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Abstract

Background: Despite contemporaneous declines in neonatal mortality, recent
studies show the existence of left-behind populations that continue to have higher mor-
tality rates than the national averages. Additionally, many of these deaths are from
preventable causes. This reality creates the need for more precise methods to iden-
tify high-risk births so that policymakers can more precisely target them. This study
fills this gap by developing unbiased machine-learning approaches to more accurately
identify births with a high risk of neonatal deaths from preventable causes.

Methods: We link administrative databases from the Brazilian health ministry to
obtain birth and death records in the country from 2015 to 2017. The final dataset
comprises 8,797,968 births, of which 59,615 newborns died before reaching 28 days
alive (neonatal deaths). These neonatal deaths are categorized into preventable deaths
(42,290) and non-preventable deaths (17,325). Our analysis identifies the death risk of
the former group, as they are amenable to policy interventions. We train six machine-
learning algorithms, test their performance on unseen data, and evaluate them using
a new policy-oriented metric. To avoid biased policy recommendations, we also inves-
tigate how our approach impacts disadvantaged populations.

Results: XGBoost was the best performance algorithm for our task: the 5% births
of the highest predicted risk from this model capture more than 85% of the actual
deaths. Furthermore, the risk predictions exhibit no statistical differences in the pro-
portion of actual preventable deaths from disadvantaged populations, defined by race,
education, marital status, and maternal age. These results are similar for other thresh-
old levels.

Conclusions: We show that, by using publicly available administrative data sets
and ML methods, it is possible to identify the births with the highest risk of preventable
deaths with a high degree of accuracy. This is useful for policymakers as they can target
health interventions to those who need them the most and where they can be effective
without producing bias against disadvantaged populations. Overall, our approach can
guide policymakers in reducing neonatal mortality rates and their health inequalities.
Finally, it can be adapted to be used in other developing countries.

Keywords: Algorithmic bias, Health care, Health inequality, Machine learning, Neonatal
mortality, Targeting program.
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1 Background

In recent years, many countries have achieved considerable progress in reducing early-life
mortality (ELM), and many are in line to achieve the United Nations’ Sustainable Develop-
ment Goals (SDGs). These reductions are important and associated with improved health
outcomes1,2. However, health disparities remain high, even in countries in line to achieve
the SDGs. These disparities may exist among ethnic groups, geographic regions, and levels
of education, to mention a few subgroups3,4. This is particularly concerning for deaths from
preventable causes, where available interventions could be used5.

International agencies and local policymakers have recognized these disparities among
subgroups. The most common approach to identifying high-risk groups has been stratifying
mortality rates by subgroups, such as gender, socioeconomic status, and geographic location.
While useful for some purposes, these approaches ignore within-group variability, whereas
children from the same subgroup may have very different mortality rates. Recent studies
showed that within-group variability is higher than between-group variability6,7.

The decline in mortality rates makes it even more useful to adopt methods that can
precisely identify those who still have a high risk of preventable deaths. This is particularly
salient when only a fraction of the population can be given the needed intervention because
of two factors. First, in many contexts in the developing world, resources are scarce. At
the same time, at-risk individuals may demand considerable attention, thus the importance
of not squandering resources with those who do not truly need them. Secondly, the smaller
the population that can receive an intervention, the more difficult the task of correctly
identifying those individuals that should be targeted. In this paper, we develop and explore a
new approach. Using a large administrative data set with individual-level information about
each birth, we employ machine learning models (ML) to estimate the risk of preventable
neonatal death for new unseen births.

In doing so, we aim to aid local health professionals and policymakers identify which
children need special attention, not based on preconceived risk factors. We develop a data-
driven approach that combines several risk factors and provides digested information to
healthcare providers or policymakers about those neonates who need more attention.

This is particularly useful, for example, in Brazilian regions where teams in the public
health care system (SUS) may be responsible for 2000 to 3500 individuals8, as this identifica-
tion might be very challenging due to the sheer number of patients under their care. The SUS
is the world’s largest government-run public healthcare system by number of beneficiaries,
land area coverage, and affiliated network with more than one million healthcare providers9.
Based on our methodology, the use of an easy-to-use app 1 could assist healthcare teams on
the ground in their targeting strategies by assigning a risk score for each neonate under their
care.

