1 Urinary Astrocyte-derived Extracellular Vesicles: A Non-invasive Tool for Capturing

2 Human In Vivo Molecular "Movies" of Brain

- 3
- 4 Xin-hui Xie¹⁺^{*}; Mian-mian Chen¹[†]; Shu-xian Xu¹; Jun-hua Mei^{1,3}; Qing Yang³; Chao Wang¹;
- 5 Zhongchun Liu^{1,2}*
- 6
- 7 Affiliations:
- 8 1. Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR
- 9 China.
- 10 2. Taikang center for life and medical sciences, Wuhan University, Wuhan, PR China.
- 11 3. Department of Neurology, Wuhan First Hospital, Wuhan, Hubei, PR China.
- 12
- 13
- 14 *†*These authors have contributed equally to this work.
- 15
- 16 *Corresponding author:
- 17 Xin-hui Xie.
- 18 Address: 1) Department of Psychiatry, Renmin Hospital of Wuhan University, No. 99 Jiefang
- 19 Road, Wuchang District, Wuhan, Hubei, PR China. ZIP: 430060. Telephone:
- 20 **86-8804191181399**.
- 21 E-mail: xxh.med@gmail.com; xin-hui.xie@live.com
- 22

23 Zhongchun Liu.

24	Address: 1)	Department	of Psychiatry,	Renmin	Hospital of	Wuhan	University, No.	99 Jiefang
----	-------------	------------	----------------	--------	-------------	-------	-----------------	------------

25 Road, Wuchang District, Wuhan, Hubei, PR China. ZIP: 430060. Telephone:

- 26 86-8804191181399. 2) Taikang center for life and medical sciences, Wuhan University,
- 27 Wuhan, PR China. ZIP: 430071.
- 28 E-mail: zcliu6@whu.edu.cn
- 29
- 30
- 31

32 Author Contributions.

Xin-hui Xie: Conceptualization, Methodology, Formal analysis, Investigation, Writing Original Draft, Writing - Review & Editing, Visualization, Supervision. Mian-mian Chen:
Investigation, Methodology, Writing - Original Draft. Shu-xian Xu: Methodology,
Investigation, Writing - Original Draft. Jun-hua Mei: Investigation, Writing - Original Draft.
Qing Yang: Investigation, Writing - Original Draft. Chao Wang: Methodology, Writing Review & Editing. Zhongchun Liu: Funding Acquisition, Project Administration,
Supervision.

40

41 **Conflict of Interest Statement**

42 The authors declare they have no conflict of interest.

43

44 Acknowledgement

45	This work was supported by grant from the National Natural Science Foundation of China
46	(grant number: U21A20364). This work has not received funding/assistance from any
47	commercial organizations. The funding source had no roles in the design of this study and
48	will not have any roles during the execution, analyses, interpretation of the data, or decision
49	to submit results.
50	
51	
52	Number of words in abstract: 245

53 Number of words in main text: 4109

54

55 Abstract

56	The identification of particularly individual-level biomarkers, for certain central nervous
57	system (CNS) diseases remains challenging. A recent approach involving the enrichment of
58	brain-derived extracellular vesicles (BDEVs) from peripheral blood has emerged as a
59	promising method to obtain direct in vivo CNS data, bypassing the blood-brain barrier.
60	However, for rapidly evolving CNS diseases (e.g., weeks or even days), the Nyquist-Shannon
61	sampling theorem dictates the need for a high-frequency sampling rate. Obviously, daily
62	collection of blood or cerebrospinal fluid from human subjects is impractical. Thus, we
63	innovated a novel method to isolate astrocyte-derived EVs from urine (uADEVs). It involves
64	three main steps: 1) concentrating urine samples, 2) isolating total EVs from urine (uTEVs)
65	using ultracentrifugation, and 3) using an anti-glutamate/aspartate transporter (GLAST)
66	antibody to isolate GLAST ⁺ EVs from uTEVs. Subsequently, we confirmed the identity of
67	these GLAST ⁺ EVs as uADEVs using transmission electron microscopy, nanoparticle tracking
68	analysis, western blotting, and the measurement of astrocyte-related neurotrophins.
69	Furthermore, we applied the uADEVs protocol to depict the detailed trajectory of the
70	N-methyl-d-aspartic acid receptor (NMDAR) subunit zeta-1 (GluN1) in an anti-NMDAR
71	encephalitis patient, demonstrated the potential of this method for capturing intricate
72	trajectories of CNS-specific molecular in vivo signals at the individual level. This
73	non-invasive approach enables frequent sampling, up to daily or even half-daily, analogous to
74	capturing molecular "movies" of the brain, coupled with appropriate signal processing
75	algorithms, holds promise for identifying novel biomarkers or illuminating the etiology of
76	rapidly evolving CNS diseases by tracking the precise trajectories of target molecules.

77

- 78
- 79 Keywords: urinary astrocyte-derived extracellular vesicles; human in vivo; non-invasive;
- 80 central nervous system; high-frequent sampling; anti-N-methyl-d-aspartic acid receptor
- 81 encephalitis; biomarker; wavelet analysis

82 Introduction

83 Research on central nervous system (CNS) diseases, especially mental disorders like 84 schizophrenia, depression, and bipolar disorder, has been gradual, and reliable biological markers remain unidentified^{1,2}. Several key factors may contribute to this dilemma. 85 86 To begin, the CNS boasts distinctive attributes, notably the presence of the blood-brain 87 barrier (BBB), which poses a direct hurdle to identifying CNS abnormalities³. This challenge 88 is compounded by the BBB's high selectivity, leading to marked inconsistencies in the expression levels of molecules within the CNS compared to the periphery⁴⁻⁷. Such 89 incongruities substantially complicate research endeavors. Additionally, the dearth of 90 91 expedient and non-invasive sampling techniques is notable. The most direct sampling method 92 for the CNS is brain biopsy, but this is clearly very difficult to perform. Another option, 93 cerebrospinal fluid (CSF) collection via lumbar puncture, is neither unsuitable for routine 94 application. While peripheral blood is the most commonly employed biological sample, its representation of the CNS is limited^{4,8,9}. 95

96 Furthermore, a paucity in sampling frequency is evident. Although reliable biomarkers 97 have been identified for specific neurological and psychiatric disorders like Alzheimer's disease (AD) and Parkinson's disease (PD)— $A\beta^{10,11}$, tau^{12,13}, and α -synuclein¹⁴. These 98 99 biomarkers greatly expedited research in these domains, but a tacit assumption should not be 100 ignored: these disorders exhibit protracted disease courses. Adopting a wave-based 101 perspective, these biomarkers' trajectories resemble long waves, with wavelengths spanning years or decades. Therefore, according to the Nyquist-Shannon sampling theorem¹⁵, detecting 102 103 these extended biomarker waves necessitates lower frequencies, rendering half-yearly or

104	yearly sampling adequate. However, for disorders characterized by rapid fluctuations—such
105	as depression, bipolar disorder, encephalitis, and others-exhibiting weekly, daily, or even
106	hourly changes, routine follow-up intervals (monthly, half-yearly, or yearly) fall short of
107	capturing the molecular trajectories which aligned with symptom progression. And since daily
108	sampling of peripheral blood or CSF is impractical, there is a need for a new methodological
109	approach that can quickly and non-invasively explore the CNS and facilitate research on these
110	rapidly changing neurological and psychiatric diseases. We focused on extracellular vesicles
111	(EVs) as a potential tool for this purpose.

