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Abstract： 

Precision medicine can be defined as providing the right treatment to the right patient at the 

right time, and it requires the ability to identify clinically relevant patient subgroups with high 

accuracy. The increasing availability of large-scale electronic health records (EHR) datasets 

has provided major opportunities for artificial intelligence and machine learning in mining such 

complex datasets for identifying novel disease subtypes. However, disease subtypes often 

exist in the context of certain disease-relevant risk events, and current efforts have been 

limited by analyzing clustering and event risk independently, resulting in subgroups that still 

display great heterogeneity in event risk and/or underlying molecular mechanisms. 

To address this problem, we developed TransVarSur (Transformer Variational Survival 

modeling). TransVarSur integrates a Transformer-based Gaussian mixture variational 

autoencoder with time-to-event modeling to capture complex relationships between cluster-

specific EHR trajectories and survival times. We validated TransVarSur by showing superior 

performance relative to baseline methods, on both synthetic and real-world benchmark 

datasets with known ground-truth clustering. We then applied TransVarSur to 1908 Crohn's 

disease patients from the UK Biobank and successfully identified four clusters displaying both 

divergent EHR trajectories and divergent progression towards the risk event intestinal 

obstruction. A further analysis of the clusters revealed known clinical and genetic factors 

relevant in Crohn's disease and progression to intestinal obstruction. 

In conclusion, we demonstrated TransVarSur’s ability to accurately stratify a patient population 

into clinically and genetically relevant, risk-associated subgroups. Hence, it can be a powerful 

tool in the development of precision medicine approaches. 
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INTRODUCTION 

There has been a notable shift in the healthcare sector towards digitizing patient information, 

with electronic health records (EHRs) emerging as the new norm. As of 2018, the adoption 

rate of EHR systems has surpassed 84% and 94% in the US and UK, respectively 1,2. EHR 

systems offer a comprehensive and easily accessible source of patient data, typically 

gathering data from millions of individuals over many years, encompassing various sources 

(such as primary and secondary care) and modalities (such as diagnoses, medications, and 

lab tests). The extensive nature of EHRs makes them a valuable resource for healthcare 

research, enabling more accurate modeling of patients and their disease risk, onset, and 

progression. However, the sheer size and complexity of EHR data inevitably pose challenges 

to modeling efforts, necessitating the development of sophisticated algorithms and data 

processing methods. Rapid advancements in the field of artificial intelligence (AI) and machine 

learning (ML) have had a profound impact on a wide range of industries and provide many 

opportunities for improving healthcare as well 3,4. Specifically, machine learning has shown 

great promise in EHR research due to its ability to uncover hidden patterns and trends in such 

complex datasets. AI/ML methods have been successfully used for addressing a range of 

research questions, including modeling disease progression 4, predicting patient outcomes 5, 

and identifying novel disease subtypes 6.  

Here, we explore the application of AI/ML methods to the problem of EHR-based patient 

clustering in the context of disease-associated risk events. Patient clustering is an important 

concept in the field of precision medicine. Precision medicine aims to provide the right 

treatment, to the right patient at the right time, by utilizing individual patient characteristics to 

guide clinical decision-making, instead of population-wide averages of patient characteristics 
7. Patient clustering supports the development of precision medicine approaches by detecting 

patterns and trends within a certain patient population of interest, which can serve as the basis 

for the identification of novel disease subtypes. By studying the causal molecular mechanisms 

of these disease subtypes, more targeted and personalized therapeutic approaches can be 

developed. Disease subtyping is often relevant in the context of certain risk events 8. For 

example, why do some patients with Crohn's disease, a subtype of inflammatory bowel 

disease (IBD) progress to intestinal stricture (a narrowing of the intestines due to the formation 

of scar tissue and muscular hypertrophy), and others do not? As Crohn’s disease is a 

multifactorial disease, it is likely that there are multiple mechanisms associated with 

progression towards intestinal obstruction 9. Typically, one of the following two approaches is 

applied for elucidating how patient subgroups correlate with event risk: (1) Start with identifying 

