phenotypes at 1 and 2 years (Table S10). Using the independent PROGRESS cohort, 

however, these MRSs did not have a significant relationship with weight outcomes (Table 

S11).   

  

 
Figure 3. Relationship between MRS and weight outcomes. (A) Cord Blood MRS vs. Conditional 

Weight Gain. (B) Placenta MRS vs. Conditional Weight Gain. (C) Cord Blood MRS vs. weight-for-length 

ratio. (D) Cord Blood MRS vs. Body Mass Index. Note: Placental methylation does not produce a 

methylation risk score for BMI or weight-for-length as there was no relationship between gene 

methylation patterns and either of these weight outcomes.  

Discussion 

In this study, we analyzed the methylation profiles of placenta and cord blood samples 

collected at birth. Using three outcomes characterizing early childhood growth, we identified 

genes whose methylation levels in these tissues are associated with weight gain during the 

first six months after birth. Comparing results of LASSO regression runs as well as the 

Ordinary Least Squares (OLS) regression of selected predictors across weight outcomes and 

tissues (Figure S5), we found that CWG and BMI provide more reliable results in cord blood 
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when reproducing the analysis, with CWG having a higher adjusted R-squared than BMI (0.87 

and 0.64 respectively). The weight-for-length ratio in cord blood had the highest R-squared 

(0.97) but the results were more variable. Indeed, attempts to replicate the correlation analysis 

with the weight-for-length ratio led to frequent low quality LASSO plots (with no associated 

genes or no clear minimum mean squared error), and a highly variable list of correlated genes, 

even after filtering for p-value (see Methods).  For the placenta methylation, only CWG 

exhibited correlation with a set of gene methylation states, whereas BMI and weight-for-length 

did not. More generally, we found that, compared with the placenta methylation data, the cord 

blood methylation data presented a lower number of mixed methylation profiles, more genes 

associated with weight outcomes, and higher R-squared of the OLS regression on identified 

predictors (0.68 for predictors associated with CWG in the placenta).  

Genes whose methylation levels in cord blood are predictive of 

weight outcomes  

In cord blood, we found three genes whose methylation levels were significantly associated 

with all three weight outcomes in SIBSIGHT and with outcomes in an independent cohort 

(PROGRESS). These are discussed below, followed by a discussion of genes identified as 

significant predictors for only one of the outcomes.  

PLIN4 

One of the genes significantly associated with all three weight outcomes, and always with a 

positive sign (higher methylation inducing higher weight outcomes), was PLIN4. The protein 

encoded by this gene (Perilipin 4) is a member of the PAT family of lipid storage droplet 

proteins44. It is an important regulator of lipid storage. Low levels of expression of this protein 

have been associated with an increase in weight status45 of adults. Changes in PLIN4 

methylation have been observed after weight loss, with hypermethylation in the promoter 

region before vs. after gastric bypass surgery in adults46. PLIN4 has also been classified as a 

putative obesogen in children, and was shown to be differentially methylated between obese 

and non-obese children in another study47.  

PPP1R16B 

Another gene significantly associated with all three weight outcomes, and always with a 

negative sign (higher methylation inducing lower weight outcomes), was PPP1R16B. The 

protein encoded by PPP1R16B is phosphatase 1 (PP1) regulatory inhibitory subunit 16B48, 

which is also referred to as TIMAP or ANKRD449. PP1 is involved in many essential cellular 

mechanisms and is part of a large interactome with over 200 interactors identified in 

vertebrates50. Studies of PPP1R16B showed its high levels of expression in endothelial cells 

and suggested that PP1 is involved in endothelium stability and permeability49.  The activity of 

PPP1R16B has been shown to play a role in several diseases, including obesity and diabetes 

mellitus49.  

UBE2F 

Finally, the third gene significantly associated with all three weight outcomes, and always with 

a positive sign (higher gene methylation inducing higher weight outcomes), was UBE2F. The 
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protein encoded by UBE2F (Ubiquitin Conjugating Enzyme E2F) is a ubiquitin-protein ligase 

involved in post-translational modifications of proteins through the addition of ubiquitin-like 

protein NEDD851. Previous studies have shown an association between the expression of this 

gene and BMI in children52. In animal models, UBE2F has been shown to be expressed at 

higher levels in the adipose tissue of obese rats compared to lean rats53.  