EVs are found in various bodily fluids, including blood, urine, tears, and saliva¹⁶, and 112113 have emerged as promising tools for identifying disease biomarkers, serving as liquid biopsies¹⁷. Notably, EVs can cross the BBB bidirectionally¹⁸, making brain-derived EVs 114 (BDEVs) a potential "window to the brain"¹⁹. In a large-sample trial, the concentrations of 115 116 T-tau, P-T181-Tau, and $A\beta_{1,42}$ in serum neuro-derived EVs (NDEVs) were linearly associated with their concentrations in CSF with correlation coefficients close to 0.9^{20} . Furthermore, 117 these NDEVs were able to predict the onset of AD^{21} . Similarly, in the case of PD, α -synuclein, 118 a biomarker of PD, was found to be elevated in NDEVs in PD patients²²⁻²⁶, and the area under 119 the receiver operating characteristic curve (ROC) exceeded 0.9^{27} . Additionally, animal studies 120 121 also shown a high level of consistency between plasma astrocyte-derived EVs (ADEVs) and brain homogenous (BH)²⁸. In short, the plasma/serum BDEVs could be good proxies of 122 CNS^{29,30}. However, the collection of peripheral blood is also an invasive procedure that is 123 124 impractical for daily sampling, limiting the sampling rate for obtaining *in vivo* signals from 125the CNS using plasma/serum BDEVs. Additionally, the presence of heteroproteins in

126 peripheral blood makes it challenging and inconvenient to isolate EVs from specific cell

127	sources.

128	To bypass the disadvantages of isolating BDEVs from peripheral blood, we focused on
129	another type of body fluid—urine, which also contains a large amount of EVs ³¹ . Urine is an
130	optimal body fluid for identifying diagnostic biomarkers due to its capacity for large-scale
131	and high-frequency collection, as well as its non-invasive nature. Urinary EVs (uEVs) have
132	been implicated in the pathophysiological mechanisms of urogenital diseases and hold
133	potential as molecular biomarkers for these conditions ^{32–35} . Initially, uEVs were thought to
134	originate primarily from cells in the urogenital tract, including the kidneys, bladder, and sex
135	glands ³⁶ . However, given that primary urine results from plasma filtration in the glomeruli,
136	EVs in blood might enter and be detected in urine ^{37,38} . For example, the labeled EVs were
137	injected intravenously into rats, and later found in their urine ³⁹ . Wang et al. identify neuronal
138	marker protein in urinary total EVs (uTEVs) ³⁵ , and Fraser et al. reported elevated levels of
139	ser(P)-1292 LRRK2, a PD-associated protein, in uTEVs of PD patients, correlating with
140	cognitive and daily function impairments ³² . It suggests a possibility that non-urogenital EVs,
141	including BDEVs, can enter urine and be isolated. As EVs are considered to reflect the state
142	of their origin cells, and urine is a readily accessible and non-invasive biofluid, the
143	successful isolation of specific EVs from urine could therefore serve as a valuable tool for
144	diagnostic and physiological research.

Thus, here we developed a protocol that enables the enrichment of the glutamate/aspartate transporter (GLAST)⁺EVs which is believed to be ADEVs⁴⁰⁻⁴⁷ from urine, namely urinary ADEVs (uADEVs). We believe that uADEVs could serve as a

- valuable tool for non-invasive, high-frequency daily sampling of human *in vivo* CNS signals,
- 149 enabling the collection of large-scale longitudinal data on the dynamic behavior of these

cells.

151 **2. Materials and Methods**

152	This study was conducted at Renmin Hospital of Wuhan University (Mental Health
153	Center of Hubei Province, Wuhan, Hubei, China) and Wuhan First Hospital in compliance
154	with the Declaration of Helsinki (revised edition, 2013) ⁴⁸ . The study protocol was approved
155	by both the Human Ethics Committee of Renmin Hospital of Wuhan University and Wuhan
156	First Hospital. All participants provided informed consent and were free to withdraw from the
157	trial at any time for any reason.
158	

159 **2.1 Isolation protocol of uADEVs**

Generally, in this protocol, we first concentrated the urine samples and isolated the uTEVs using ultracentrifugation (UC), followed by the isolation of uADEVs using biotin-anti-GLAST-antibody, similar to the isolation of ADEVs from plasma or serum^{40-47,49}. The flow chart of this protocol is depicted in **Figure 1(a)**.

164

165 2.1.1 Isolation of uTEV

Nine healthy volunteers, comprising six males and three females, participated in the study. The median age of the participants was 25.0 years with an interquartile range (IQR) of 4.0 years. A total of 300–600 ml of fresh morning urine of each participant was collected and promptly delivered to the laboratory. The samples were processed within two hours of collection. The urine sample was centrifuged at room temperature (RT) for 30 minutes at 2,000 g, and the supernatant was collected. Subsequently, sodium chloride (NaCl) was added to a concentration of 0.58 M and incubated at RT for 2 hours to eliminate urinary

173	mucoproteins, including Tamm-Horsfall protein ^{50,51} . The mixture was then centrifuged again
174	at RT for 30 minutes at 8,000 g, and the supernatant was collected. The sample was filtered
175	using a 0.45 μm filter membrane (Millipore, MA, USA, Catalog# HVLP07625), and then
176	loaded into a concentration device (Amicon® stirred cell, Millipore, MA, USA, Catalog#
177	UFSC40001) and ultrafiltered to a volume of 3–4 ml using a 10 kDa NMW ultrafiltration (UF)
178	disc membrane (Millipore, MA, USA, Catalog# PLGC07610). Next, 200 ml of PBS was
179	added, and the sample was ultrafiltered to a volume of approximately 3-4 ml again, resulting
180	in a concentrated component. The concentrated component was transferred to an
181	ultracentrifuge tube and centrifuged at 150,000 g at 4°C for 150 minutes (SW60Ti,
182	OptimaXE-100, Beckman Coulter, Fullerton, CA). The supernatant was discarded, and the
183	precipitation was resuspended in 350 µl of Dulbecco's phosphate-buffered saline (DPBS,
184	Beyotime, Catalog# C0221D) containing protease and phosphatase inhibitors (PPICs,
185	Beyotime, Catalog# P1046). This resulted in a uTEV sample.

186

187 2.1.2 Isolation of uADEVs

Each uTEV sample was mixed with 50 μ l of 3% bovine serum albumin (BSA, Beyotime, Catalog# ST023-50g) and incubated for 1 hour at RT with 4 μ l of anti-GLAST (ACSA-1)-biotin antibody (Miltenyi Biotec, Catalog# 130-118-984). Subsequently, 10 μ l of streptavidin-agarose resin (Thermo Fisher Scientific, Catalog# 53116) and 40 μ l of 3% BSA were added, followed by incubation for 60 minutes at RT. After centrifugation at 800 g for 10 minutes at 4°C and removal of the supernatant, each sample was resuspended in 100 μ l of cold 0.1M glycine-HCl (pH = 3.0) by gently mixing for 30 seconds. The suspension was then

195	centrifuged at 4,000 g for 10 minutes at 4°C, and the supernatant was collected. Several drops
196	of 1M Tris-HCl (pH = 8.0, Beyotime, Catalog# ST780-500ml) was added to adjust the pH to
197	7.0. This resulted in a uGLAST ⁺ EV sample. For western blotting and protein measurements,
198	mammalian protein extraction reagent (M-PER, Thermo Fisher Scientific, Catalog# 78503)
199	with PPICs was added to each uADEV sample or uTEV sample.
200	
201	2.1.3 Validation of uADEVs
202	2.1.3.1 Transmission electron microscopy (TEM)
203	Similar to our previous ADEV studies ^{47,52} , the TEM was used to get the image of EVs.
204	Twenty μl of the EV sample was added dropwise to 200-mesh grids and incubated at RT for
205	10 minutes, then the grids were negatively stained with 2% phosphotungstic acid for 3
206	minutes, and the remaining liquid was removed by filter paper. Then observed with a HT7800
207	transmission electron microscope (Hitachi High-Tech Corporation, Tokyo, Japan).
208	
209	2.1.3.2 Nanoparticle tracking analysis (NTA)
210	The diameter (nm) and concentration (particles/ml) of EV samples were determined
211	using the ZetaView PMX 110 (Particle Metrix, Meerbusch, Germany) with ZetaView 8.04.02

212 nanoparticle tracking software (Particle Metrix, Meerbusch, Germany).