patient clusters, and then analyze the risk event within each of the clusters 10. This approach 

has inherent limitations because resulting clusters are not guaranteed to correlate to the event 

risk. (2) Start with stratifying patients by the risk event, and then identify subgroups within the 

risk strata 11. The main limitation here is that it can be difficult to identify patient subgroups 

with differentiating generative mechanisms. In other words, a high-risk patient subgroup could 

exhibit significant heterogeneity in causal molecular mechanisms, and patient subgroups with 

comparable survival outcomes could have varying responses to identical treatments. 12. Hence, 

to enhance the identification of novel disease subtypes in the context of risk events of interest, 

patient clustering should be integrated with risk modeling (time-to-event analysis).  

Several studies have previously explored the combination of clustering and risk modeling. In 

one of the earliest efforts, Bair & Tibshirani et al. introduced SSC (Semi-Supervised 

Clustering), which initially selects features based on univariate Cox regression hazard scores 

and then conducts k-means clustering using the selected features 13. More recently, Chapfuwa 

et al. presented SCA (Survival Cluster Analysis), which uses a neural network to map 
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covariates to a latent space that is encouraged to follow a mixture of truncated Dirichlet 

processes 14. Additionally, Nagpal et al. developed DSM (Deep Survival Machines), a deep 

neural network for learning patient representations while regularizing these towards a mixture 

of Weibull distributions 15. The authors later extended this framework to RDSM (Recurrent 

Deep Survival Machines), for modeling longitudinal data using recurrent neural networks 16. 

However, none of these approaches directly integrated risk modeling with clustering. In all 

cases, the resulting clusters are purely driven by survival outcome (Table 1) and will suffer 

from the limitations we previously outlined. These limitations were eventually addressed by 

the introduction of VaDeSC (Variational deep survival clustering) 17, which directly integrates 

clustering and risk modeling by expressing cluster-specific associations between covariates 

and survival times in a single semi-supervised model, using a Gaussian mixture variational 

framework. Although VaDeSC provided a major advance in clustering survival data, it does 

not consider the longitudinal aspects of patient modeling. Insights into patients’ disease history 

and progression are however of great importance for developing a more comprehensive 

disease understanding and eventually developing more effective and personalized therapies 
18,19.  

In this work, we build upon recent advances in using language modeling technology for 

analyzing EHR sequences 4 and present a novel method for clustering longitudinal survival 

data: TransVarSur (Transformer Variational Survival modeling). TransVarSur extends the 

VaDeSC approach by modeling longitudinal patient data using an autoencoding transformer 

architecture. In this study, we demonstrate TransVarSur’s ability to capture statistical 

interactions between cluster-specific disease trajectories and survival times, enabling it to 

discover novel clinically relevant patient subgroups. 

 

Table 1: Conceptual comparison of TransVarSur and related approaches. Here, t 

denotes survival time, x denotes the input features, z corresponds to the latent representations. 

PH: Proportional Hazard. SSC: Semi-Supervised Clustering. SCA: Survival Cluster Analysis. 

DSM: Deep Survival Machines. RDSM: Recurrent Deep Survival Machines. VaDeSC: 

Variational deep survival clustering. 

 K-
means +  
Cox PH 

SSC SCA DSM RDSM VaDeSC TransVarSur 

Predicts t? No No Yes Yes Yes Yes Yes 

Learns z? No No Yes Yes Yes Yes Yes 

Models 
interactions 
between x 
and t? 

No No No No No Yes Yes 

Longitudinal 
model? 

No No No No Yes No Yes 
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RESULTS 

TransVarSur architecture 

 

Figure 1. Architecture of TransVarSur. First, an embedding is computed for a patient’s EHR 

sequence. This embedding serves as input for multiple transformer blocks, where the final 

pooling layer generates the latent representation Z for the patient. Z is regularized towards a 

Gaussian mixture distribution by including a variational term in the loss function. Z is then used 

to predict the time-to-event, as well as passed to the transformer decoder for reconstructing 

the patient's EHR sequence. Weights are shared between the encoder and decoder. For more 

details, please refer to the Methods section. 