Other genes 

We also identified several genes whose methylation level was significantly associated with  

only one weight outcome. Some such genes were also associated with obesity or an obesity-

related trait in previous studies. One category of genes we identified were genes linked to 

nutrient metabolism, e.g. ANKS4B, LAMP3, as well as PPP1R16B (discussed above). The 

protein encoded by ANKS4B (Ankyrin Repeat And Sterile Alpha Motif Domain Containing 4B) 

plays a role in the epithelial brush border differentiation, controlling the microvilli organization 

and length54. It is involved in pancreas development and function55,56, affecting the secretion 

of insulin. This function could explain its link to weight gain. In our study, we found a negative 

association between CWG and cord blood methylation levels of ANKS4B. The protein 

encoded by LAMP3 (Lysosomal Associated Membrane Protein 3) is involved in hepatic lipid 

metabolism and is overexpressed in patients with non-alcoholic fatty liver disease as well as 

in obese mice57. Our analysis indicated that LAMP3 methylation is positively associated with 

CWG. The 33 additional genes implicated by our study but not already documented in the 

literature as being linked to obesity or metabolism (see Tables S3-S5) should be further 

analyzed in functional studies aimed at determining how they may influence weight gain in 

early childhood.  

Genes whose methylation levels in placenta are predictive of 

weight outcomes  

In placenta, we found ten genes whose methylation levels were significantly associated with 

the CWG outcome (see Figure 3, Table S6). Four were identified as being involved in body 

weight and weight gain in prior studies, two have not been previously associated with obesity 

or obesity related traits in adults, and four are putative and of unknown function. Among 

previously studied genes, TRIM63, encoding for E3 ubiquitin ligase MURF1, has been linked 

to skeletal muscle atrophy and is over-expressed in obese rats compared to lean rats58,59. 

Methylation levels of TRIM63 had a negative association with CWG in our study. ADGRB2 is 

part of the adhesion G-protein-coupled receptor genes family, which is linked to insulin 

secretion in humans60 and modulation of adipogenesis and adipocyte function61. We found 

that methylation levels of ADGRB2 had a positive association with CWG. ACTN1 has been 

shown to be involved in adipogenesis62 and weight regain after weight loss63,64. In rats, it is 

up-regulated in the brain of animals with a high-fat diet65. ACTN1 had a negative association 

with CWG in our study. Finally, TAS2R38 has been shown to be involved in the perception of 

bitter taste66, and unrelated studies documented a link between the perception of bitterness 

and obesity in adults67,68 and male children69. Methylation levels of TAS2R38 had a negative 

association with CWG in our study. These links suggest that these genes should be 

investigated further.  
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Methylation risk scores as predictors of weight outcomes 

A growing trend in genetics is to generate polygenic risk scores (PRS) for complex diseases 

because these types of disorders are often influenced by a large number of genetic variants, 

each with a small effect size70. PRSs, while not deterministic, can indicate which patients have 

a higher risk of developing certain conditions, which can aid in the establishment of 

intervention and/or treatment plans. MRSs have a similar advantage, capturing the cumulative 

effect of many CpG sites, or in this case the methylation signal of several genes, with small 

effect sizes. We developed MRSs for three phenotypes at six months after birth with cord 

blood methylation data from the SIBSIGHT cohort. Importantly, these MRSs remained 

significantly correlated with weight outcomes up to two years later.  

 

Conclusions and future directions 

In this study we identified genes whose methylation levels in cord blood and placenta are 

significantly associated with three different weight outcomes; conditional weight gain z-score, 

BMI, and weight-for-length. Notably, we identified three genes whose methylation in cord 

blood is predictive of all three three weight outcomes. Two of these genes, PLIN4 and UBE2F, 

have been associated with weight in prior studies. Also notably, and somewhat in contrast, 

only one outcome (CWG) was associated with gene methylation in the placenta. This can be 

explained by a higher number of cell types in the placenta tissue, making it more difficult to 

identify specific methylation patterns across a large number of methylation profiles. 