213

214 2.1.3.3 Western blotting

Western blot was conducted to detect three EV markers with primary rabbit anti Cluster of differentiation (CD)63 antibody (Abcam, Catalog# ab134045), rabbit anti CD9 antibody

217	(Abcam, Catalog# ab125011), and mouse anti Alix antibody (Proteintech, Catalog#
218	67715-1-Ig), an astrocyte marker with rabbit anti-glial fibrillary acidic protein (GFAP)
219	antibody (Abcam, Catalog# ab68428), and two kidney markers $Na^+-K^+-Cl^-$ cotransporter
220	(NKCC) 2 (Abcam, Catalog# ab171747), sodium-chloride cotransporter (NCC) (Abcam,
221	Catalog# ab95302).

222

223 2.1.3.4 Protein measurements

Astrocyte related neurotrophins (brain-derived neurotrophic factor (BDNF), epidermal growth factor (EGF), fibroblast growth factor (FGF)-2, glial cell-derived neurotrophic factor (GDNF), GFAP, nerve growth factor beta (NGF- β), S100 calcium binding protein B (S100B)) were measured using the Human ProcartaPlexTM Simplex kit (Thermo Fisher Scientific, Catalog# PPX-07).

229

230 2.1.4 Statistical methods

231 For comparisons between uTEVs and uADEVs, the concentrations of neurotrophins 232 (pg/ml) were normalized to a reference of 10E+10 particles/ml, yielding values in pg/per 10E+10 particles, adhering to MISEV2018¹⁶. The fold change of the uADEVs/uTEVs ratios 233 234 were calculated for both particle and neurotrophin concentrations. Welch's two sample *t*-tests 235 were employed to test the differences of each parameter between the uADEVs and uTEVs samples. A two-sided *p*-value <0.05 was considered statistically significant. All statistical 236 237 analyses were performed using R version 4.2.0 (R Project for Statistical Computing) within 238 Rstudio version 1.4.1106 (Rstudio).

239

240 2.2 Case: the potential ability of uADEVs on depicting the trajectories of target 241 molecules in CNS.

242	To assess the potential of uADEVs in tracking the trajectories of <i>in vivo</i> target molecules
243	in the CNS, we analyzed CSF, uADEV, and blood samples from a middle-aged female patient
244	(Patient A) with anti-N-methyl-d-aspartic acid receptor (NMDAR) encephalitis probably
245	caused by teratoma. N-methyl-d-aspartic acid receptor (NMDAR) subunit zeta-1 (GluN1), the
246	pathogenic molecule in anti-NMDAR encephalitis, was measured in CSF and uADEV
247	samples using the enzyme-linked immunosorbent assay (ELISA) (CUSABIO, Catalog#
248	CSB-EL009911HU). Given the patient's comatose state upon admission, informed consent
249	was obtained from their legal guardian first, and Patient A also provided her own informed
250	consent upon recovery. The wavelet analysis was performed using the WaveletComp
251	package ⁵³ in R version 4.2.0 (R Project for Statistical Computing) within Rstudio version
252	1.4.1106 (Rstudio).

253 **3. Results**

254 **3.1 Validation of uTEV and uADEVs**

255	Figure 1 (a-h) shows the isolation schematic diagram of uADEVs and their validation
256	using NTA, TEM, and western blotting. NTA confirmed that the EV diameters were within
257	the expected size range for small EVs. TEM images revealed characteristic EV-like structures
258	in both uTEV and uADEV samples. Western blotting showed positive expression of three \ensuremath{EV}
259	markers (CD63, CD9, and Alix) in both uTEV and uADEV samples. Additionally, uADEVs
260	exhibited positive expression of an astrocyte marker (GFAP). Notably, two kidney markers,
261	NCC2 and NKCC, were detected in the uTEV sample but not in the uADEVs samples. See
262	Supplementary Material 1 (sFigure 1) for the original western blotting images.

263

264 **3.2 Comparisons between uTEVs and uADEVs**

265 Particle concentrations in uADEVs (5.3 + 1.6E10/ml) were significantly lower compared 266 to uTEVs (1.9 \pm 0.78E12/ml). Given the sample volumes of uADEVs (216 μ l) and uTEVs 267 (900 μ l), this indicates that uADEVs constitute about 0.81% of uTEVs. In contrast, 268 neurotrophin levels in uADEVs were notably higher compared to uTEVs. To quantify the 269 enhancement in astrocytic signal clarity within the CNS, we assessed the signal-to-noise ratio 270 (SNR) by calculating the fold increase in neurotrophin concentrations. This analysis revealed 271 a range of fold changes between 23.1 and 88.1 across seven neurotrophins, as detailed in 272 Figure 1(i) and Table 1. 273

274

Variable	In uADEV (pg) ^a	In uTEV (pg) ^a	Increased Fold Change		- n
variable	$Mean \pm SD$	$Mean \pm SD$	$Mean \pm SD$	Median [IQR]	- <i>p</i>
BDNF	0.625 ± 0.246	0.010 ± 0.005	88.1 ± 69.3	61.0 [33.8; 112.1]	< 0.001
EGF	38.153 ± 9.364	2.761 ± 2.126	23.1 ± 18.1	17.6 [8.3; 32.6]	< 0.001
FGF-2	3.747 ± 1.991	0.162 ± 0.124	28.8 ± 16.5	29.9 [19.9; 30.6]	0.001
GDNF	23.355 ± 4.966	0.897 ± 0.685	32.8 ± 11.4	31.0 [28.8; 44.0]	< 0.001
GFAP	7.826 ± 6.890	0.285 ± 0.203	29.9 ± 17.3	29.0 [15.0; 33.6]	0.011
NGF-β	0.985 ± 0.879	0.041 ± 0.028	40.4 ± 47.5	13.0 [9.6; 80.7]	0.012
S100β	0.765 ± 0.219	0.029 ± 0.021	43.7 ± 34.6	35.4 [17.8; 59.9]	< 0.001

Table 1. Fold changes of uADEVs to uTEVs.

276 Note: a: Normalized to every 10^{10} particles.

277

278 **3.2** Case: the longitudinal trajectory of proteins in uADEVs in an encephalitis patient

Figure 2 demonstrated the comprehensive dynamic picture of Patient A during

280 hospitalization.

281

282 **3.3 Data availability**

283 All data were presented in the **Supplementary Material 2: Individual Participant**

284 **Data**.

285

286

287 4. Discussion

288	In this study, we established a method to extract ADEVs from urine, facilitating the
289	tracing of <i>in vivo</i> specific molecular signal in the CNS. Then, as a demonstration, we tracked
290	the trajectory of NMDAR subunit GluN1 in uADEVs from a patient with anti-NMDAR
291	encephalitis and employed wavelet analysis to identify significant components in the
292	trajectory. This uADEVs protocol may offer a novel, non-invasive method for daily CNS
293	monitoring, providing a valuable tool for biomarker discovery and etiological studies of
294	rapidly evolving CNS diseases.

In order to verify the isolation efficiency of uADEVs, we compared the neurotrophin concentrations normalized to particle numbers in uTEV and uADEV samples. Mean fold changes ranged from 23.1 (EGF) to 88.1 (BDNF) (**Figure 1(i)**). This enrichment can be interpreted from the signal-theoretic perspective as an improvement in the SNR of astrocyte-derived signals in uTEVs.