 

 

 

Figure 2. The embedding structure. Simulated example of an EHR sequence for a single 

individual with 8 diagnoses spread across 5 primary or hospital care visits (0 - 4) embedded 

at three levels of the ICD10 ontology. Diag.: Diagnosis. 
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Our proposed method, TransVarSur, takes a patient’s disease history (diagnosis sequence) 

as an input and maps it into a latent representation 𝑧 using a transformer-based variational 

autoencoder (VAE) with a Gaussian mixture prior (Figure 1). The survival outcome is modeled 

using a mixture of Weibull distributions with cluster-specific parameters 𝛽. The parameters of 

the Gaussian mixture and Weibull distributions are jointly optimized using the EHR sequences 

and survival outcomes. Note henceforth we use the terms survival modeling, risk modeling 

and time-to-event modeling interchangeably.  

For the input embedding layer, each diagnosis is represented by a combination of six distinct 

embeddings (Figure 2): three for the ICD10 code (subcategory, category, and block), one for 

age, one for type, and one for position. The three-level embedding for ICD10 diagnoses is 

designed to capture the hierarchical structure inherent in the ICD10 coding system. The age 

embedding represents the patient's age at the time of diagnosis and can additionally assist 

the model in understanding the temporal gaps between diagnoses. The type embedding 

differentiates between diagnoses derived from primary care data and those from hospital data. 

The position embedding, representing visits, establishes the relative placement of diagnoses 

within the EHR sequence, allowing the network to recognize positional relationships among 

diagnoses. Diagnoses originating from the same visit will have identical position embeddings. 

Details around the model architecture and loss function can be found in the Methods section. 

 

TransVarSur outperforms baseline methods on simulated 

benchmark 

As a first step in validating TransVarSur, we assessed performance on a benchmark dataset 

simulated using a TransVarSur decoder (see Method section). In addition to evaluating the 

cluster predictions using the balanced accuracy (ACC), normalized mutual information (NMI) 

and adjusted Rand index (ARI), we evaluated the time-to-event predictions using concordance 

index (CI). Note that due to the noise in the data generating process, achieving perfect 

performance was impossible.  

 

Table 2. Performance on simulated benchmark data. Comparison between TransVarSur 

and the other methods used for clustering survival data, in terms of balanced accuracy (ACC), 

normalized mutual information (NMI), adjusted Rand index (ARI), and concordance index (CI). 

Reported ± is one standard error, and significance of the difference (p-val < 0.05) between 

TransVarSur and the other methods is indicated by an asterisk. 

Method ACC NMI ARI CI 

k-means+Cox 
PH 

0.334±0.002* 0.0003±0.0001* -0.0003±0.0003* 0.505±0.001* 

SSC 0.3334±0.0004* 0.0003±0.0002* 0.00005±0.00050*  

SCA 0.336±0.007* 0.03±0.02* 0.006±0.040* 0.639±0.006* 

DSM 0.3327±0.0004* 0.0005±0.0005* -0.0005±0.001* 0.49±0.01* 

RDSM 0.502±0.002* 0* 0* 0.500±0.001* 

VaDeSC 0.57±0.05* 0.37±0.04* 0.44±0.03* 0.79±0.02* 

TransVarSur 0.64±0.04 0.72±0.04 0.66±0.07 0.77±0.01 

 

As can be seen, TransVarSur significantly outperformed all other methods in retrieving the 

ground truth clusters from the benchmark data (Table 2). The next best performing method 
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was VaDeSC, the method most closely related to TransVarSur. The main difference between 

the two methods is that TransVarSur incorporates a transformer-based architecture for 

modeling the longitudinal nature of the EHR data, whereas VaDeSC relies on a simple fully 

connected neural network with TF-IDF features. As expected, the transformer architecture 

helped TransVarSur to achieve much better performance on the longitudinal clustering task 

than VaDeSC (TransVarSur: ACC = 0.78±0.04, NMI = 0.72±0.04 and ARI = 0.66±0.07; 

VaDeSC: ACC = 0.67±0.02, NMI = 0.37±0.04 and ARI = 0.44±0.03). Importantly, TransVarSur 

achieved its superior clustering performance while hardly sacrificing performance on the risk 

prediction task. VaDeSC only showed marginally better performance on survival prediction 

than TransVarSur (CI = 0.79±0.02 for VaDeSC vs. CI = 0.77±0.01 for TransVarSur, p-val = 

0.007). This marginal performance difference can potentially be explained by the fact that 

TransVarSur was trained for 200 epochs compared 160 for VaDeSC because its transformer 

architecture has many more parameters than VaDeSC’s simple feedforward neural network. 

