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Summary
Transcriptomics is a powerful tool for unraveling the molecular effects of genetic variants and

disease diagnosis. Prior studies have demonstrated that choice of genome build impacts variant

interpretation and diagnostic yield for genomic analyses. To identify the extent genome build

also impacts transcriptomics analyses, we studied the effect of the hg19, hg38, and CHM13

genome builds on expression quantification and outlier detection in 386 rare disease and

familial control samples from both the Undiagnosed Diseases Network (UDN) and Genomics
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Research to Elucidate the Genetics of Rare Disease (GREGoR) Consortium. We identified

2,800 genes with build-dependent quantification across six routinely-collected biospecimens,

including 1,391 protein-coding genes and 341 known rare disease genes. We further observed

multiple genes that only have detectable expression in a subset of genome builds. Finally, we

characterized how genome build impacts the detection of outlier transcriptomic events.

Combined, we provide a database of genes impacted by build choice, and recommend that

transcriptomics-guided analyses and diagnoses are cross-referenced with these data for

robustness.

Introduction
Transcriptomics is increasingly used for studying disease etiology and diagnosis1. The selection

of a reference genome build and corresponding genome annotation sets the foundation for the

majority of transcriptome analyses, and the impact of varying annotation sources on gene

expression estimates are well-documented2–8. However, the impact of reference genome build is

less understood. Despite the release of hg19 in 20099 and hg38 in 201310, most academic and

commercial labs align to hg19 and the majority have no plan to migrate largely due to time,

computing, and staffing costs11. For studies that have used transcriptomics to aid rare disease

diagnoses, all but two12,13 published studies to date aligned to the hg19 genome build14–27.

Additionally, release of the first ungapped human genome reference, CHM13 from the

Telomere2Telomere Consortium, provides additional options for build choice and increased

uncertainty regarding the impact of genome build on transcriptome analysis for diagnosis28.

Further, despite evidence that build impacts variant calling and genetic interpretation29–31, and

implications that reference genome build may impact RNA-seq analysis32, no study has

systematically investigated the impact of genome build on transcriptome results.
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To assess how genome build choice impacts gene quantification and the detection of outlier

gene expression and splicing in a rare disease context, we conducted a comprehensive

evaluation of how the hg19, hg38, and CHM13 genome builds impact RNA-seq results with

gene-level resolution, and highlight rare and undiagnosed disease cases where genome build

selection may affect diagnosis. Here, we significantly expanded our cohort of rare disease

patients with heterogeneous disorders and their family members15, by generating and aligning

their transcriptome data to the hg19, hg38, and CHM13 assemblies of 386 samples from 316

individuals. We identified genes with annotation-specific, differentially quantified, or

build-exclusive expression across six routinely-accessed biospecimens, and assessed how

these build-dependent effects influenced a transcriptome-first diagnostic interpretation. We

ultimately provide a resource documenting build-dependent effects for all annotated genes, and

report 2,800 genes directly impacted by build choice across a variety of scenarios

(Supplementary Figure 1). We expect this information to broadly enable genome build

decision-making for multiple transcriptomics applications (Supplementary Table 1).

Results

Transcriptome mapping in a rare disease cohort across genome

builds

We performed RNA-sequencing for 386 samples from 316 individuals enrolled in the

Undiagnosed Diseases Network (UDN) and/or GREGoR Consortium across the following

biospecimens: blood, fibroblast, peripheral blood mononuclear cells (PBMCs), skeletal muscle,

induced pluripotent stem cells (iPSCs), and derived neural progenitor cells (NPC) (Figure 1a,
Supplementary Table 2). This cohort included 204 cases with a heterogenous representation

of rare disease phenotypes including primarily neurological, musculoskeletal, or immune-related

symptoms. Each sample was uniformly processed with a standardized pipeline and aligned to

the hg19.p13, hg38.p13, and CHM13v2 genome builds (Figure 1b, Supplementary Figure 2a).

To ensure maximally consistent gene annotations, genes were quantified using the

GENCODEv35 equivalent gene annotations for each build (see Methods)(Figure 1b).

Reads were uniquely aligned at a similar rate across builds (Supplementary Figure 2b).

However, the CHM13-alignment yielded a lower proportion of multi-mapped reads and a higher
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proportion of unmapped reads (Supplementary Figure 2b). This can partially be explained by

the increased proportion of unmapped reads that are classified as too short for alignment, likely

due to increased complexity in the CHM13 assembly (Supplementary Figure 2c)33. The

median number of non-canonical splice sites decreased by 17% between hg19 and hg38, and

18% between hg38 and CHM13, suggesting these reads are being aligned more effectively with

subsequent genome builds34(Supplementary Figure 2d). Across all six biospecimens,

uniquely-mapped reads quantified 78.0% of total protein-coding genes, 76.8% of

Mendelian-disease-linked genes from the Online Mendelian Inheritance in Man (OMIM)

database, and 64.1% of disease-associated genes from OpenTargets (score > 0.8, see

Methods).

Gene annotation changes across genome builds

Gene annotations describe gene structure in the context of a genomic coordinate system, and

variation in how these annotations are constructed by different sources (such as GENCODE or

RefSeq) can impact RNA-seq quantification5,7. To minimize this annotation source bias, we

leveraged the GENCODEv35-based annotation for each build with the understanding that

updates to the reference genome can inherently lead to changes in the annotation. We

assessed consistency of the annotations by comparing exon structure, transcript structure, and

underlying genetic sequence for each gene (see Methods, Supplementary Figure 3a). Genes

were defined as having identical gene models if the number of constituent transcripts and

exons, and exon lengths were the same between builds (Supplementary Figure 2c). For

genes with identical gene models, sequence similarity was calculated with the Jaro-Winkler

similarity score which measures the minimum number of operations needed to make two

sequences identical35. We assessed differences in annotation status, gene model, and

underlying genetic sequence across 63,652 genes in hg19:hg38 and 63,710 in hg38:chm13,

including 4,870 genes with a known molecular link to Mendelian diseases in OMIM annotated in

at least one build across both analyses (see Methods).