Alternatively, methylation states in the placenta might only be associated with CWG as 

birthweight is considered in the calculation of this outcome. It is possible that the conditions in 

the placenta might be more likely to influence birth weight than postnatal growth. One limitation 

of this study is the small sample size (48) compared to traditional Epigenome-Wide 

Association Studies (EWAS). In order to increase the power of our analysis, CpG sites were 

grouped by gene to reduce the dimensionality of the data, with the drawback that this allows 

us to capture only large-scale associations (i.e. over the whole gene and not individual CpGs). 

To confirm our findings, our analysis should be replicated using a larger sample.  

 

We used the PROGRESS/ELEMENT DNA Methylation Study Dataset to test our selected 

genes and MRSs in an independent cohort. However, while the SIBSIGHT cohort is largely 

white and non-hispanic/latino32, the PROGRESS cohort is composed of individuals located in 

the Latin American city of Mexico City, Mexico43.  It has been shown that in adults there is 

population-to-population variation in DNA methylation related to several diseases and 

phenotypes (e.g. cancer and diabetes)71 and that individuals who have similar demographics, 

life style, etc. have more similar methylation patterns72. Interestingly, we found evidence of 

between-populations differences in the association between weight outcomes and methylation 

patterns emerging as early as six months after birth. We found that the strongest “gene 

signals'' from SIBSIGHT (PLIN4, UBE2F, and PPP1R16B) could also be detected in several 

of the regressions run on PROGRESS data. However, our MRSs were not predictive of weight 

outcomes in the PROGRESS cohort. We hypothesize that the underlying genetic, 

demographic, etc. differences between the two populations could be the reason why results 

from SIBSIGHT could not be more consistently validated in PROGRESS.  This is notable 

because differences between the two cohorts were expected, however such a distinct contrast 

at such an early age was not. This suggests that external factors influencing the patterning of 
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CpG methylation in early life should be carefully studied in order to determine factors 

potentially affecting future weight outcomes (e.g. maternal pre-pregnancy BMI24 or 

environmental exposures43). It will be beneficial to identify if there are shared patterns because 

these could be used to generate a MRS that could be used universally to identify the children 

most at risk for developing obesity and therefore benefit the most from targeted obesity 

prevention programs.   

 

In this study we characterized methylation patterns within the gene body and not within the 

promoter regions73. The relationship between gene body methylation and gene expression 

has been shown to be U-shaped in some studies, with both high and low expression 

corresponding to high levels of methylation74, but in other studies methylation and transcription 

have been found to be positively correlated20. Additional studies are needed to fully investigate 

the expression levels of the gene bodies in both placenta and cord blood. Such studies could 

validate our findings and provide a better understanding of the mechanisms eventually 

affecting weight outcomes. To our knowledge, there are no gene body methylation studies 

investigating the large-effect obesity genes, e.g., LEPTIN and FTO, in infants. Notably, 

methylation of these two genes was not found to be associated with weight outcomes in our 

study.  

 

In a prior study by our group14, we found that there may be different genetic components 

influencing infant weight gain vs. adult weight gain. Regulatory mechanisms, including 

methylation patterns, could therefore differ between adults and infants as well. This represents 

an interesting direction for future research; overall, methylation levels decrease throughout 

childhood and adolescence75 and it would be of great interest to investigate how the signatures 

we found here would persist as an individual ages.  

 

Methods 

Methylation Data Collection 

We collected 48 matching samples of cord blood and placenta tissue from children enrolled in 

the SIBSIGHT study6,31. A list of the covariates employed in our analysis, with their summary 

values across the children included in this study can be found in Table 1.  

 

Table 1. Summary of SIBSIGHT Covariates used in the analysis. SD—standard deviation. 