During these 40 additional epochs, TransVarSur may have mildly overfit on the survival times 

relative to the diagnosis data, as compared to VaDeSC. It is however important to note that, 

should such differences exist and be relevant in a given setting, they are easily mitigated by 

weighting the different components of the loss function (e.g. 20).  

The remaining models (k-means+Cox PH, SSC, SCA, DSM and RDSM) performed no better 

than random at retrieving the ground truth clusters. Whereas RDSM clearly stood out as the 

third-best performing on the risk prediction task, it did perform worse than VaDeSC. This is 

interesting, because RDSM explicitly models the EHR data as sequences, whereas VaDeSC 

does not. However, as explained in the introduction, RDMS’s clusters are solely driven by 

survival times. This can explain the observed difference between VaDeSC and RDSM on the 

risk prediction task, and again highlights the importance of modeling the interactions between 

the diagnosis sequences and the survival times. 

 

Figure 3. Performance on simulated benchmark data. Comparison between TransVarSur 

and the other methods used for clustering survival data. TransVarSur_nosurv represents 

TransVarSur trained without risk loss. A) Performance on retrieving the ground-truth clustering, 

in terms of the area under the receiver-operating characteristic (ROC), with p-values for the 

significance of the difference between TransVarSur and the other methods; B) Performance 

on retrieving the ground-truth clustering in terms of balanced accuracy (ACC), with 0.5 for 

random performance.; C) Performance on time-to-event prediction, in terms of concordance 

index (CI), with 0.5 for random performance. 
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Table 3. Performance on T1D/T2D benchmark data. Comparison between TransVarSur 

and the other methods used for clustering survival data, in terms of balanced accuracy (ACC), 

normalized mutual information (NMI), adjusted Rand index (ARI), and concordance index (CI). 

Reported ± is one standard error, and significance of the difference (p-val < 0.05) between 

TransVarSur and the other methods is indicated by an asterisk. 

Method ACC NMI ARI CI 

k-means+Cox PH 0.40±0.01* 0.06±0.01* -0.09±0.01* 0.51±0.01* 

SSC 0.40±0.02* 0.06±0.02* -0.087±0.007*  

SCA 0.51±0.02* 0.003±0.003* 0.01±0.01* 0.57±0.01* 

DSM 0.50±6.62e-05* 7.2e-8±1.44e-7* -0.00015±0.0003* 0.37±0.02* 

RDSM 0.50* 0* 0* 0.65±0.02 

VaDeSC 0.70±0.04* 0.12±0.07* 0.11±0.09 0.70±0.04 

TransVarSur_nosurv 0.66±0.05* 0.06±0.03* 0.07±0.06*  

TransVarSur 0.81±0.02 0.24±0.04 0.22±0.04 0.71±0.01 

 

 

TransVarSur outperforms baseline methods on a T1D/T2D 

benchmark 

We next assessed the performance of TransVarSur and the other methods on a specifically 

designed real-world use case from UK Biobank data with known ground-truth cluster labels: 

distinguishing 494 type 1 diabetes (T1D) patients from 1830 type 2 diabetes (T2D) patients in 

their progression towards retinal disorders. Note that the T1D and T2D labels were not used 

for clustering, and thus also the age at first T1D or T2D diagnosis was not available to the 

model. The main observations strongly mirror those made from the simulation benchmark. 