The GENCODEv35lift37 annotation for hg19 and GENCODEv35 annotation for hg38 are largely

similar, with 91.7% (58,373/63,652) of genes present in both annotations after excluding the Y

chromosome. Similarly, 93.8% (59,815/63,710) of genes were present in both the

GENCODEv35 annotation for hg38 and the GENCODEv35 CAT/Liftoff v2 annotation for CHM13

(Figure 2a). There were 3,515 genes present in the hg19 annotation but not the hg38
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annotation, and 1,764 genes present in the hg38 absent from the hg19 annotation, including five

hg38-specific OMIM genes. Additionally, 322 hg38 genes (including three OMIM genes) were

not mappable to CHM13 and thus not included in the CHM13 annotation, and 3,573 genes

present in the CHM13 annotation had no corresponding gene model in hg38, including novel

genes identified in non-syntenic regions and gene families expanded to include additional

paralogs (Figure 2a, Supplementary Figure 3a).

Approximately 24% (13,929) of the genes present in both the hg38 and CHM13 annotations had

differences in the gene model across transcript count, exon count, and exon length, compared

to just 2.9% of genes annotated in both hg19 and hg38 (Figure 2a, Supplementary Figure 3a).

Among the genes confidently linked to Mendelian disorders in OMIM and annotated in both

hg38 and CHM13, 51.1% (2,490) had differences in the gene model, compared to 2.9% (142) in

hg19 and hg38. An additional 30% (17,660) of genes with consistent gene models had

differences in underlying genetic sequence between the hg38 and CHM13 assemblies,

compared to 2.4% (1,364) of hg19:hg38 genes. Even when there were some sequence

differences, they were minimal; the average Jaro-Winkler sequence similarity was quite high

(mean = 0.981±0.09 hg19:hg38; mean = 0.999±0.003 hg38:CHM13 Supplementary Figure
3b,c). Consistency in genic exon, transcript, and sequence annotations in both build

comparisons indicated that the GENCODEv35 annotation for hg38 and its liftover counterparts

were sufficiently comparable, allowing us to test the effects of genome build independent of

annotation for the majority of genes.

Annotation-specific genes are quantified and can lead to

erroneous results

We sought to better understand genes that were not annotated in all builds, annotation-specific

genes (Figure 2b). We detected quantification of 169/3,515 hg19 and 136/1,794 hg38

annotation-specific genes in the hg19:hg38 comparison in at least one biospecimen, none of

which were known disease genes (see Methods, Supplementary Figure 4, Supplementary
Table 3). Approximately 33% of the quantified hg19 annotation-specific genes and 41% of the

quantified hg38 annotation-specific genes were protein-coding or lncRNA (Supplementary
Figure 5). Within the hg38:CHM13 comparison, we detected quantification of 68/322 hg38 and

335/3573 CHM13 annotation-specific genes, 60% and 44% of which were protein-coding or

lncRNA, respectively (Supplementary Figure 5, Supplementary Table 3). We suggest using
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caution when exploring annotation-specific genes for disease associations, as the majority

overlapped a blacklisted region or known assembly issue: 92% hg19, 70% hg38 (compared to

hg19), 67% hg38 (compared to CHM13), 66% CHM13 (Figure 2c, Supplementary Figure 6).

Annotation-specific genes shed light on the importance of build selection in the context of

specific disorders. For example, hg19 and hg38-expressed CFHR-Factor H complex genes

CFHR1 and CFHR3 are linked with atypical hemolytic uremic syndrome36,37 and fall within a

region harboring population-specific copy number variations. The absence of these genes in

CHM13 could be due to the reliance on a single cell line, especially in contrast to the genetic

diversity from multiple cell lines underlying hg3838. We detected quantification of CFHR1 in

fibroblast and muscle, and CFHR3 in iPS and iPS neural progenitor cells for hg19 and hg38.

One study reports that detection of the disease-causing structural variants was not possible

when aligning to CHM13, even with long-read sequencing38, suggesting CFHR-Factor H

complex disorders should not be evaluated using CHM13v2. The absence of these genes in

CHM13v2 likely influences mapping in CHM13 of other CFHR-Factor H complex genes –

CFHR4 (also linked to atypical hemolytic uremic syndrome) is detected as quantified only in

CHM13 in iPSC NPC with a median TPM of 4.4. Based on these observations, we suggest

using hg38 to evaluate CFHR-Factor H complex genes.

The hg38 build contains an erroneously duplicated region, which includes paralogous genes

SIK1 and SIK1B; the hg38-specific gene SIK1 has been linked to developmental and epileptic

encephalopathy39. These two genes are identical except for a segment of the sequence

encoding for a single amino acid40. In correcting this duplication, the CHM13 annotation used

the SIK1B version of the gene. SIK1B had higher expression in CHM13 in all biospecimen types

(5.5x-8.5x) compared to hg38, likely due to the removal of SIK1 which was siphoning reads in

the hg38 alignment (Figure 2d). SIK1B is oncogenic, and further studies should be done to

reveal if SIK1B is also associated with development and epileptic encephalopathy40. Given the

transcriptomic impact of this false duplication in hg38, we suggest using CHM13 for assessment

of the SIK1/SIK1B locus.
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Pairwise differential expression identifies hundreds of genes with

build-dependent quantification

Genes annotated across builds may still yield differences in expression estimates between

alignments; we refer to these genes as differentially quantified, as there are no true biological

differences between a single sample aligned to multiple builds. To identify genes with differential

quantification, we restricted to genes with at least 0.1 TPM in at least 30% of tested samples in

both builds, and performed paired-sample differential expression analysis comparing gene

quantifications for hg19 vs hg38 (hg19:hg38) and hg38 vs CHM13 (hg38:CHM13) using the

LIMMA-DREAM framework41,42.