Additionally, we apply a new metric to evaluate the performance of the developed machine
learning models, which is appropriate to public health professionals and policymakers. Many

1We developed an example of such an app and made it available on the Internet at https://

64o4b7-marcus0l0nascimento.shinyapps.io/tent_app/

3

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301163doi: medRxiv preprint 

https://64o4b7-marcus0l0nascimento.shinyapps.io/tent_app/
https://64o4b7-marcus0l0nascimento.shinyapps.io/tent_app/
https://doi.org/10.1101/2024.01.12.24301163


ML algorithms have their performance judged by criteria such as specificity and accuracy
or F1 metrics that are difficult to interpret for policy purposes. Our metric evaluates the
usefulness of a given ML algorithm to identify high-risk births from preventable causes.

A critical feature of any life-saving intervention is that it can only save the lives of those
who would have otherwise died. Even a “miracle drug” that can counteract any cause
of death can only reduce mortality if given to children who, without it, would have died.
Because of this, interventions that cannot be given universally must be carefully targeted
to those at the highest risk of mortality (absent the intervention) to have an efficient effect.
Our method addresses this issue by ranking births by their risk of preventable deaths.

This approach aligns with recent trends in medical and other fields regarding “evidence-
based health policies”, where medical decisions, including clinical decisions, should be aided
by scientific evidence.10,11,12,13,14. It is also in line with recent trends in personalized medicine,
which is becoming prominent in other fields of medicine and public health, as the risk
assignments are estimated at the individual level15,16,17.

We also address concerns of bias in ML algorithms, given recent literature that shows the
potential risk that the application of these methods can be more favorable to privileged pop-
ulations18,19,20,21,22. Our models do not exhibit this behavior and capture similar proportions
of preventable neonatal deaths from advantaged and less-advantaged populations.

2 Methods

2.1 Approach

In this research, the unit of analysis is individual birth. We aim to identify the births with
the highest neonatal mortality risk from preventable causes. As such, we included all the
available information from the administrative databases that contributed to improving the
precision of our targeting.

2.2 Data sources

We use administrative databases from the Brazilian health ministry to obtain birth and death
records in the entire country from 2015 to 2017 and information about health facilities, profes-
sionals, and available equipment. All data is available at https://datasus.saude.gov.br.
Still, it is organized into three different health information systems: SINASC (Sistema de
Informações sobre Nascidos Vivos), SIM (Sistema de Informação sobre Mortalidade), CNES
(Cadastro Nacional de Estabelecimentos de Saúde), which we describe below.

SINASC includes all live births in the Brazilian territory, recording epidemiological and
administrative information about the mothers and children. SIM, in turn, includes all deaths
in the territory, containing epidemiological and administrative information and their circum-
stances. Fetal deaths are not considered as they are beyond the scope of this paper. Finally,
CNES records a snapshot of Brazilian health facilities at a point in time. These systems
contain three tables with all live births, deaths, and health facilities information.
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To merge SIM and SINASC data, we used the field NUMERODN. It contains a unique
number identifying each live birth. Records on SIM contain this information in cases of
deaths within the first year since birth. Subsequently, we merged the information with CNES
data by the CNES number, a unique identifier for health facilities in both the SINASC and
CNES databases. The resulting raw dataset totals 8,829,944 records.

When merging the three databases, we identified and removed duplicated observations
in the SIM and SINASC tables to avoid inconsistencies. With the deduplicated tables,
deterministic linkages were executed.

In the raw dataset, a few additional treatments were performed. SIM records that were
not linked to a SINASC record were not considered. Moreover, we did not consider a few
residual records with no birthdate and records in which the difference between the birthdate
and the date of death was negative. The resulting cleaned dataset comprises 8,797,968 births
and 59,615 neonatal deaths.

2.3 Feature Engineering

Our set of features23 consists of the following variables: place of delivery, health facility
type, maternal age at birth, sex, 1-min Apgar score, 5-min Apgar score, birth weight, ges-
tational age, week of gestation, pregnancy type, delivery type, maternal education, presence
of congenital anomaly, maternal ethnicity, antenatal visits, month of first antenatal visit,
presentation type, induced labor, professional that assisted the labor, number of previous
live births, number of previous fetal losses and abortions, number of previous pregnancies,
number of previous vaginal deliveries, number of previous cesarean deliveries. In addition,
we have also used marital status and state of birth (the definition and type of each of these
features are in Table 1)

We analyze a nominal categorical target variable with three possible outcomes: alive,
preventable death24, and non-preventable death. Among the non-preventable deaths, we
have external causes of death and ill-defined deaths. The number of preventable deaths is
42,290, whereas the number of non-preventable deaths is 17,325.