TransVarSur outperformed the other methods at retrieving the ground truth clustering (Figure 

3 and Table 3; AUC = 0.80±0.01, ARI = 0.22±0.04), while not giving up any risk prediction 

performance. A UMAP projection of the latent representations of the diagnosis sequences 

indeed showed that patients with the same ground truth disease label (either T1D or T2D) 

tended to be close in the latent space (Figure S1). VaDeSC (AUC = 0.66±0.01 and ARI = 

0.11±0.09) was the next best performing method, performing better than TransVarSur_nosurv 

(AUC = 0.69±0.01, ARI = 0.07±0.06), in which the survival loss is turned off. TransVarSur’s 

performance is degraded when not considering the survival times (TransVarSur_nosurv), 

illustrating that in achieving its superior performance, the full TransVarSur model does indeed 

exploit the interactions between EHR trajectories and survival times. As opposed to the 

simulation benchmark, performance of TransVarSur and VaDeSC on the risk prediction task 

was statistically indistinguishable (CI = 0.70±0.04, p-val = 0.69). Mirroring the results on the 

simulated data benchmark, all other models performed poorly at retrieving the ground truth 

clusters. Finally, RDSM again clearly stood out at the third-best performing on the risk 

prediction task, highlighting the importance of accounting for interactions between diagnosis 

sequences and survival times. 
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Application: TransVarSur identifies clinically and 

genetically relevant Crohn’s disease patient subgroups 

 

Figure 4. Clustering Crohn’s disease patients from the UK Biobank in their progression 

towards intestinal obstruction. A) UMAP (Uniform Manifold Approximation and Projection) 

projection of the latent representations of the CD patients, coloring patients by cluster; B) 

Cluster-specific Kaplan–Meier curves with 95% confidence intervals. 

 

 

Figure 5. Association of CD clusters with individual diagnoses and pathway polygenic 

risk scores (pathway PRS). A) Cluster-specific enrichment of individual CD-relevant 

diagnoses, computed relative to all other clusters, ranging from blue (negative) to red (positive) 

association. Asterisks indicate the significant level: * p-val < 0.05, ** p-val < 0.01 and *** p-val 

< 0.001; B) Pathway PRS of the adaptive immune response pathway, comparing clusters 2 

and 3 with clusters 1 and 4 (left), and cluster 3 with the other three clusters (right). 
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Figure 6. Association of CD clusters with smoking behavior. A) Percentage of patients 

who ever smoked (p-val = 1.86x10-05, multinomial logistic regression with log likelihood ratio 

test adjusted by sex and location of location of recruitment) and B) Percentage of patients with 

reported nicotine dependence (ICD10 code: F17) (p-val = 0.001). C) Association of ever 

having smoked with risk of intestinal obstruction and D) Association of nicotine dependence 

with risk of intestinal obstruction (ICD10 code: F17). Error bars show the 95% confidence 

intervals and * represents significance of p-val < 0.05 (multivariate Cox regression). 
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Figure 7. Enrichment of diagnosis subsequences across fast and slowly progressing 

clusters. Diagnoses are colored by occurrence before (blue) or after (red) the first CD 

diagnosis (black). A) Diagnosis subsequences significantly enriched in slow progressors 

(clusters 1 and 4) relative to fast progressors (clusters 2 and 3) (logistic regression coefficient > 

0 and adjusted p-val < 0.05) with the width of the band representing the number of patients 

with a given subsequence. B) Diagnosis subsequences significantly enriched in fast 

progressors but not in slow progressors (logistic regression coefficient < 0 and adjusted p-val 

< 0.05). 

After our technical validation with ground-truth cluster labels, we applied TransVarSur to 1,908 

Crohn’s disease (CD) patients from the UK Biobank for the purpose of identifying patient 

subgroups related to progression towards intestinal obstruction. Here, TransVarSur identified 

four patient subgroups (CI = 0.91±0.02) that demonstrated both divergent disease histories 

and divergent risk profiles (Figure 4). More specifically, we observed that patients clustered 

together tended to be close in the latent space, i.e. have diagnosis trajectories that are similar 

(Figure 4A). Additionally, the four patient subgroups each demonstrated distinct time-to-event 

profiles (Figure 4B). Analyzing variables potentially confounding our subsequent interpretation 

of the clusters, we found the four clusters to be significantly associated with age of onset (p-

val = 6.82x10-05), sex (p-val = 2.35x10-10), genetic principal component number 1 (PC1) (p-val 

= 0.01) and UKB recruitment location (p-val = 3.91x10-35), but not with the overall EHR 

sequence length (Figures S2 and S3). All subsequent analyses were corrected for these 

potential confounders. 