Our selection of biospecimens allowed us to evaluate hg19:hg38 differential quantification for

31,275 genes with sufficient expression in both builds, including 72.6% (20,314/27,966) of

known protein-coding and lncRNA genes (Supplementary Table 4). In total, we observed 202

(128 protein-coding or lncRNA) genes with significant (Benjamini-Hochberg adjusted p-value

<0.05) and substantial (abs(logFC)>1) differences in quantification between hg19 and hg38 in at

least one biospecimen type (Figure 3a,b, Supplementary Figure 6a, 7a). Although the number

of differentially quantified genes varied by biospecimen, 125 genes were consistently

differentially quantified in more than one type and 29.1% (23/79) of genes tested in all six

biospecimens showed significant and substantial differential quantification in all six

biospecimens (Supplementary Figure 7, 8a). The majority of differentially quantified genes

(180/202, 90%) overlapped erroneous or difficult-to-sequence regions9,43 in either hg19 or hg38,

with most (163/202, 81%) overlapping regions problematic in both builds (Figure 3c). Changes

in the underlying gene sequence and/or gene model likely explain differences in expression

estimates for 18 of the 22 genes that did not overlap known issues (Figure 3c). Taken together,

known genome build errors, documented changes in the underlying build structure, and

changes in gene model annotation accounted for 98% of the differentially quantified genes

between hg19 and hg38 (Figure 3c).

Comparison between hg38 and CHM13 allowed us to test 30,998 genes, including 72.4%

(20,256/27,966) of the known protein-coding and lncRNA genes (Supplementary Table 4). We

identified 1,341 genes with significant and substantial differential quantification in at least one

biospecimen type, including 1,132 protein-coding and lncRNA genes (Figure 3d,e,
Supplementary Figure 6b, 7b). The majority (1,028) of the differentially quantified genes were
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identified in more than one biospecimen, with 452 observed in all six (Supplementary Figure
8b). Over a third (516) of the hg38:CHM13 differentially quantified genes overlapped a

documented issue or difficult-to-sequence region in at least one build (Figure 3f). Of the 825

genes residing in putatively non-erroneous regions across both builds, most (768 genes) harbor

changes in the gene model or overlap a documented assembly change between hg38 and

CHM13 (Figure 3f). Thus, about 90% of hg38:CHM13 differentially quantified genes may be

explained by a change in the gene model or overlap of a documented error in the hg38

reference genome (Figure 3f).

Across both build comparisons, 341 differentially quantified genes are implicated in a rare

disease with a known molecular basis in the OMIM database (7 hg19:hg38, 262 hg38:CHM13).

Additionally, 38 are confidently linked to a disease in the OpenTargets Platform with a score

greater than 0.8 (1 hg19:hg38, 38 CHM13:hg38) (Supplementary Table 1). We detected a

number of genes linked to cancer in the COSMIC database that are significantly and

substantially quantified differently by build including 1 in hg19:hg38 and 65 in hg38:chm1344.

The sole gene in hg19:hg38 is U2AF1, which can cause myelodysplastic syndromes and has

been shown to respond to therapeutic targets45,46. New contigs for this gene were added in hg38

build, and as a result there was 7.8x larger expression in hg38 relative to hg19. However due to

a number of persisting issues in the hg38 assembly of this region, including false duplications

that caused high levels of multimapping, U2AF1 was quantified 103x higher in chm13 than

hg38. Additional cancer genes with substantial differential quantification between hg38 and

chm13 included EGFR, RB1, KRAS, and BRIP1.

Multiple disease-relevant genes display build-exclusive

expression

Differential quantification can only assess the impact of build choice for genes that are

annotated and sufficiently expressed in both builds; therefore we further explored genes

excluded from the differential quantification analysis due to insufficient expression levels in just

one build per comparison despite presence in both annotations, hereafter referred to as genes

with build-exclusive expression (Figure 4b, Supplementary Table 5).

We further explored build-exclusive genes that were not due to a thresholding effect (see

Methods). When comparing hg19:hg38 we detected 83 genes quantified only in hg19 and 124
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only in hg38, 70% and 85% of which overlapped erroneous or blacklisted regions

respectively(Figure 4b, Supplementary Figure 9, 10b; Supplementary Table 5). Within the

hg38:CHM13 comparison, 585 mutually annotated genes were only detected from the hg38

alignment and 272 from the CHM13 alignment, 65% and 40% of which were in known

erroneous or blacklisted regions respectively (Figure 4b; Supplementary Figure 9, 10d;
Supplementary Table 5).

The largest reason for build-exclusive expression was due to changes in the gene model

between builds, which can impact mappability when aligning to the transcriptome, leading to

build-exclusive expression (Supplementary Figure 10). The protein-coding gene PDGFRB, is

implicated in multiple rare disorders, including Kosaki overgrowth syndrome43. Approximately

70% (194/275) of the samples with quantification of this gene in hg38 do not meet the

expression threshold in CHM13 in blood. Notably the CHM13v2 annotation for PDGFRB was

more complex than the hg38 and hg19 gene models, with three additional transcripts, resulting

in higher multimapping rates and making accurate quantification more difficult when performing

transcriptome-based alignment.

Known issues and blacklisted regions can also contribute to build-exclusive expression

(Supplementary Figure 10). BMS1P8, a gene that has been linked to lower survival rates in

hepatocellular carcinoma based on hg19-derived expression levels, was only detected in hg19

in fibroblast47. However, this association may be an artifact driven by an error in this region in

the hg19 reference. While BMS1P8 was annotated in both hg38 and CHM13, the contigs used

to construct the region were updated in the hg38 assembly to resolve this hg19 error43.

Transcriptomic outlier detection between genome builds

Transcriptome outliers provide evidence to enable gene prioritization in Mendelian diagnoses1.