To improve analysis efficiency, categorical variables were stored with codes. We did so by
performing a relabeling procedure guided by the data dictionaries issued by the DataSUS,
using the package microdatasus 25. We treated missing data via imputation and applied the
package Amelia 26. Both packages are available in the R Statistical Software repository27.

As a pre-processing procedure, we centered and scaled the data, by subtracting the mean
and dividing by the standard deviation. We also identified and excluded features with zero
or near zero variance. Finally, we filtered out highly correlated features. Details are available
upon request.

2.4 Modeling

The final dataset is partitioned into training and test sets: 7,038,375 observations (80.00%
of the total) are used to train six different machine learning algorithms, while 1,759,593
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observations (20.00% of the total) are used to evaluate the performance of our targeting
criterion on new unseen data.

We estimated neonatal preventable infant mortality risk for each birth in the data set
through flexible ML methods that use the above features. These methods were logistic
regression, least absolute shrinkage and selection operator regression (LASSO), elastic-net
regularized logistic regression (elastic net), random forest (RF), extreme gradient boosting
over trees (XGBoost), and neural networks (NNs). We used the package caret available in
the R Statistical Software27 to run the machine learning algorithms.

Logistic regression28 is the standard estimation of a linear model that estimates the
parameters βj for each feature j to maximize a logistic likelihood function by minimizing the
negative log-likelihood. LASSO29 is essentially an implementation of linear regression that
uses a L2 (

∑
j β

2
j ) norm penalty to regularize or “shrink” the model, preventing overfitting.

It is similar to the logistic regression but includes a penalty term equal to λ(2
∑

j β
2
j ), where

the parameter λ is a non-negative real number that determines the strength of the regulation.
Elastic net30 combines L1 norm (

∑
j |βj|) and L2 (

∑
j β

2
j ) norm penalties to regularize the

model. It minimizes the negative log-likelihood plus a penalty term equals to λ(α
2

∑
j |βj|+

1−α
2

∑
j β

2
j ), where the parameters α and λ are defined on the unit interval and on the

non-negative real numbers respectively. As particular cases, elastic net comprises LASSO
regression (α = 1) and logistic regression (λ = 0).

Our application first tested a cross-validation procedure to choose the parameters α and
λ in elastic net and the parameter λ in LASSO. However, their performances were not close
to the logistic regression. For that purpose, we fixed α = 0.5 and λ = 0.001 in elastic net,
and λ = 0.001 in LASSO. The method glmnet was used for all three algorithms.

The methods RF31 and XGBoost32 are tree-based algorithms. The simplest tree-based
algorithms are classification and regression trees (CART33). Both single-tree models recur-
sively group the outcome observations with similar values using cutoff values of the features.
Although single-tree models are easy to interpret, their performance is frequently poor and
very sensitive to small changes in the input data. By combining several trees, RF and
XGBoost methods improve single-tree algorithm performance. The former averages the es-
timates of a set of trees, each obtained from a random subset of features and trained on a
random subset of the observations. The latter also combines several trees, but it initiates
with one tree, and new trees are iteratively trained on the errors of the prior set of trees.

As applied by us, in RF, the ranger method was employed, and (i) each forest encompasses
500 trees, (ii) the number of variables randomly sampled for each tree split (mtry) was set to
5 (the square root of the number of features), (iii) the minimal node size (min.node.size)
was set to 1, and (iv) we choose the gini index as splitting rule (splitrule). In XGBoost, the
xgbTree method was employed, and (i) the number of iterations for the boosting procedure
(nrounds) was set to 250, (ii) the learning rate (η ∈ (0, 1) was set to 0.3 to prevent over-
fitting, (iii) the maximum depth of the trees (max depth) was set to 4, (iv) the proportion
of the variables to be considered for tree construction (colsample bytree) was set to the
interval (0.6, 1), and the proportion of observations from the training set used for modeling
(subsample) was set to the interval (0.5, 1).