To gain insight into the generative mechanisms giving rise to the observed differences in 

intestinal obstruction risk, we first analyzed differential enrichment of individual diagnoses 

across the clusters. We found that for the most slowly progressing patients (cluster 1), many 

important CD-related ICD10 codes were reported significantly less frequently, such as R10 

(Abdominal and pelvic pain) (adjusted p-val = 0.03), R11 (Nausea and vomiting) (adjusted p-
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val = 0.0014) and D64 (Anemia) (adjusted p-val = 0.0002) (Figure 5A). On the other hand, 

cluster 2 and cluster 3 with the fastest progression towards intestinal obstruction, were 

significantly enriched for many of the same ICD10 codes (Figure 5A). Interesting was also the 

association with ICD10 code K43 (Ventral hernia), significantly positively associated with 

clusters 2, but negatively with clusters 1 (Figure 5A). Ventral hernia is a common complication 

in inflammatory bowel disease 21 and a known cause of bowel obstruction 22,23, the risk event 

selected for the current analysis.  

Due to the interesting and poorly understood differential effects of smoking behavior between 

the two main types of inflammatory bowel disease (protective in ulcerative colitis and harmful 

in Crohn’s disease) 24,25, we were then interested to see whether smoking was uniformly 

harmful across our identified CD patient subgroups. We observed that the slowest progressing 

cluster 1 was enriched for smoking behavior (ever smoked: p-val = 1.86x10-05; nicotine 

dependence: p-val = 0.001) (Figure 6A/B). Additionally, we indeed observed that smoking 

behavior significantly associated with faster progression towards intestinal obstruction in the 

overall CD patient population (nicotine dependence: hazard ratio = 0.31, p-val = 0.008) (Figure 

6D). Surprisingly though, specifically in cluster 1 we observed that smoking was in fact 

significantly associated with slower progression towards obstruction specifically (ever smoked, 

hazard ratio = -0.77, p-val = 5.80x10-08, Figure 6C; nicotine dependence, hazard ratio = -0.94, 

p-val = 0.0001, Figure 6D). Interestingly, this could suggest that in CD, patient subgroups exist 

for which smoking protects against progression towards intestinal obstruction, like for 

ulcerative colitis.  

As mentioned above, patients in clusters 1 and 4 generally took longer to develop intestinal 

obstruction than patients in clusters 2 and 3 (Figure 4B). To further gain insight into how 

disease trajectories longitudinally differed between these fast and slow progressors, we 

assessed which diagnosis subsequences were significantly enriched between these two pairs 

of clusters. Although there was no significant difference in overall diagnosis sequence length 

between the clusters (Figure S2A), the diagnosis history leading up to the first CD diagnosis 

was twice as long for patients in clusters 1 and 4 (slow progressors) as it was for patients in 

clusters 2 and 3 (fast progressors) (Figure S4), with many diagnosis subsequences 

significantly enriched in the slow progressors before their first CD diagnosis relative to the fast 

progressors (Figure 7A). These enriched diagnosis subsequences contained many known 

comorbidities of CD such as back pain, hypertension, and joint pain 26. Additionally, in clusters 

1 and 4, there was no significant enrichment of serious complications after the first Crohn’s 

disease diagnosis except hypertension. Conversely, clusters 2 and 3 were hardly significantly 

enriched for medical complaints leading up to their first CD diagnosis (Figure 7B).  However, 

the patients in clusters 2 and 3 did appear to progress more rapidly as evident from developing 

serious complications after CD onset, including complications due to abdominal pain, nausea, 

vomiting and iron deficiency anemia26-28 (Figure 7B). Interestingly, although patients in clusters 