To assess if genome build impacted our ability to detect outliers, we called expression outlier

events in blood and fibroblast samples. For each biospecimen we calculated z-scores for each

gene-individual pair and defined an outlier as an absolute z-score greater than 3 (see

Methods); this identified thousands of expression and splicing outlier events in each build

(Table S3). Of note, splicing outlier detection was reference-free48, so discrepancies in splicing

outliers between builds were fully attributable to build-based alignment differences.
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We assessed the consistency of expression and splicing outlier status (eOutliers and sOutliers)

by determining the proportion of outliers in one build that were also outliers in another build (see

Methods). There were a similar number of outliers between builds (Figure 5a). The vast

majority of eOutliers were consistent between builds (Figure 5b, Supplementary Table 6), and

most of the inconsistent eOutliers were the product of a thresholding effect wherein a gene’s

z-score in the non-outlier build fell just below the outlier definition cutoff (see Methods). In line

with our differential quantification results, outliers were more consistent between hg19 and hg38

compared to hg38 and CHM13 (Supplementary Figure 11). sOutlier detection was also largely

consistent between builds, but was generally less impacted by thresholding effects

(Supplementary Figure 11). However, some individuals did have dramatic changes in outlier

status for a handful genes; genes with large discrepancies (absolute z-score>3 in one build and

<1 in the other) accounted for 3-23% of inconsistent eOutliers, and 36-74% of inconsistent

sOutliers. We further detected 68 high-confident OMIM eOutlier genes and 99 OMIM sOutlier

genes that have at least one outlier substantially different between builds, indicating that

consideration of these disease-relevant genes for potential diagnoses may be impacted by build

choice (Supplementary Table 7). Across both expression and splicing we also detected

hundreds of unique genes that were only annotated in hg19, hg38, or CHM13 that were

considered outliers, of which a large proportion were labeled as erroneous (Supplementary
Table 6).

We then investigated if there was a relationship between the differential quantification of a given

gene (absolute logFC) and its average change in outlier z-score (mean z-difference) between

builds. We observed that the degree to which gene quantification differed between builds

correlated with larger z-score changes (R2 0.42-0.52, Figure 5c), indicating that the more

differentially quantified a gene is, the more likely it will be to impact outlier status. Further, genes

with large eOutlier changes (absolute z-score >3 and <1 in complementary builds in at least one

sample) were more likely to be differentially quantified genes (average logFC 1.12 hg19:hg38

and 1.80 hg38:CHM13 in large eOutlier change genes, 0.02 hg19:hg38 and 0.18 hg38:CHM13

for genes without large eOutlier changes; Supplementary Figure 12).
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Impact of genome build on interpretation of clinically relevant

genes

Clinicians may often only have time to systematically evaluate a handful of candidate genes.

While there are many ways to prioritize this top candidate list, one approach is to identify genes

with the greatest aberrant expression events based on expression or splicing outlier scores.

Given the time and resources required for manual curation, it is important to consider that

ranking a gene as the 18th largest outlier compared to the 32nd will impact its potential to be

reviewed. While we noted some genes changed in their outlier status between builds, here we

assessed how the rank of genes prioritized for manual curation changed between builds.

We found that transcriptome-guided candidate gene lists in cases, which we defined as the top

20 most extreme expression and splicing outlier genes per case, were largely consistent

between builds, though more so for hg19:hg38 (Figure 6a,c). For genes that were in the top 20

list in one build, but not in the top 20 list in the other build, the ranks were still near the threshold

in hg19:hg38, but changed more so in hg38:CHM13 (Figure 6b,d).

Although outlier ranks were largely consistent for genes annotated in both builds, candidate

eOutlier gene lists for 92 cases included 83 distinct annotation-specific genes, the majority of

which overlapped a known issue or blacklisted region (Supplementary Table 8). Similarly,

sOutlier candidate gene lists for 173 cases included 132 annotation-specific genes with many

also overlapping issue or blacklisted regions (Supplementary Table 8). In the hg38-specific

gene (relative to CHM13) SIK1, we detected over-expression of this gene in two cases (which

had no related phenotype terms to the associated disorder) and two controls, including for one

sample in which it was the highest ranked expression outlier, reiterating our previously made

case that SIK1 should not be currently evaluated in hg38 (Figure 2d). Many of these

annotation-specific outliers were ranked in the top twenty largest outliers for a sample,

potentially impacting a transcriptomics-first approach. Therefore, these annotation-specific

genes can lead to erroneous candidates.

Finally, we assessed how build selection impacted prioritization of known causal genes in 44

samples across 38 solved cases. In practice, candidate genes are often prioritized first based

on phenotypic and genotypic relevance and then transcriptomic data is to provide further

functional evidence. We generated a list of 250 genes for each affected proband derived from
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their unique symptoms using Phen2Gene49, which were then ranked based on expression and

splicing z-scores across the three genome builds. While outlier ranks among the diagnostic

genes were largely consistent between builds (Figure 6 e,f), we noticed genome build impacted

our ability to prioritize the diagnostic gene for multiple cases. We identified a teenage female

with primarily neurological symptoms and disease-causing mutations in POLR3A, a gene

associated with multiple nervous system conditions. POLR3A ranked in the top 5 most

aberrantly under-expressed genes for this case in both hg19 and hg38 (z-scores -1.6).

However, its expression was within a standard deviation of the mean when aligned to CHM13

(z-score -0.7) and it ranked 41st across all genes tested for this individual. POLR3A showed

significantly higher expression in hg38 compared to CHM13 (absolute logFC = 1.8), which was

likely the result of higher rates of multi-mapping in the region in the CHM13 alignment (36%

multi-mapped hg38, 88% multi-mapped CHM13) due to a difference in the number of

transcripts, consistent with the region’s classification as a blacklisted “High Signal Region” in

CHM13. In a case with a known causal gene, we also identified a splicing outlier (z=2) in the

non-causal gene NOTCH2 in hg19 only, in which it was the top ranked outlier in hg19 despite

showing no evidence of aberrant splicing in hg38 or CHM13. NOTCH2 overlaps a region that

included a bacterial contaminant sequence in hg19 that was corrected in hg38 and may account

for the erroneous splicing signal. Thus, we found that build selection impacted both our ability to

accurately prioritize the true causal gene and eliminate false positives.