6

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301163doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301163


The NN methods34 is constituted by an output layer and node layers, including an input
layer and one or more hidden layers. The input layer takes the features, and no processing
is done. All kinds of processing are executed on the hidden layers and transferred to the
output layer. The output layer, in turn, is the final layer, bringing the final value resultant
from the learning process in the hidden layers. The nodes, also known as artificial neurons,
are connected, and these associations are characterized by their weights, thresholds, and
activation functions. Nodes are activated, and data are sent to the next network layer when
their outputs exceed a specified threshold value. Otherwise, no data is transmitted to the
next layer.

Although we tested specifications with more than one hidden layer using the mlpML
method, they performed similarly to the neural network with only one hidden layer. Thus,
our application employed the mlp method, specifying a layer with 25 nodes.

2.5 Performance Metrics

For our task, we did not find it useful to adopt traditional prediction performance metrics,
such as classification accuracy, confusion matrices, specificity/sensitivity statistics, or preci-
sion/recall statistics, all of which require a threshold for deciding when a risk score is high
enough to merit a warning. These can be misleading when applied to rare outcomes, as in
the problem we focus on. In our case, if we predicted no neonatal mortality, that model
would be right 99% of the time, yet it would be useless, as it wouldn’t allow us to identify
those who could be targeted. We neither find it useful to adopt “threshold-free” approaches
that report accuracy in a way that does not depend on choosing one threshold, such as
ROC-AUC and F-scores do, because they are difficult to give any valuable policy meaning
in our context.

We instead recognize that if one has a resource constraint- only a certain fraction of
cases one can act on- it gives a reason to compute the proportion of deaths captured by
setting the threshold levels of the highest predicted mortality risk. For example, suppose
we imagine that a policymaker can only provide intervention to the 5% (or 10% ) who need
it the most. In this case, the threshold can be set to whatever fraction of high-risk births
they have resources for targeting. An appropriate approach, therefore, can concentrate a
substantial amount of neonatal deaths in small percentages of high-risk individuals.

2.6 Algorithmic Bias

Algorithmic bias18,19,20,21,22 is a well-documented problem with striking implications for
health care and public policy. Therefore, besides concentrating a substantial amount of
neonatal preventable deaths in small percentages of high-risk individuals, our targeting cri-
terion should also be able not to disadvantage the most vulnerable groups.

To check whether our preferred model would not disadvantage the most vulnerable
populations, we checked its performance for four different sub-groups identified using the
demographic variables in our dataset. These sub-groups are newborns from non-white
mothers,low-education mothers, underage mothers, and single mothers. We use the test
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sample as a reference and compare its composition with individuals with the highest pre-
dicted risk of neonatal preventable death for different threshold levels. For that, we construct
confidence intervals based on the Normal approximation for the mortality rate of each group
and check whether these intervals contain their respective mortality rates in the test sample.
We also perform hypothesis tests to verify whether the proportions of preventable deaths
captured by the algorithm (p̂) are statistically equal to the proportion of preventable deaths
in the test sample (p0). The null hypothesis is H0 : p̂ = p0 and the alternative hypothesis,
HA : p̂ ̸= p0.

3 Results

Recall that we calculate our performance metric by setting the highest predicted mortality
risk threshold levels and considering the percentage of neonatal preventable deaths in the
test sample for each threshold level. Figure 1 summarizes the results.

Figure 1: Performance of the different ML methods.
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Our best model in terms of predictive performance is the XGBoost method. With that
algorithm, in our test sample, including the 5% highest risk births, our model captures 85%
of preventable neonatal deaths. The XGBoost is never worse than other competing methods
and thus is selected as our preferred model.

To check whether our preferred model would not disadvantage the most vulnerable pop-
ulations, we checked its performance for the four different sub-groups of newborns from
disadvantaged populations as presented in the Algorithmic Bias subsection.
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In the first analysis, we compared the percentage of disadvantaged individuals selected
as high-risk versus the proportion of disadvantaged individuals in our test sample for each
sub-group. Figure 2 reports these results.

The figure demonstrates that our algorithm selects a significantly higher proportion of
individuals from the disadvantaged sub-groups to be high risk for nearly all threshold per-
centages of the highest predicted risk. Only at the highest percentage thresholds, when the
algorithm selects nearly the entire test set, does the proportion of disadvantaged sub-groups
converge to the actual proportion in the test set. This means that the proportion of disad-
vantaged individuals selected by the algorithm is higher than the overall proportion in the
test set.