To illustrate the concept of signal amplification, we consider a scenario where "a" 300 301 represents the total number of EVs extracted from a urine sample, and "b" represents the 302 number of EVs are derived from astrocytes (uADEVs). The original SNR of the signal from astrocytes in uTEVs is $\frac{b}{a}$, and the SNR of the same signal in uADEVs is $\frac{b}{b} = 1$. Therefore, 303 the amplification factor is $\frac{1}{\frac{b}{b}} = \frac{a}{b}$, which is approximately 123 based on particle number ratio 304 305 in this present study. This indicates that the SNR of a signal from astrocytes in uGLAST⁺EVs 306 is 123 times higher than in uTEVs, representing an upper bound for the increase in SNR. The 307 increase in SNR was also assessed using astrocyte-related molecules, such as neurotrophins. 308 The fold increase in the ratio of their concentration to particle number in uADEV samples

compared to uTEV samples provides an estimate of the lower bound of SNR enhancement.

310 The results revealed a maximum 88-fold increase (BDNF), which is slightly lower than the 311 estimate based on particle count. Our approach, therefore, leads to an approximately 312 88-123-fold increase in SNR for signals from astrocytes via uADEVs. Nevertheless, these are 313 preliminary estimates, and further studies are warranted to refine these calculations. 314 Another key issue of this protocol is to estimate potential contamination mainly from 315 urogenital tract. Hence, we selected two widely used markers of uTEVs (NKCC2 and NCC) in urinary EV studies^{31,54}. Western blotting results showed that these two markers were highly 316 317 expressed in uTEV samples as expected, but were barely detected in uADEV samples (Figure 318

309

319 evidence of neurotrophins, we established that the majority of these uGLAST⁺EVs were 320 ADEVs.

1(h)). These results indicate minimal kidney-derived contamination in uADEVs. Along with

321 Theoretically, uTEVs may also contain EVs derived from other CNS cells, such as 322 neurons and various types of glial cells, including microglia and oligodendrocytes, which 323 could be isolated using similar methods. For other types of BDEVs, such as NDEVs, L1 cell adhesion molecule (L1CAM) is commonly used as a marker⁵⁵⁻⁵⁷. However, L1CAM 324 expression is also detected in the kidney⁵⁸, potentially compromising the purity of urinary 325 326 L1CAM⁺EVs that are truly derived from CNS. Given that GLAST is believed to be 327 predominantly expressed in astrocytes, we selected urinary GLAST⁺EV/ADEV as an initial 328 proof-of-concept for isolating BDEVs from urine. We are developing appropriate 329 methodologies to exclude the interference of EVs from the urological system, enabling the 330 enrichment of other types of BDEVs from urine.

331	UC has been extensively used for uTEV enrichment for decades, with a common
332	protocol involving UC at 100,000 g for 70 minutes, repeated twice, to isolate uTEVs ⁵⁹⁻⁶⁵ .
333	Investigations indicated that extended centrifugation, potentially up to four hours, may
334	enhance EV yields ⁶⁶ . In our study, given the low proportion of uADEVs in uTEVs, our
335	primary objective was to increase the yield of uTEVs rather than focusing on purity at the
336	first stage. Therefore, we conducted a pilot study to refine UC parameters for optimal uTEVs
337	yield, detailed in Supplementary Material 3 (The Determination of the Duration of
338	Ultracentrifugation), and the TEM images (Figure 1(c and d)) suggested that the applied
339	UC parameters (150,000 g for 150 minutes) did not significantly introduce impurities.
340	We also presented longitudinal data from a patient with anti-NMDAR encephalitis to
341	showcase the potential of uADEVs in revealing in vivo molecular trajectories and
342	demonstrate the application of signal processing algorithms for enhanced analysis (Figure 2).
343	Anti-NMDAR encephalitis is a well-defined autoimmune disease characterized by
344	autoantibodies targeting the NMDA receptor (primarily the GluN1 subunit) in the CNS ^{67,68} .
345	The first-line immunosuppressive therapy typically comprising steroids, intravenous
346	immunoglobulin, and plasma exchange, followed by second-line therapies including
347	rituximab or methotrexate/cyclophosphamide, alone or in combination ^{69,70} . In this
348	longitudinal data, we observed dynamic changes in GluN1 within uADEVs. To analyze these
349	dynamic changes, we applied wavelet analysis, a widely used algorithm that decomposes
350	complex signals into simpler components ⁷¹ . This approach enables us to identify and
351	characterize the underlying patterns in GluN1 fluctuations. We discovered that it consists of
352	two main significant components, with the shorter periodic component (approximately 6-8

353	days) shown in Figure 2(h) and the longer one (approximately 32 days) in Figure 2(i). Based
354	on prior knowledge, here we made some guesses. Since some EVs are formed through cell
355	membrane invagination, and inevitably carry extracellular molecules ⁷²⁻⁷⁴ . Additionally, the
356	shape and time course of this component resemble the trajectory of GluN1 in CSF (Figure
357	2(e)), we speculate that the longer-period component may reflect the changes in extracellular
358	GluN1 levels. The shape and timing of the shorter period component appeared to correlate
359	with the treatment. Following the combination of methotrexate and rituximab, the trajectory
360	of the short-period component increased. Considering the plasma membrane origin of EV
361	membranes and previous reports of NMDAR density reduction in anti-NMDAR encephalitis
362	patients and its restoration upon effective treatment ⁷⁵ , we hypothesize that this short-period
363	signal may reflected the dynamic response of NMDAR density on astrocyte plasma
364	membranes to treatment. However, it is important to note that definitive conclusions cannot
365	be drawn from a single case in this study, the aforementioned conjectures are more suitable as
366	new hypotheses for further investigation. Our study suggests that by increasing the number
367	and density of sampling points, sophisticated powerful signal processing algorithms like
368	wavelet analysis could be applied to extract meaningful information from these dynamic CNS
369	in vivo signals, enabling the formulation of more specific hypotheses for targeted
370	experimental validation.

371

372 Significance

The temporal depth provided by uADEVs may hold significant promise for the discovery of novel biomarkers for CNS diseases, particularly those that progress rapidly. One

375 prerequisite for a molecule (or a combination of molecules) to become a reliable diagnostic 376 marker, is that it must be "individual-level" identifiable. Nevertheless, for rapidly evolving 377 CNS diseases, conventional follow-up frequencies (monthly, semiannually, or annually) may 378 not be sufficient to capture the dynamic molecular changes associated with disease progression, according to the Nyquist-Shannon sampling theorem¹⁵ (Figure 3(a)). However, 379 380 our uADEVs protocol could offer a non-invasive solution with the potential for sampling up 381 to daily. With advancements in detection technology and reduced urine volume requirements, 382 hourly sampling may become feasible, enabling the capture of CNS dynamics at an 383 unprecedented level. In short, uADEVs allow us to capture in vivo molecular "movies" of the 384 CNS at the individual level, rather than capturing static "snapshots". This further implies that, 385 diagnosing a disease with distinct episodes may require multiple longitudinal tests, even 386 including artificial perturbations (analogous to an oral glucose tolerance test). This is because 387 a single-time biomarker test may not be sufficient to capture the dynamic nature of such 388 diseases.

Even if no new biomarkers are discovered, uADEVs will facilitate the falsification of potential hypotheses. As illustrated in **Figure 3(b)**, if the trajectory of a candidate molecule aligns with, but lags behind, the symptom trajectory, it can be inferred that it is not the cause but rather a consequence or a confounding factor. Conversely, only candidate molecules with trajectories preceding the symptom trajectory are likely to be causal. Naturally, things become somewhat simpler when we can precisely trace the molecular trajectories at the individual-level.