Discussion
Transcriptome sequencing is a widely-used assay that complements the study of genome

function, disease mechanisms and diagnosis. It has been increasingly used to supplement

exome-negative rare disease cases, with a diagnostic yield between 7-36% depending on the

cohort1. As an increasingly important clinical tool in rare disease diagnosis, it is important to

understand the robustness of transcriptomic data with respect to genome build. The human

reference genome has undergone numerous releases since its debut in 2001, with the most

recent release of CHM13v2.0 in 202228. Yet clinical uptake of new reference genomes has not

kept pace; transitioning infrastructure to new genome builds is expensive and re-interpreting

results is time-consuming11. Therefore, we provide an annotated resource of build-affected

genes to aid in the design and interpretation of reference-aligned RNA-seq (Supplementary
Table 1).
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We describe three primary ways in which genes differ by build: annotation-specific quantification

in which a gene is only annotated in one of two builds, build-dependent quantification in which a

mutually annotated gene has significantly different expression estimates, and build-exclusive

quantification in which a mutually annotated gene fails to meet the expression threshold in one

of two builds. Across six routinely-collected biospecimens and three builds, we identified 2,800

genes with build-dependent quantification including 1,391 protein coding genes, and 341 known

Mendelian disease genes. We were well-powered to assess patterns of aberrant expression and

splicing in two of the most routinely-collected biospecimens, whole blood and patient-derived

fibroblasts. Larger sample sizes will be required to assess the impact of genome build on

tissue-specific aberrant expression and splicing events from biosamples that are more clinically

or experimentally challenging to obtain.

We suggest caution when examining annotation-specific and build-exclusive genes; a large

proportion overlap with erroneous or blacklisted regions and are non-protein coding or lncRNA

genes. We further identified build-exclusive genes that were likely due to multimapping; when

mapping to complicated gene models, we suggest using a quantification method that employs a

genome-based alignment to improve accuracy. These annotation-specific and build-exclusive

genes can appear in the top candidate gene list for rare disease patients. We observe that the

extent of differential quantification of a gene is correlated with the average change in z-score for

a given gene. Additionally we found that 92% of known discrepant regions from Li et al. between

hg19 and hg38 were either differentially quantified or had large outlier differences30. While many

genes had consistent outlier detection across genome builds, we recommend careful evaluation

of genes in this list.

While this study focused on the use of transcriptomics for Mendelian disease diagnostics and

discovery, these analyses have implications for any human genetics study using RNA-seq50. In

clinical settings RNA-seq is used to clarify variant interpretation for a range of common

hereditary disorders; Invitae estimated RNA-seq would result in reclassification of a splicing

variant of unknown significance in 1.7% of individuals in their database51. Similar to the rare

disease space, cancer diagnostics is increasingly using RNA-seq as a complementary approach

to DNA sequencing52. One study estimated additional RNA-seq information could impact clinical

management for 1 in 43 cancer patients and family members53. Our study identified 68

cancer-related genes with build-dependent expression estimates, emphasizing the importance

of genome build selection in accurate assessment of transcriptomic biomarkers. These impacts
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can extend beyond cancer to any area of transcriptome analysis, therapeutic, and diagnostic

use.

Throughout, we have demonstrated that hg19 and hg38 RNA-seq results were more congruous

than hg38 and CHM13, consistent with the greater similarity in how the references were

constructed. While hg38 included an additional 75 Mb of genomic sequence not present in

hg19, the CHM13v2 assembly added nearly an additional 200 Mb43,54. Additionally, CHM13v2 is

composed of data from a single female of primarily European ancestry55, while hg19 and hg38

are primarily based on the genome of one male of admixed African and European ancestry but

include additional information from diverse samples from the 1000 genomes project to fill in

gaps and fix erroneous regions43. Importantly, this means CHM13v2 results might be less

reliable for non-European ancestries. Efforts such as the first draft of the pangenome project are

expected to improve sequencing alignment for individuals with underrepresented ancestries56,57.

Ultimately, we provide a resource to empower researchers to make the best decisions for their

datasets and cases. This list of genes can then be more carefully quantified manually or with

tools such as FixItFelix, which can remap erroneous regions to enable better results58. We

ultimately recommend using our resource to flag genes of interest that might be impacted by

build or to choose the best build for a given project.

Material and methods

Study cohort

We generated paired-end RNA-seq data on 386 distinct samples from 316 rare disease patients

and family members from the Undiagnosed Diseases Network (UDN). Sequenced biospecimens

include whole blood (n=283), fibroblasts (n=66), peripheral blood mononuclear cells (PBMCs,

n=12), muscle (n=11), induced pluripotent stem cell lines (iPSC, n=8), and iPSC-derived neural

progenitor cells (iPSC_NPC, n=6). Samples were ascertained from 316 individuals including

204 rare and undiagnosed cases affected by primarily neurological, musculoskeletal, or

immune-related conditions (Figure 1a). Of these samples, 243 are novel and 143 were

previously published in Fresard et al15; 35 of the individuals in this study are also enrolled in the

Genomics Research to d the Genetics of Rare diseases (GREGoR) Consortium. Ethical and
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research approval was obtained from the National Human Genome Research Institute (NHGRI)

Institutional Review Board (IRB) under Protocol 15-HG-0130 and Stanford University IRB

(Protocols 23066, 32641, 38046, and 60837). Informed consent was obtained from all

participants.

Transcriptome sequencing

Sample collection
In total, RNA-sequencing was performed on 270 samples from 204 affected individuals, and 116

samples from 112 unaffected family members. This included 14 cases from the Utah UDN site in

which the Paxgene samples and fibroblast cell lines were collected and established at Utah,

then the processed RNA was shipped to Stanford. Whole blood samples were collected and

processed in Paxgene RNA tubes at Stanford. Globin mRNA was removed from whole blood

samples using NUGEN (n=92) or GLOBINClear for the remainder (n=191).

RNA-sequencing library preparation and sequencing
Two protocols were used for library preparation and sequencing given a switch to increased

automation. cDNA libraries for the first 258 samples were generated using the Illumina TrueSeq

Stranded mRNA Sample Prep Kit protocol, and dual indexed. Bioanalyzer and Qubit were used

to determine proper library dilution and balance samples across sequencing runs. Samples

were pooled and sequenced on an Illumina NextSeq 500 across 14 distinct runs including

between 15 and 20 samples. Two runs generated 75-bp paired-end reads, and the other twelve

generated 150-bp paired-end reads.