Covariate Value 

Mother BMI 
Average (SD) 

24.5 (4.5) 

Father BMI 
Average (SD) 

28.6 (4.5) 

Child sex 
N = female (%) 

27 (56%) 
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Gestational Duration (weeks) 
Average (SD) 

38.9 (1.1) 

Mode of Delivery  
N = vaginal (%) 

34 (70.8%) 

Maternal Age (years) 
Average (SD) 

31.8 (4.3) 

Gestational Diabetes  
N = controlled by diet & exercise (%) 

3 (6.25%) 

Smoking During Pregnancy  
N = smoked 

1 

Maternal Illness during pregnancy (e.g.: 
Thyroid disorders) (N=none) 

47 

Maternal Medications During Pregnancy 
N = took medications (%) 

33 (68.8%) 

Infant Feeding Mode at 4 weeks 
N ≥ 80% breast milk (%) 

32 (66.7%) 

Infant Feeding Mode at 16 weeks  
N ≥ 80% breast milk (%) 

25 (52.1%) 

Infant Feeding Mode at 28 weeks  
N ≥ 80% breast milk (%) 

19 (39.6%) 

 

 

At the time of birth, cord blood samples were collected in K2EDTA coated vacutainers (Becton, 

Dickinson, and Company) and stored at 4℃ until picked up by the research team. Samples 

were then stored at -80℃. DNA was isolated using the Qiagen DNeasy Blood and Tissue kit 

(Qiagen). Purified genomic DNA was then bisulfite-converted using EZ Methylation Kit (Zymo 

Research). 

 

Placentas were stored at 4℃ after delivery before processing. 1cm3 pieces of the placenta 

were dissected from the fetal side, proximal to the area where the umbilical cord attaches. 

Tissues were formalin-fixed and paraffin-embedded. DNA from these tissues was extracted 

with the ReliaPrep FFPE gDNA Miniprep System (Promega) and then assessed with the FFPE 

QC kit (Illumina) for quality. Samples passing quality thresholds were then bisulfite-converted 

with the EZ Methylation Kit (Zymo Research), and then treated DNA was restored following 

the Infinium HD FFPE Restoration protocol (Illumina).  

 

Bisulfite-converted DNA from both tissues was then analyzed on the Infinium MethylationEPIC 

chip (Illumina) in the Genome Sciences Facility at Penn State Hershey College of Medicine.  
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Weight Outcomes Data Collection 

For each child enrolled in this study, weight and length (via recumbent length board, Shorr 

Productions) were collected at birth and six months after birth, and BMI (kg/m2) and weight-

for-length (kg/m) were calculated. Additionally, conditional weight gain (CWG) z-scores were 

calculated for each child using anthropometrics at birth and six months, adjusted for sex and 

age76. CWG z-scores are the standardized residuals from a linear regression of the weight-

for-age z-score at six months on the weight-for-age z-score at birth (length-for-age z-score at 

birth and six months and exact age at the six-month visit are used as covariates in the 

regression). CWG z-scores are normally distributed and have a mean of 0 and a standard 

deviation of 1. Positive z-scores indicate above average weight gain (i.e., rapid infant weight 

gain) compared to other infants in the sample, and have been shown to be a risk factor for 

obesity later in life77. We standardized the BMI and weight-for-length ratio data by sex to 

remove the impact of the differences between sexes on the association with methylation 

profiles. This standardization is done by separating the two populations by sex and, for each, 

subtracting the mean and dividing by the standard deviation. Tests for normality were 

performed in R using the base stats package.  

Methylation Data Preprocessing 

Raw signal reads from the chip were converted into Beta signals (β = intensity of the 

methylation signal/[intensity of the methylation signal + intensity of the unmethylated signal + 

100]) using the Minfi package in R78. The Minfi package was also used to screen the data for 

quality. This included screening the data for outliers, excluding sex chromosomes, and 

excluding sites with known SNPs that could have caused false positives or negatives (see 

Table S1 for a summary of removed CpGs). After quality control, one placenta sample was 

removed from further analyses due to the low quality of the methylation data. Next, the Farray 

signals were normalized. First, we normalized within the array, which included background 

correction and normalization of signal intensity. Each chip contains control sites used to 

normalize between samples. Second, we utilized the Beta Mixture Quantile (BMIQ) 

normalization (one of the most popular methods found in the literature for MethylEpic 

analyses79) to normalize the signal from the Infinium I (InfI) and Infinium II (InfII) probes utilized 

on the MethylationEPIC array. BMIQ decomposes density profiles in three states: 

unmethylated, hemimethylated, and fully methylated. It rescales the InfII distribution to the 

corresponding InfI distribution. Both normalization steps were performed utilizing tools within 

the Minfi package (Figure S2).  