396 Identifying reliable biomarkers for rapidly changing CNS disorders, such as depression,

397	is challenging, potentially due to their high heterogeneity, and the fluctuating molecular
398	signals themselves might also contribute to this heterogeneity. As illustrated in Figure 3(c),
399	even assuming all patients with a specific disease share identical molecular trajectories (this
400	assumption is inaccurate but serves to demonstrate the concept), heterogeneity can also arise
401	from different sampling points along the trajectory. This time-induced heterogeneity could be
402	a significant factor. However, with adequate sampling frequency, we can capture individual
403	molecular trajectories (Figure 3(d)). Various post-hoc algorithms, such as realigning
404	trajectories based on their peaks, can then be employed to reduce time-induced heterogeneity
405	(Figure 3(e)). While this is a simplified model, and heterogeneity manifests in various forms
406	with greater complexity in real-world data, we believe that high-frequency sampling provides
407	more opportunities for data processing using multiple algorithms, enabling deeper
408	exploration.

409 This methodology may introduce a novel experimental paradigm, which we termed the 410 "Time Machine of Sampling" (Figure 3(f)). Studying the recurrence of CNS diseases is often 411 hampered by the limited availability of samples from the period preceding recurrence. These 412 samples are crucial as they may contain the molecular trigger signals for recurrence. 413 Fortunately, uADEVs can be non-invasively collected and directly reflect CNS signals. For 414 CNS diseases with a high recurrence probability, we propose collecting and storing urine 415 samples at a high frequency. When monitoring a patient for recurrence, we can unseal 416 samples collected before the recurrence time point to extract uADEVs for analysis. This may 417 enable the collection of samples with a sufficient sampling rate from the period preceding 418 CNS disease recurrence. Hence, we term this paradigm the "Time Machine of Sampling" as it

419 allows us to go back in time and collect samples before recurrence. This paradigm may

- 420 facilitate the identification of molecular triggers preceding disease recurrence.
- Our study may also enhance therapeutic monitoring. Timely assessment of treatment efficacy is essential for precision medicine. As demonstrated in Patient A, the GluN1 concentrations in uADEVs appear to be responsive to treatment. This suggests that the uADEVs approach could provide more rapid and timely feedback for diseases that demand close therapeutic monitoring. Further research in this area is warranted.
- It is noteworthy that, based on the protocol's principle, it is theoretically possible to isolate not only ADEVs from the CNS but also EVs from other CNS cell types, organs, or tissues from uTEVs, if these cells express specific surface markers. We anticipate that urine samples may hold significant value for disease studies beyond CNS and urological disorders.

430

431 Limitations

432 First, alternative isolation protocols, such as size-exclusion chromatography (SEC), may 433 be suitable for laboratories lacking ultracentrifuges. Additionally, UF may lead to a significant 434 loss of uTEVs. Employing high-capacity ultrafiltration tubes to directly collect uTEVs 435 without UF may potentially enhance the yield of uADEVs. However, due to laboratory constraints, we were unable to attempt this, and further investigation is required by external 436 437 laboratories. Second, while the yield of uTEVs is substantial, the absolute number of 438 uADEVs remains low, limiting multi-omics-based high-throughput assays. To address this 439 challenge, we are endeavoring to develop methodologies for high-throughput studies utilizing 440 minimal amounts of uADEVs. Third, the impact of subjects' disease status, particularly

441	urological diseases, on uADEVs remains unclear. Further research is needed to address this
442	question. Fourth, the mechanism by which ADEVs traverse the glomerular basement
443	membrane into urine remains unknown. Elucidating this mechanism may significantly
444	enhance the utility of uADEVs. Fifth, this study utilized fresh urine samples. The applicability
445	of frozen or concentrated urine samples after thawing remains undetermined. Future studies
446	should investigate the effect of sample storage conditions on uADEVs. After all, compared
447	with unconcentrated urine samples, storing concentrated urine samples could alleviate
448	inventory pressure on biobanks.
449	

450 Conclusions

In this study, we proposed a simple method for isolating urinary ADEVs, enabling non-invasive monitoring of CNS *in vivo* activity with high sampling rates, up to daily or even half-daily. This approach, analogous to capturing molecular "movies" of the brain, coupled with appropriate signal processing algorithms, holds promise for identifying novel biomarkers or illuminating the etiology of rapidly evolving CNS diseases by tracking the precise trajectories of target molecules.

457 **References**

458	1.	Abi-Dargham A, Moeller SJ, Ali F, et al. Candidate biomarkers in psychiatric disorders:
459		state of the field. World Psychiatry. 2023;22(2):236-262. doi:10.1002/wps.21078
460	2.	García-Gutiérrez MS, Navarrete F, Sala F, Gasparyan A, Austrich-Olivares A,
461		Manzanares J. Biomarkers in Psychiatry: Concept, Definition, Types and Relevance to
462		the Clinical Reality. Front Psychiatry. 2020;11:432. doi:10.3389/fpsyt.2020.00432
463	3.	Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function,
464		impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020;17(1):69.
465		doi:10.1186/s12987-020-00230-3
466	4.	Lerche S, Zimmermann M, Wurster I, et al. CSF and Serum Levels of Inflammatory
467		Markers in PD: Sparse Correlation, Sex Differences and Association With
468		Neurodegenerative Biomarkers. Front Neurol. 2022;13:834580.
469		doi:10.3389/fneur.2022.834580
470	5.	Beems T, Simons KS, Van Geel WJA, De Reus HPM, Vos PE, Verbeek MM. Serum- and

- 471 CSF-concentrations of brain specific proteins in hydrocephalus. *Acta Neurochir (Wien)*.
 472 2003;145(1):37-43. doi:10.1007/s00701-002-1019-1
- Wijeyekoon RS, Moore SF, Farrell K, Breen DP, Barker RA, Williams-Gray CH.
 Cerebrospinal Fluid Cytokines and Neurodegeneration-Associated Proteins in
 Parkinson's Disease. *Mov Disord*. 2020;35(6):1062-1066. doi:10.1002/mds.28015
- 476 7. Eidson LN, Kannarkat GT, Barnum CJ, et al. Candidate inflammatory biomarkers display

477	unique relationships with alpha-synuclein and correlate with measures of disease seve	erity
478	in subjects with Parkinson's disease. J Neuroinflammation. 2017;14(1):	164.
479	doi:10.1186/s12974-017-0935-1	

- 480 8. Le Bastard N, Aerts L, Leurs J, Blomme W, De Deyn PP, Engelborghs S. No correlation
- 481 between time-linked plasma and CSF Abeta levels. *Neurochem Int.* 2009;55(8):820-825.
- 482 doi:10.1016/j.neuint.2009.08.006
- 483 9. Gigase FAJ, Smith E, Collins B, et al. The association between inflammatory markers in
- 484 blood and cerebrospinal fluid: a systematic review and meta-analysis. *Mol Psychiatry*.
- 485 2023;28(4):1502-1515. doi:10.1038/s41380-023-01976-6
- 486 10. Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a
 487 biological definition of Alzheimer's disease. *Alzheimer's & Dementia*.
- 488 2018;14(4):535-562. doi:10.1016/j.jalz.2018.02.018
- 489 11. Blessed G, Tomlinson BE, Roth M. The association between quantitative measures of
- dementia and of senile change in the cerebral grey matter of elderly subjects. Br J
- 491 *Psychiatry*. 1968;114(512):797-811. doi:10.1192/bjp.114.512.797
- 492 12. Parnetti L, Gaetani L, Eusebi P, et al. CSF and blood biomarkers for Parkinson's disease.