An additional 128 samples were processed with the Universal Plus™ mRNA-Seq with NuQuant

library prep protocol from Tecan, which includes globin and ribosomal RNA depletion following

the same protocol as Amar et al59. These samples were processed in an automated protocol on

a Biomek i7 robotic liquid handling system. Library quality was evaluated based on fragment

analyzer tracings, and cDNA concentration was determined with Qubit. Libraries were

normalized by molarity prior to sequencing on a Illumina Novaseq 6000 in two runs containing

97 and 34 UDN samples respectively.
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Pipeline

Overview

We demultiplex BCL data into FASTQ files, align to the genome, quantify the reads, and call

splicing and expression outliers (Supplementary Figure 2). These steps are detailed in the

following sections.

Transcriptome QC and Alignment

Genome build reference files were downloaded from GENCODE60. We used the primary

assembly for hg19 and hg38 (), and CHM13v2 with the Y-chromosome masked. We used

GENCODEv35lift37 and GENCODEv35 primary genome annotations (chromosomal regions) for

hg19 and hg38, respectively, and the GENCODEv35 CAT/Liftoffv2.0 annotation for CHM13. The

full download links are available in the study github

(https://github.com/raungar/build_rnaseq_paper_public).

The gff3 file for hg19 was generated from the gtf file using gffread61. RSEM references were

prepared with rsem/1.3.162. An annotation file for STAR/2.8.4a33 was created for an overhang of

99 for files with a read length greater than 100 and an overhang of 75 for those with a read

length of 76.

FASTQ files generated from demultiplexing the raw BCL data using bcl2fastq63 and were

trimmed using cutadapt64 with a minimum trim length of 20 for reads less than 100bp and 50 for

those greater than or equal to 100bp. Reads were aligned with STAR (see github for full

parameters). Optical duplicates were filtered from aligned bam files using Picard65 and a pixel

distance of 12000px for samples sequenced on the Novaseq machine (n=128 samples), and

100px for samples sequenced on the NextSeq500 (n=251).

Quantification

To assess build-dependent quantification differences of uniquely mapped reads, samtools66 was

used to filter uniquely-mapped reads only. Filtered bam files were then prepared for and

processed by RSEM62 to obtain read counts per transcript and per coordinate site. As only

uniquely mapped reads were included, the estimated counts provided by RSEM are equivalent

to raw counts.
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Expression Outlier Calling

We adapted the outlier calling method from Frésard et al15. We called outliers for each

biospecimen with at least 30 samples and required a minimum of three samples per batch. For

each gene, at least 20% of samples must have a TPM of 0.15 or larger. If there are fewer than

150 samples, then at least 30 samples must have a TPM of 0.15 or larger for a given gene to

ensure an ability to perform outlier calling. The counts are then log transformed, genes with zero

variance are removed, and then each gene is scaled and centered. Batch, RIN, and sex are

regressed out and the residuals are again normalized. Given the variance has been adjusted to

be 1, we expect each batch to also have a variance of 1. If a given batch has a low variance

(less than 0.1) for a given gene, the samples in the batch are removed as it is likely an artifact.

The z-score for this gene is recalculated and the low-variance samples are set to NA.

Splicing Outlier Calling

Splice junctions were extracted and annotated using regtools67. Introns were clustered using

LeafCutter48 and outliers were called using LeafCutterMD68. LeafCutterMD detects how likely the

reads overlapping a cluster of exon-exon junctions for a given sample comes from the same

distribution as all other samples. Therefore, a p-value is reported for each exon-exon junction

per sample. We adjusted the p-value for multiple-testing using the Benjamini-Hochberg method,

and then convert it to a z-score. Finally, to report splicing outliers at a gene-level we annotated

genes for each exon-exon junction using bedtools69 and reported the maximum z-score that

overlaps with this gene.

Comparison of genome annotations and gene models between

builds

To investigate the relationship between the hg38 gene models and the hg19 and CHM13 gene

models, we compared the GENCODEv35 primary annotation for hg38 and corresponding

annotations for hg19 (GENCODEv35lift37)70 and CHM13 (T2T consortium CAT-LIFTOFF)71. We

chose GENCODEv35 as it was used to construct the CHM13 annotation model, and therefore

would minimize differences due to annotation to focus on the build comparison. To identify

mutually annotated genes, we leveraged the GENCODE remapping results for the the

GENCODEv35 liftover to hg1970, and the remapping metrics provided in the CHM13v2
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CAT-LIFTOFF annotation file. For hg38:CHM13, gene models were considered common if the

hg38 gene was used as the source gene for the CHM13 gene models (as indicated in the

CHM13 GTF file); for expanded pseudogene families, the parent genes annotated in hg38 and

CHM13 were considered common, and the additional pseudogenes added in CHM13 were

considered annotation-specific; genes with no corresponding gene model in the other build were

also considered annotation-specific. Several methods were employed to establish relationships

between hg38 and hg19 gene models, to account for the automated and manual annotation

procedures employed during the liftover process. By default, gene models were assigned the

relationship indicated in the liftover results file; if no relationship was indicated, the relationship

was established manually based on the consistency of gene id, gene version, and gene symbol.

Genes where no relationship could be established were considered specific to one or the other

annotation.

We characterized each gene in terms of structure and sequence by counting the number of

transcripts and exons within each gene model and calculating their lengths using positions

indicated in the respective GTF files. Transcript length was considered as the sum of the size of

its constitutive exons, and we extracted the sequence of each exon using bedtools v2.25.0

toolset and considering the orientation of the gene model (function: getfasta -s)69. We compared

the gene models for genes present in multiple annotations in terms of structure conservation by

calculating the difference in (a) the number of transcripts, (b) the number of exons per transcript,

and (c) the difference in length between exons. Gene model comparison results are

summarized in Supplementary Figure 3, and included per-gene in Supplementary Table 1.

For mutually annotated genes with the same structure, we calculated sequence variation by

using the Jaro- Winkler distance (R-package RecordLinkage v0.4.12.4)35,72, which was

performed at the level of the constitutive exon, transcript (average of these exons), and gene

level (average of these transcripts). The Jaro-Winkler scores are included in Supplementary
Table 1 for genes with identical gene models and a similarity score below 1..