 

After preprocessing we have one Beta signal for each CpG site, which corresponds to its 

methylation level. These values range from 0 (fully unmethylated) to 1 (fully methylated). Using 

the default density plot function included in the Minfi package, we visualize the distribution of 

individual CpG sites methylation levels. In a sample containing a single cell type, with identical 

methylation states between cells, we expect two peaks near 0 and 1. Values in between 0 and 

1 indicate a mix of unmethylated and methylated sites in the sample, which can indicate a mix 

of cell types or cell states.  

Regression Analyses  
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To identify factors that could impact the weight outcomes (BMI) other than methylation profiles 

and sex, we performed a LASSO regression analysis80,81 (a method that performs predictor 

selection) on environmental factors, such as feeding mode, and family history, such as 

parental BMI and pregnancy duration (Table 1). We found no significant associations (Figure 

S2). 

 

After the normalization performed during preprocessing, we grouped the methylation data by 

genes. Specifically, we averaged the Beta signals of CpG sites contained within the genomic 

coordinates of a gene to calculate the gene’s methylation level (Figure S3). We then ran 

LASSO regressions separately for the two tissues and, for each tissue, considering the three 

different weight outcomes–for a total of six regressions. We used the R package glmnet 

(LASSO and Elastic-Net Regularized Generalized Linear Models). The tuning parameters 

used for various LASSO runs can be found in Table S2; they were selected minimizing the 

cross-validation Mean Squared Error, as shown in the standard result plots produced by 

glmnet. Some of the LASSO fit analyses gave variable results for correlation with weight-to-

length outcome. When repeating the analyses with the same parameters, the shape of the 

LASSO plot was changing, and, while a few genes were repeatedly selected, some results 

were not reproducible. To select the most predictive genes when the LASSO gave very 

variable results, we repeated the analysis until we obtained 10 profiles with the “check mark” 

shape plot, and selected the best model that included the most commonly selected genes 

across the replicate 10 analyses. After running each of the LASSO regressions, in order to 

reduce the bias, this technique creates in the estimation of the regression coefficients, we 

performed a post-selection fit–i.e. an OLS fit restricted to the set of predictors selected by the 

LASSO. We also ran marginal regressions for each individual predictor selected by the 

LASSO; the coefficient estimates from these regression can be considered alongside those 

produced by the post-selection OLS joint fit, as additional quantifications of the effects of each 

selected predictor. 

 

Methylation Risk Scores Calculation 

 

Methylation risk scores (MRS) were calculated as described in 22. Briefly, they are a sum of m 

gene methylation values c (from section “Methylation data preprocessing”) with OLS estimated 

regression coefficients as weights w (from section “Regression analyses”):  

𝑀𝑅𝑆 =  ∑𝑚
𝑖=1 𝑤𝑖𝑐𝑖 (1) 

 

MRSs were calculated for each weight outcome separately. The association between MRS 

and weight outcome was determined by linear regression using the lm function in the basic 

stats package of R 82 using MRS as the predictor and weight outcome as the response.  

 

Validation datasets 

Cord blood methylation data from the PROGRESS cohort83 was used in validation analyses 

(dbGaP: phs002754.v1.p1). This cohort consists of 1,001 individuals from Mexico City who 

were followed from birth through 18 years. Methylation data was downloaded from dbGaP 
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(phs002754.v1.p1) and height and weight data were provided by study authors83. CWG z-

scores, six-month BMI, and six-month weight-for-length were all calculated as described 

above.  

 

To validate our results on the PROGRESS cohort, we preprocessed the data as we did for the 

SIBSIGHT cohort (see above), and confirmed the absence of association with the covariates 

available for this dataset (mother BMI, smoking, and disease during pregnancy). We 

performed linear regressions on the genes that were selected as predictors in the SIBSIGHT 

cohort. These regressions have been run both for each individual gene and as joint regression 

using all of the genes. We used the CWG z-scores to perform the linear regression with the 

genes associated with CWG in the SIBSIGHT cohort, and similarly for the BMI and 

weight/length ratio.  

MRSs were calculated as described above, using the regression coefficients from SIBSIGHT 

as weights, w. As with SIBSIGHT, the association between the MRS and the phenotypes were 

calculated using the linear regression (lm) function in the basic stats package of R.  
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