493 Lancet Neurol. 2019;18(6):573-586. doi:10.1016/S1474-4422(19)30024-9

13. Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of
Alzheimer's disease: a systematic review and meta-analysis. *Lancet Neurol*.
2016;15(7):673-684. doi:10.1016/S1474-4422(16)00070-3

- 497 14. Fayyad M, Salim S, Majbour N, et al. Parkinson's disease biomarkers based on
 498 α-synuclein. *J Neurochem.* 2019;150(5):626-636. doi:10.1111/jnc.14809
- 499 15. Shannon CE. Communication in the Presence of Noise. Proceedings of the IRE.
- 500 1949;37(1):10-21. doi:10.1109/JRPROC.1949.232969
- 501 16. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular
- 502 vesicles 2018 (MISEV2018): a position statement of the International Society for
- 503 Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles.
- 504 2018;7(1):1535750. doi:10.1080/20013078.2018.1535750
- 505 17. Liang Y, Lehrich BM, Zheng S, Lu M. Emerging methods in biomarker identification for
- extracellular vesicle-based liquid biopsy. J Extracell Vesicles. 2021;10(7):e12090.
 doi:10.1002/jev2.12090
- 18. Ramos-Zaldívar HM, Polakovicova I, Salas-Huenuleo E, et al. Extracellular vesicles
 through the blood-brain barrier: a review. *Fluids Barriers CNS*. 2022;19(1):60.
 doi:10.1186/s12987-022-00359-3
- 511 19. Shi M, Sheng L, Stewart T, Zabetian CP, Zhang J. New windows into the brain: Central
- 512 nervous system-derived extracellular vesicles in blood. *Prog Neurobiol*. 2019;175:96-106.
 513 doi:10.1016/j.pneurobio.2019.01.005
- 514 20. Jia L, Qiu Q, Zhang H, et al. Concordance between the assessment of Aβ42, T-tau, and
- 515 P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid.
- 516 *Alzheimer's & Dementia*. 2019;15(8):1071-1080. doi:10.1016/j.jalz.2019.05.002

517	21. Jia L, Zhu M, Kong C, et al. Blood	neuro-ex	osomal synapt	tic proteins	predict Alzheimer's
518	disease at the asymptomatic	stage.	Alzheimers	Dement.	2021;17(1):49-60.
519	doi:10.1002/alz.12166				

- Agliardi C, Meloni M, Guerini FR, et al. Oligomeric α-Syn and SNARE complex
 proteins in peripheral extracellular vesicles of neural origin are biomarkers for
 Parkinson's disease. *Neurobiol Dis.* 2021;148:105185. doi:10.1016/j.nbd.2020.105185
- 523 23. Dutta S, Hornung S, Kruayatidee A, et al. α-Synuclein in blood exosomes
 524 immunoprecipitated using neuronal and oligodendroglial markers distinguishes
 525 Parkinson's disease from multiple system atrophy. *Acta Neuropathol.*526 2021;142(3):495-511. doi:10.1007/s00401-021-02324-0
- 527 24. Si X, Tian J, Chen Y, Yan Y, Pu J, Zhang B. Central Nervous System-Derived Exosomal
 528 Alpha-Synuclein in Serum May Be a Biomarker in Parkinson's Disease. *Neuroscience*.
- 529 2019;413:308-316. doi:10.1016/j.neuroscience.2019.05.015
- 530 25. Stuendl A, Kraus T, Chatterjee M, et al. α-Synuclein in Plasma-Derived Extracellular
 531 Vesicles Is a Potential Biomarker of Parkinson's Disease. *Mov Disord*.
 532 2021;36(11):2508-2518. doi:10.1002/mds.28639
- 533 26. Zou J, Guo Y, Wei L, Yu F, Yu B, Xu A. Long Noncoding RNA POU3F3 and α-Synuclein
- 534 in Plasma L1CAM Exosomes Combined with β -Glucocerebrosidase Activity: Potential
- 535 Predictors of Parkinson's Disease. *Neurotherapeutics*. 2020;17(3):1104-1119.
- 536 doi:10.1007/s13311-020-00842-5

537	27.	Jiang C, Hopfner F, Berg D, et al. Validation of $\alpha \square$ Synuclein in
538		L1CAM Immunocaptured Exosomes as a Biomarker for the Stratification of
539		Parkinsonian Syndromes. Movement Disord. Published online April 7, 2021:mds.28591.
540		doi:10.1002/mds.28591
541	28.	Delgado-Peraza F, Nogueras-Ortiz CJ, Volpert O, et al. Neuronal and Astrocytic
542		Extracellular Vesicle Biomarkers in Blood Reflect Brain Pathology in Mouse Models of
543		Alzheimer's Disease. Cells-basel. 2021;10(5):993. doi:10.3390/cells10050993
544	29.	Cheng L, Vella LJ, Barnham KJ, McLean C, Masters CL, Hill AF. Small RNA
545		fingerprinting of Alzheimer's disease frontal cortex extracellular vesicles and their
546		comparison with peripheral extracellular vesicles. J Extracell Vesicles.
547		2020;9(1):1766822. doi:10.1080/20013078.2020.1766822
548	30.	Huang Y, Driedonks TAP, Cheng L, et al. Brain Tissue-Derived Extracellular Vesicles in
549		Alzheimer's Disease Display Altered Key Protein Levels Including Cell Type-Specific
550		Markers. J Alzheimers Dis. 2022;90(3):1057-1072. doi:10.3233/JAD-220322
551	31.	Merchant ML, Rood IM, Deegens JKJ, Klein JB. Isolation and characterization of urinary
552		extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol.
553		2017;13(12):731-749. doi:10.1038/nrneph.2017.148
554	32.	Fraser KB, Rawlins AB, Clark RG, et al. Ser(P)-1292 LRRK2 in urinary exosomes is

- elevated in idiopathic Parkinson's disease. *Mov Disord*. 2016;31(10):1543-1550.
- 556 doi:10.1002/mds.26686

- 33. Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker
 discovery. *Expert Rev Proteomics*. 2016;13(6):609-626.
- 559 doi:10.1080/14789450.2016.1190651
- 560 34. Svenningsen P, Sabaratnam R, Jensen BL. Urinary extracellular vesicles: Origin, role as
- 561 intercellular messengers and biomarkers; efficient sorting and potential treatment options.
- 562 *Acta Physiol (Oxf)*. 2020;228(1):e13346. doi:10.1111/apha.13346
- 563 35. Wang Z, Hill S, Luther JM, Hachey DL, Schey KL. Proteomic analysis of urine
- 564 exosomes by multidimensional protein identification technology (MudPIT). *Proteomics*.
- 565 2012;12(2):329-338. doi:10.1002/pmic.201100477
- 36. Zhu Q, Cheng L, Deng C, et al. The genetic source tracking of human urinary exosomes.
- 567 Proc Natl Acad Sci U S A. 2021;118(43):e2108876118. doi:10.1073/pnas.2108876118
- 568 37. Kang M, Jordan V, Blenkiron C, Chamley LW. Biodistribution of extracellular vesicles
- following administration into animals: A systematic review. J Extracell Vesicles.
 2021;10(8):e12085. doi:10.1002/jev2.12085
- 571 38. Iannotta D, A A, Kijas AW, Rowan AE, Wolfram J. Entry and exit of extracellular vesicles
- to and from the blood circulation. *Nat Nanotechnol*. Published online December 18, 2023.
 doi:10.1038/s41565-023-01522-z
- S74 39. Cheng Y, Wang X, Yang J, et al. A translational study of urine miRNAs in acute
 myocardial infarction. J Mol Cell Cardiol. 2012;53(5):668-676.
 doi:10.1016/j.yjmcc.2012.08.010