Differential quantification
We performed paired differential expression analysis for hg19 vs hg38 (hg19:hg38) and hg38 vs

CHM13 (hg38:CHM13) across all samples within each of the six biosample types. The sample

sizes for each analysis are presented in Supplementary Table 2. We filtered to genes with a

single gene version present in each build annotation, and for which at least 30% of samples had
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at least 0.1 counts per million in each build. Y-chromosome genes were excluded from the

hg38:CHM13 comparison due to the incomplete Y-chromosome annotation for CHM13 at the

time this analysis was performed.

Paired differential expression analysis was performed using the LIMMA-DREAM framework,

which allows for a generalized linear model with repeated measures41,42. Since the same

RNA-seq FASTQs were aligned to each of the three genome builds, there is no biological

difference between the alignments, and the genome build can be considered a

computationally-produced condition in a repeated measures study design with identical

underlying samples. This was modeled using a linear mixed model, in which build was treated

as a fixed effect, sample was treated as a random effect, and expression (TPM) was the

dependent variable41,42.

Identification of build-exclusive events
We identified genes that were either annotation-specific, or build-unique. Annotation-specific

genes were those that did not exist in at least one build’s annotation but were present in

another. Similarly genes were considered to be build-unique if there was not sufficient

quantification (expression) in at least one build, while there was sufficient quantification in

another. A gene is considered expressed in a given build if 30% of individuals express this gene

at a TPM greater than 0.1. We defined build-exclusive genes to be those in which a gene was

quantified in one build but not another. We defined a build-exclusive gene to be caused by a

threshold effect if the number of individuals with a TPM greater than 0.1 was within two people

of the minimum needed individuals.

Defining genes of medical interest

Multiple databases characterizing gene-phenotype associations were queried to identify

medically relevant genes. The Online Mendelian Inheritance in Man (OMIM) database was

utilized to identify genes linked to known rare and Mendelian disorders; rare disease genes

were defined as those with an OMIM gene-phenotype relationship score of 3 or 4, indicating that

the molecular basis of the disease is known or is caused by chromosomal deletion or

duplication73. Cancer-related genes were identified from the Catalog of Somatic Mutations in

Cancer (COSMIC) data74, and additional disease-related genes were identified by querying the
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OpenTargets platform75 (filtering to genes with a phenotype evidence score of at least 0.8 out of

a maximum score of 1), and the ClinVar database76. A gene was considered a known disease

gene if it was linked to a disease phenotype in any of these sources.

Identification of genes overlapping regions with known issues

Issue-prone regions of the genome for each build were defined based on both official issue

reports from the consortium that produced the assembly (hg19 and hg38: Genome Reference

Consortium9,43; CHM13: Telomere2Telomere Consortium28), and region blacklists generated by

independent sources77,78. The hg19 and hg38 exclusion regions (previously “blacklisted

regions”) were defined by ENCODE as difficult-to-sequence regions with tendencies towards

high multimapping rates or high mapping variability77. Bed files delineating the ENCODE

blacklisted regions for hg19 and hg38 were accessed for this study on January 23, 2023. As no

official ENCODE exclusion list for CHM13 was available at the time of this publication, the

corresponding blacklisted regions for CHM13 were obtained as a bed file on February 21, 2023

from excluderanges, a bioconductor package for tracking problematic genomic regions across

genome assemblies78,79.

The genomic regions with known issues in hg19 and hg38, as defined by the Genome

Reference Consortium, were downloaded from the UCSC Genome Browser GRC incident

tracks on January 25, 202380. BigBed browser track files were converted to bed files with

bigBedToBed from the UCSC Genome Browser tools81, and used to annotate the appropriate

genome annotation GTF files using bedtools intersect69. We defined a gene as overlapping a

known issue in hg19 or hg38 if it intersected with any issue type and the status for the issue was

not marked “resolved”, or if the gene overlapped an ENCODE blacklisted region.

Problematic regions that have been identified in the CHM13 assembly were downloaded as bed

files from CHM13 issues github repository on January 25, 202382. Bedtools intersect with the

CHM13v2.0 annotation GTF file was used to link genes and problematic regions69. A gene was

considered to fall within a CHM13 issue-prone region if it overlapped with either one of the

exclusion regions from excluderanges or one of the regions reported to harbor a known

issue78,79.
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Characterizing genes impacted by changes in genome assembly

To identify regions of the reference genome that were updated between hg19 and hg38, the

UCSC Genome Browser tracks delineating regions where the reference sequence construction

differed (hg38ContigDiff.txt.gz and hg19ContigDiff.txt.gz) were downloaded on August 1, 202283.

The text files provided a set of impacted genomic ranges in hg38 and hg19 coordinates,

respectively, and a score of 0, 500, or 1000 which was recoded in accordance with the UCSC

table schema for the track84. A score of 0 indicates that a new contig was added in the hg38

construction of the region to update the sequence or address gaps present in the hg19

assembly. A score of 500 corresponds to regions where different portions of the same contig

was used to construct the same region, potentially leading to differences in sequence. Finally, a

score of 1000 indicates that hg19 sequence errors have been corrected with updated contigs.

Because hg38 and CHM13 were not constructed from the same collection of BAC clone contigs,

an equivalent table of contig usage was not available. Instead, we leveraged the hg38-CHM13

alignment tracks provided by UCSC as a bed file, which was downloaded on October 19, 2022

and used to define regions present in the CHM13 assembly but absent in hg38 (a.k.a.

“non-syntenic” regions)83–85. Additionally, information about CHM13-specific reference artifacts

and variations were included for 4,964 medically-relevant genes, as summarized in

supplementary table 13 provided by Aganezov et al (2022)54.

Outlier comparison
We sought to identify when an outlier is called in a build-specific way. For outliers in a given

build, we identified the z-score in the comparison build. We evaluated this bidirectionally; for

example between hg19:hg38 of the hg19 outliers we examine the z-score in hg38, and of the

hg38 outliers we examine the z-scores in hg19.