Figure 2: Proportion of individuals selected by the model.
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Note: In each graph, the horizontal lines depict the proportion of each ELM in the test
set. The data points mark the proportion of actual ELM captured by our model and their
confidence intervals.

One wonders whether selecting these individuals would reflect a distortion in the number
of preventable deaths captured by the algorithm. Figure 3 depicts the analysis of preventable
deaths identified per subgroup. The analysis demonstrates that there are no statistical
differences in the proportion of actual preventable deaths from disadvantaged populations
that would be included in the selected at-risk births. Therefore, our preferred model is not
biased against or favoring underserved groups. On the contrary, using our algorithm would
provide a fair inclusion for each population in terms of actual preventable deaths.
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Figure 3: Proportion of actual ELM captured by the model.
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Note: In each graph, the horizontal lines depict the proportion of each ELM in the test
set. The data points mark the proportion of actual ELM captured by our model and their
confidence intervals.

To better highlight these results, Table 3 presents the outcomes of the hypothesis tests at
a 95% confidence level. The null hypothesis is not rejected for all thresholds and sub-groups
depicted in the table. It corroborates that using our algorithm would provide a fair inclusion
for each population in terms of actual preventable deaths.

Taken together, these results show that our algorithm selects a higher proportion of
individuals from the less-advantaged populations as high-risk births to provide a statistically
equal proportion of births with preventable deaths for both disadvantaged and privileged
sub-groups.

4 Discussion

Our research puts forward a new analytic approach that integrates large administrative
datasets and pairs them with ML models to enable the identification, with a high degree
of accuracy, of births with the highest risk of preventable deaths. Furthermore, the ap-
proach properly selects a statistically equal proportion of births with preventable deaths for
disadvantaged and privileged populations, muffling concerns of algorithmic bias.

We can conceive our approach as a calculator that produces a risk score for each birth.
These scores can aid teams of medical professionals to more precisely direct resources to
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those who have the highest risk of preventable death. As we discussed in the Introduction,
doctors and healthcare professionals are often overwhelmed by the number of patients they
have to take care of, and this system can be useful to aid them when making decisions about
allocating scarce resources.

Our approach is not a replacement for health care professionals, who have subject matter
expertise that should not be ignored. Instead, we are offering one additional tool for them.
This tool can be particularly useful in a situation such as that in the Brazilian public health
systems SUS, in which healthcare teams are responsible for a large number of patients.

Our recommendations are related to a large body of literature in medicine and public
health that develops risk scores for individuals to identify those at risk of some event. These
scores have been applied to a variety of outcomes35,36, and our results suggest the possible
usefulness of such scores for the identification of neonates with a high risk of preventable
deaths. In addition, we also address a common concern: algorithmic biases18,19,20,21,22. Our
approach is not biased in favor of more privileged groups. Instead, it classifies a higher
proportion of individuals from less privileged populations as high-risk births to reach a
statistically equal proportion of preventable deaths from more and less privileged groups,
alleviating concerns of negative bias in ML algorithms.

It is common to use poverty status as a proxy for at-risk births37. Our findings should
not be interpreted as recommending against this practice. On the contrary, we implicitly
include poverty in our analysis by considering several risk factors that correlate with it.

Our study presumes that healthcare providers can make the right intervention to save
at-risk newborns. That is the reason behind ranking the risk of “preventable deaths.” Of
course, for this to become true, it depends on the actual capacity of the policymaker or
healthcare provider to intervene in preventable death cases correctly.

5 Conclusion

Our approach can guide Brazilian policymakers in reducing neonatal mortality rates and
health to intervene in preventable death cases correctly and unbiasedly. The methods and
metrics developed in this paper have broader applicability and are flexible enough to apply to
several scenarios in other developing countries. For example, some countries with incomplete
vital registration systems could use surveys like the Health and Demographic Surveys (DHS)
instead of administrative data. The risk factors inclusion may also vary across countries,
given data availability and political and public health considerations.
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A List of included features

Table 1: Features information: administrative database, type, and description.
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B Feature importance

Figure 4: XGBoost feature importance.
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C Predictive performance

Table 2: Predictive performance for preventable neonatal mortality on the test set for each
machine learning algorithm.
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D Hypothesis tests

Table 3: Tests for proportions at a confidence level of 95%: comparing the proportion of
preventable deaths captured by the algorithm and in the test sample.
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