- 40. Chen Y, Xia K, Chen L, Fan D. Increased Interleukin-6 Levels in the Astrocyte-Derived
- 578 Exosomes of Sporadic Amyotrophic Lateral Sclerosis Patients. Front Neurosci-switz.
- 579 2019;13:574. doi:10.3389/fnins.2019.00574
- 580 41. Goetzl EJ, Mustapic M, Kapogiannis D, et al. Cargo proteins of plasma astrocyte-derived
- 581 exosomes in Alzheimer's disease. *The FASEB Journal*. 2016;30(11):3853-3859.
 582 doi:10.1096/fj.201600756R
- 583 42. Goetzl EJ, Schwartz JB, Abner EL, Jicha GA, Kapogiannis D. High complement levels in
- astrocyte-derived exosomes of Alzheimer disease. *Ann Neurol.* 2018;83(3):544-552.
- 585 doi:10.1002/ana.25172
- 43. Goetzl EJ, Srihari VH, Guloksuz S, Ferrara M, Tek C, Heninger GR. Decreased
 mitochondrial electron transport proteins and increased complement mediators in plasma
 neural-derived exosomes of early psychosis. *Transl Psychiatry*. 2020;10(1):361.
- 589 doi:10.1038/s41398-020-01046-3
- 44. Goetzl EJ, Yaffe K, Peltz CB, et al. Traumatic brain injury increases plasma
 astrocyte-derived exosome levels of neurotoxic complement proteins. *FASEB J*.
 2020;34(2):3359-3366. doi:10.1096/fj.201902842R
- 45. Lee EE, Winston-Gray C, Barlow JW, Rissman RA, Jeste DV. Plasma Levels of Neuronand Astrocyte-Derived Exosomal Amyloid Beta1-42, Amyloid Beta1-40, and
 Phosphorylated Tau Levels in Schizophrenia Patients and Non-psychiatric Comparison
 Subjects: Relationships With Cognitive Functioning and Psychopathology. *Front*

597 Psychiatry. 2020;11:532624. doi:10.3389/fpsyt.2020.532624

598	46. Winston CN, Goetzl EJ, Schwartz JB, Elahi FM, Rissman RA. Complement protein
599	levels in plasma astrocyte-derived exosomes are abnormal in conversion from mild
600	cognitive impairment to Alzheimer's disease dementia. Alzheimers Dement (Amst).
601	2019;11:61-66. doi:10.1016/j.dadm.2018.11.002

- 47. Xie XH, Lai WT, Xu SX, et al. Hyper-inflammation of Astrocytes in Patients of Major
- 603 Depressive Disorder: Evidence from Serum Astrocyte-derived Extracellular Vesicles.
- Brain Behav Immun. Published online December 29, 2022:S0889-1591(22)00472-X.
- 605 doi:10.1016/j.bbi.2022.12.014
- 48. World Medical Association. World Medical Association Declaration of Helsinki: ethical
 principles for medical research involving human subjects. *JAMA*.
 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053
- 49. Xu SX, Xie XH, Yao L, et al. Human in vivo evidence of reduced astrocyte activation and
- 610 neuroinflammation in patients with treatment-resistant depression following 611 electroconvulsive **Psychiatry** Clin Neurosci. 2023;77(12):653-664. therapy. 612 doi:10.1111/pcn.13596
- 50. Tamm I, Horsfall FL. A mucoprotein derived from human urine which reacts with
 influenza, mumps, and Newcastle disease viruses. J Exp Med. 1952;95(1):71-97.
 doi:10.1084/jem.95.1.71
- 616 51. Kosanović M, Janković M. Isolation of urinary extracellular vesicles from Tamm-

617	Horsfall protein-depleted	l urine and	their application in	n the development of a
618	lectin-exosome-binding	assay.	Biotechniques.	2014;57(3):143-149.
619	doi:10.2144/000114208			

- 52. Xu SX, Xie XH, Yao L, et al. Human in vivo evidence of reduced astrocyte activation and
 neuroinflammation in patients with treatment-resistant depression following
 electroconvulsive therapy. *Psychiatry Clin Neurosci*. Published online September 7, 2023.
 doi:10.1111/pcn.13596
- 624 53. Roesch A, Schmidbauer H. WaveletComp: computational wavelet analysis. *R package* 625 *version*. 2018;1(1).
- 626 54. Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, et al. Urinary extracellular vesicles: A position
- 627 paper by the Urine Task Force of the International Society for Extracellular Vesicles. J
- 628 Extracell Vesicles. 2021;10(7):e12093. doi:10.1002/jev2.12093
- 55. Eren E, Leoutsakos JM, Troncoso J, Lyketsos CG, Oh ES, Kapogiannis D.
 Neuronal-Derived EV Biomarkers Track Cognitive Decline in Alzheimer's Disease. *Cells*.
 2022;11(3):436. doi:10.3390/cells11030436
- 632 56. Saeedi S, Nagy C, Ibrahim P, et al. Neuron-derived extracellular vesicles enriched from
- big plasma show altered size and miRNA cargo as a function of antidepressant drug response.
- 634 Mol Psychiatr. 2021;26(12):7417-7424. doi:10.1038/s41380-021-01255-2
- 635 57. Goetzl EJ, Srihari VH, Mustapic M, Kapogiannis D, Heninger GR. Abnormal levels of
 636 mitochondrial Ca2+ channel proteins in plasma neuron-derived extracellular vesicles of

637 e	arly schizo	phrenia. FAS	EB J. 2022;3	6(8):e22466.	. doi:10.1096/f	j.202200792RR
-------	-------------	--------------	--------------	--------------	-----------------	---------------

638	58. Allory Y, Audard V, Fontanges P, Ronco P, Debiec H. The L1 cell adhesion molecule is a
639	potential biomarker of human distal nephron injury in acute tubular necrosis. Kidney Int.
640	2008;73(6):751-758. doi:10.1038/sj.ki.5002640
641	59. Zhao Y, Wang Y, Zhao E, et al. PTRF/CAVIN1, regulated by SHC1 through the EGFR
642	pathway, is found in urine exosomes as a potential biomarker of ccRCC. Carcinogenesis.
643	2020;41(3):274-283. doi:10.1093/carcin/bgz147
644	60. Ramirez-Garrastacho M, Berge V, Linē A, Llorente A. Potential of miRNAs in urinary
645	extracellular vesicles for management of active surveillance in prostate cancer patients.
646	Br J Cancer. 2022;126(3):492-501. doi:10.1038/s41416-021-01598-1
647	61. Lapitz A, Arbelaiz A, O'Rourke CJ, et al. Patients with Cholangiocarcinoma Present
648	Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor
649	Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells.
650	2020;9(3):721. doi:10.3390/cells9030721
651	62. Olivares D, Perez-Hernandez J, Perez-Gil D, Chaves FJ, Redon J, Cortes R. Optimization
652	of small RNA library preparation protocol from human urinary exosomes. J Transl Med.

- 653 2020;18(1):132. doi:10.1186/s12967-020-02298-9
- 63. Skotland T, Ekroos K, Kauhanen D, et al. Molecular lipid species in urinary exosomes as
 potential prostate cancer biomarkers. *Eur J Cancer*. 2017;70:122-132.
 doi:10.1016/j.ejca.2016.10.011

657	64. Øverbye A, Skotland T, Koehler CJ, et al. Identification of prostate cancer biomarkers in
658	urinary exosomes. Oncotarget. 2015;6(30):30357-30376. doi:10.18632/oncotarget.4851

- 659 65. Zhu Q, Li Q, Niu X, et al. Extracellular Vesicles Secreted by Human Urine-Derived Stem
- 660 Cells Promote Ischemia Repair in a Mouse Model of Hind-Limb Ischemia. *Cell Physiol*
- 661 *Biochem*. 2018;47(3):1181-1192. doi:10.1159/000490214
- 662 66. Cvjetkovic A, Lötvall J, Lässer C. The influence of rotor type and centrifugation time on
- 663 the yield and purity of extracellular vesicles. J Extracell Vesicles. 2014;3.
- 664 doi:10.3402/jev.v3.23111
- 665 67. Graus F, Titulaer MJ, Balu R, et al. A clinical approach to diagnosis of autoimmune 666 encephalitis. *Lancet Neurol*. 2016;15(4):391-404. doi:10.1016/S1474-4422(15)00401-9
- 667 68. Dalmau J, Armangué T, Planagumà J, et al. An update on anti-NMDA receptor
 668 encephalitis for neurologists and psychiatrists: mechanisms and models. *Lancet Neurol.*669 2019;18(11):1045-1057. doi:10.1016/S1474-4422(19)30244-3
- 670 69. Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R.
 671 Clinical experience and laboratory investigations in patients with anti-NMDAR
 672 encephalitis. *Lancet Neurol.* 2011;10(1):63-74. doi:10.1016/S1474-4422(10)70253-2
- 673 70. Martinez-Hernandez E, Horvath J, Shiloh-Malawsky Y, Sangha N, Martinez-Lage M,
- Dalmau J. Analysis of complement and plasma cells in the brain of patients with
- 675 anti-NMDAR encephalitis. Neurology. 2011;77(6):589-593.
- 676 doi:10.1212/WNL.0b013e318228c136