We next identified which genes have large outlier status between builds were differences which

were not due to thresholding. Given our threshold for outliers status is a z-score of 3, a gene

might have a z-score of 2.9 in hg19 but a z-score of 3.1 in hg38 and would be considered an

outlier in a specific build despite it not being biologically meaningful. Therefore, we only

considered large outlier changes between builds, defined such that the absolute z-score must
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be greater than 3 in one build, and less than 1 in the other, hereafter referred to as inconsistent

outliers.

Data and code availability
Our pipeline is fully available at https://github.com/raungar/build_rnaseq_paper_public. Data is

currently available or being uploaded for the UDN (phs001232.v5.p2) and GREGoR

(phs003047.v1.p1) on dbGaP.
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a. b.

C.

Figure 1. Study overview
a, Description of cohort, including the primary diagnosis types for all probands (below) and the 
number of samples assayed per tissue type (right). 
b, Overview of the methodology.
c, Barcharts displaying the total number of build-dependent events identified in the hg19 vs hg38 
and hg38 vs chm13 comparisons. 
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Figure 2. Annotation comparison identifies annotation-specific genes with detected expression
a, Sankey diagram summarizing the number of genes that differ between the hg38 GENCODEv35 
annotation and GENCODEv35lift37 for hg19 (left), and UCSC GENCODEv35 CAT/Liftoff v2 annotation for 
chm13 (right).
b, Definition of annotation-specific expression events
c, Stacked bar plots indicating how many annotation-specific genes with detected expression in at least one 
tissue overlap known issues in the corresponding reference genomes. Left-hand facet shows hg19-specific 
and hg38-specific genes from the hg19:hg38 comparison; the right-hand facet shows the hg38-specific and 
chm13-specific genes from the hg38:chm13 comparison. Sets containing at least 25 genes are labeled with 
the fraction of total expressed genes they represent within the given build and comparison. Colors represent 
presence (grays) or absence (light blue) of documented blacklisted regions or issues.
d, Sankey diagram illustrating how the same RNA-seq reads are aligned to the SIK1/SIK1B locus in hg38 
(left) and chm13 (right) across all samples. Percentages are based on the total number of reads aligned to 
SIK1 or SIK1B in either build.
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b.

f.c.

a. d. 
Differential quantification

build 1 build 2

e.

Figure 3. Hundreds of genes are significantly and substantially differentially quantified 
between builds
a, The number of genes that were significantly differentially quantified by build (adjusted p-value 
<0.05 and abs(logFC)>1) between hg19 and hg38 and d, between hg38 and chm13 across tissue 
types. Gray bars on the far right display the union of differentially quantified genes across all tissues. 
Inset in a provides a visual definition of differentially quantified events in which a gene is annotated 
and sufficiently quantified in both alignments the expression estimates differ.
b, Distribution of logFC values for significant genes (adjusted p-value < 0.05) across tissues for hg19 
compared to hg38 and e, hg38 compared to chm13.
c, Upset plot displaying the putative reasons underlying differences in gene expression estimates 
between hg19 and hg38, and f, hg38 and chm13.
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Build-exclusive expression

build 1 build 2

a.

b.

229 463 1611 1535

Figure 4. Hundreds of mutually annotated genes show substantial build-exclusive expression
a, Depiction of build-exclusive expression.
b, Distribution of median TPM levels of build-exclusive genes on a log scale for the hg19:hg38 
comparison (left) and hg38:chm13 comparison (right). The number of build-exclusive genes detected 
are labelled underneath.
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a.

b.

c.

Figure 5. Impact of build selection on expression and splicing outlier detection
a, Boxplots displaying the number of over-expression, under-expression, and splicing outlier genes 
per sample detected from data aligned to hg19 (red), hg38 (yellow), and CHM13 (blue). 
b,  Expression outlier consistency between hg19:hg38 (left) and hg38:chm13 (right). In orange the 
outliers that are consistent between hg19 and hg38, and in dark green the number of outliers 
consistent between hg38 and chm13. In lighter shades, the number of outliers with a z-score greater 
than 3 in chm13 but less than 3 in hg38 (or greater than 3 in hg38 but less than 3 in hg19) and so 
forth. The lightest shares are outlier in the reference build (ex chm13) but are NA in the comparison 
build (ex hg38) due to lack of quantification in that build.  This is faceted by tissue type, and 
expression vs splicing outliers. 5
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Figure 5. Impact of build selection on expression and splicing outlier detection, con’t

c, Comparison between differential quantification fold change and average absolute z-score 
change. Each data point is a gene, the x-axis represents the absolute log fold change in the 
differential quantification results, and the y-axis dictates the average change in z-score 
between builds for that gene. This is plotted for hg19:hg38 (left) and hg38:chm13 (right), the 
shape of the point is determined by significance level, and the color of the point is determined 
by tissue.
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e.

Figure 6. Build selection impacts transcriptome-guided gene prioritization
a, Comparison of the ranked z-scores for genes in the top-20 expression outlier lists from both the 
hg19 and hg38 alignments across all cases (Pearson correlation R2 = 0.97). 
b, The distribution of z-score ranks for genes that were only in a case’s top-20 list in one build for the 
hg19:hg38 comparison.
c,Ranked z-scores for genes in the top-20 expression outlier lists from both the hg38 and chm13 
alignments across all cases Pearson correlation for z-score ranks in both top-20 lists R2 = 0.78).
d, The distribution of z-score ranks for genes that were only in a case’s top-20 list in one build for the 
hg38:chm13 comparison.
e, Diagnostic gene outlier ranks among the top 250 phenotype-prioritized genes across 44 samples 
from 36 cases with underexpression based on hg19 alignment (x-axis) and hg38 alignment (y-axis). 
f, Diagnostic gene outlier ranks among the top 250 phenotype-prioritized genes across 44 samples 
from 36 cases with underexpression based on hg38 alignment (x-axis) and chm13 alignment 
(y-axis). The top five gene-sample pairs with the most extreme residuals are highlighted.

f.

R 2 = 0.97 R 2 = 0.78
a. b. d.c.
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