- 677 71. Torrence C, Compo GP. A Practical Guide to Wavelet Analysis. Bull Amer Meteor Soc.
- 678 1998;79(1):61-78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
- 679 72. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J
- 680 *Cell Biol.* 2013;200(4):373-383. doi:10.1083/jcb.201211138
- 681 73. Grange C, Bussolati B. Extracellular vesicles in kidney disease. Nat Rev Nephrol.
- 682 2022;18(8):499-513. doi:10.1038/s41581-022-00586-9
- 683 74. Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles.
- 684 Semin Cell Dev Biol. 2018;74:66-77. doi:10.1016/j.semcdb.2017.08.022
- 685 75. Galovic M, Al-Diwani A, Vivekananda U, et al. In Vivo N-Methyl-d-Aspartate Receptor
- 686 (NMDAR) Density as Assessed Using Positron Emission Tomography During Recovery
- 687 From NMDAR-Antibody Encephalitis. JAMA Neurol. 2023;80(2):211-213.
- 688 doi:10.1001/jamaneurol.2022.4352
- 689

690

691 Figure legends

692	Figure 1. Isolation and Validations of uADEVs. (a) Schematic diagram of the uADEVs
693	isolation protocol. (b and e) NTA results of uTEVs and uADEVs. (c, d, f, and g) TEM images
694	of uTEVs and uADEVs (scale bars: 0.5 μm and 100 nm). (h) Results of western blotting:
695	Three EV markers (CD63, CD9 and Alix) and an astrocyte marker (GFAP) were present in
696	the ADEVs sample, while two kidney markers (NKCC2 and NCC) were absent. (i)
697	Significantly increased astrocyte-related neurotrophic factors in uADEVs.)
698	
699	Figure 2. Comprehensive dynamic picture of Patient A with anti-NMDAR encephalitis
699 700	Figure 2. Comprehensive dynamic picture of Patient A with anti-NMDAR encephalitis during her hospitalization. The x-axis in all panels marks the days since admission (Day $0 =$
699 700 701	Figure 2. Comprehensive dynamic picture of Patient A with anti-NMDAR encephalitis during her hospitalization. The x-axis in all panels marks the days since admission (Day $0 =$ admission day). Main treatment included an initial phase of four intravenous infusions of
699 700 701 702	Figure 2. Comprehensive dynamic picture of Patient A with anti-NMDAR encephalitis during her hospitalization. The x-axis in all panels marks the days since admission (Day $0 =$ admission day). Main treatment included an initial phase of four intravenous infusions of human γ -globulin (dose 25 g, indicated by 4 vertical dot-dash red lines). Simultaneously,
699700701702703	Figure 2. Comprehensive dynamic picture of Patient A with anti-NMDAR encephalitis during her hospitalization. The x-axis in all panels marks the days since admission (Day $0 =$ admission day). Main treatment included an initial phase of four intravenous infusions of human γ -globulin (dose 25 g, indicated by 4 vertical dot-dash red lines). Simultaneously, glucocorticoid therapy was administered (represented by the green horizontal line above each

705 Additionally, intrathecal methotrexate administration (dose 10 mg, represented by vertical 706 solid yellow lines) and rituximab therapy (dose 100 mg, indicated by vertical long-dash blue 707 lines) were administered. Clinical symptoms were assessed using two scales: (a) the Glasgow 708 Coma Scale (GCS) and (b) the modified Rankin Scale (mRS), showing gradual improvement 709 following treatment. Given the use of the immunotherapy, we measured the (c) percentage of 710 CD19+ cells in the blood, assessed via flow cytometry, dropped to nearly non-existent levels 711 by Day 10. We also monitored NMDAR-antigen (Ag) titres in the CSF. (d) A decrease in 712 NMDAR-Ag titers in the CSF was observed as the treatment progressed. Given that

anti-NMDA encephalitis is characterized by the presence of autoantibodies mainly against the
NMDAR GluN1 subunit, leading to NMDARs damage through internalization, shedding, and
extracellular release, we also measured (e) The concentrations of GluN1 in CSF. As
NMDARs are also present on the surface of astrocytes, we simultaneously measured the (f)
concentrations of GluN1 in uADEVs (pg/per 1E+10 particles). As the trajectory of GluN1 in
uADEVs was also a dynamic signal, composed of various wave components. Therefore, we
conducted wavelet analysis using the Morlet wavelet as mother wavelet to identify and
separate the significant components of this dynamic signal. (g) Wavelet analysis results of the
log(10) GluN1 trajectory in uADEVs are presented, with colors representing power, black
lines indicating the highest peak (ridge) in the respective region, and white areas representing
significant components. Two significant components were identified, one with a short period
(approximately 6-8 days) located below and another with a period of over 20 (the strongest
ridge is at approximately 32 days). These two significant components were then reconstructed
as follows: (h) The trajectory of the reconstructed significant short-period component (red
line), and (i) the long-period component (approximately 32 days, the blue line). The gray
dashed line in (h) and (i) represent the original log(10) trajectory (grey dashed lines).

729

Figure 3. The Significance of the uADEV approach. (a) The advantage of high-frequent sampling. (b) The detailed trajectories of target molecules may benefit for the exploration (Molecule A and B) and falsification (Molecule C) of pathological hypotheses. (c–e) Even under the assumption that all patients have the same molecular trajectories, yet, time-induced heterogeneity exist merely due to different sampling points along the trajectory. However,

735	individual-level detailed trajectories may allow some <i>post-hoc</i> algorithms, such as peak-based
736	realignment, to reduce the time-induced heterogeneity. (f) The schematic diagram of the
737	"Time Machine of Sampling": for CNS diseases with a high probability of recurrence, we
738	could collect urine samples at a high frequency and store them. When a patient is monitored
739	for a recurrence, we could then unseal the samples before the recurrence time point (red
740	arrows) to extract uADEVs to explore the reason of recurrence, like the "Time Machine".

741

742 Supplementary Materials

743	Supplementary Material 1: sFigure 1. The original whole piece pictures of western
744	blotting. GFAP: Anti-GFAP antibody (Abcam, Cat No: ab68428) at 1/5000 dilution, protein
745	loading amount: 13.7 μ g Per lane. NKCC2: Anti-NKCC2 antibody (Abcam, Cat No:
746	ab171747) at 1/2000 dilution, protein loading amount: 4 μg per lane. NCC: Anti-NCC
747	antibody (Abcam, Cat No: ab95302) at 1/1000 dilution, protein loading amount: 1.5 μg per
748	lane. CD63: Anti-CD63 antibody (Abcam, Cat No: ab134045) at 1/700 dilution, protein
749	loading amount: 4.0 µg per lane. CD9: Anti-CD9 antibody (Abcam, Cat No: ab263019) at
750	1/700 dilution, protein loading amount: 5.7 µg per lane. Alix: Anti-Alix antibody (proteintech,
751	Cat No: 67715-1-Ig) at 1/2000 dilution, protein loading amount: 5.7 μ g per lane.
752	
753	Supplementary Material 2: Individual Participant Data.

754

Supplementary Material 3: The Determination of the Duration of Ultracentrifugation.