1 and 4 generally had a better prognosis than patients in clusters 2 and 3, the diagnosis 

trajectories between clusters 1 and 4 did seem to be quite distinct (Figure S6). More 

specifically, we found that patients in cluster 1 were more enriched for pain (Back pain, 

Abdominal pain and Pain in joint) before their first CD diagnosis compared to patients in cluster 

1. Meanwhile, patients in cluster 4 were more enriched for hypertension in the whole EHR 

trajectory compared to patients in cluster 1 (Figure S6 and Figure S7). It could be that the 

patients in cluster 4 have a lower abundance of intestinal bacteria 

(especially Faecalibacterium prausnitzii), which has been shown to lead to hypertension in 

some CD patients 29. 

In addition to the EHR data that was used for identifying the four CD patient subgroups 

presented in this section, UK Biobank provides a wealth of other types of data on the same 
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CD patients that we did not use for clustering. Using the available genetics data, we computed 

pathways PRSs to assess differences in the underlying genetic background between fast and 

slow progression clusters (Table S1). Among others, we found that the fast progressors 

(clusters 2 and 3) displayed a higher genetic burden in a pathway related to the adaptive 

immune response (Figure 5B), relative to the slow progressors (clusters 1 and 4) (Figure 5B). 

Specifically, we found that the patients in fastest progressing cluster 2 displayed a higher 

genetic burden in this pathway than the patients in all other, more slowly progressing, clusters. 

The involvement of innate immunity versus adaptive immunity in the pathogenesis of CD is an 

important topic of research 30. Recently, several studies demonstrated the role of an abnormal 

adaptive immune response in the pathogenesis of CD 30-32, and the over-reactive adaptive 

immune response is in fact the target of current CD treatments 32. Our results confirm the 

important role that the adaptive immune response may play in the pathogenesis of CD in at 

least a sub-population of CD patients.   

 

 

DISCUSSION 

Precision medicine aims to develop therapies that are targeted to specific patient subgroups 

based on their predicted disease risk or progression, or treatment response. Due to their scale, 

comprehensive nature, and multimodality, EHRs have emerged as a valuable source of data 

for healthcare research in general and the development of precision medicine approaches 

specifically 33. An important concept in precision medicine is the identification of novel patient 

subgroups, i.e. patient clustering. Clustering patients with similar disease trajectories can 

support the identification and characterization of novel disease subtypes, the molecular 

characterization of which can lead to the development of more personalized therapeutics 

approaches. 

In this paper, we introduced a novel deep probabilistic model, TransVarSur, for clustering 

longitudinal time-to-event data extracted from EHRs. TransVarSur exploits statistical 

interactions between a patient’s disease history and survival time, enabling it to identify non-

trivial patient subgroups characterized by both divergent disease histories and survival times. 

We validated TransVarSur on two benchmark experiments with known ground-truth cluster 

labels, showing that TransVarSur outperformed all baseline methods on simultaneously the 

risk prediction task and the task of retrieving the ground-truth clustering. This means that, 

relative to TransVarSur, the baseline methods may miss clinically relevant subgroups due to 

either their focus on purely risk-driven clustering or their inability to model EHRs as sequences. 

After the benchmark validation, we applied TransVarSur to a real-world use case: clustering 

Crohn’s disease patients in their progression towards the risk event of intestinal obstruction. 

We demonstrated that the subgroups identified by TransVarSur were both clinically and 

biologically relevant.  

TransVarSur is a first attempt at integrating EHR trajectory clustering with risk modeling and 

we see many opportunities for future research, a few of which we list here. First, the attention 

mechanism in the transformer architecture could be used to improve the interpretability of 

resulting clusters, e.g. by integrating an attention-based feature importance score 34. Second, 

in our implementation of TransVarSur we took some limited steps in representing relations 

between medical concepts by embedding multiple layers of the ICD10 ontology, using the 

alphanumeric ICD10 codes. However, more sophisticated, and potentially more powerful, 

approaches have been published that could be integrated with TransVarSur. Examples 

include modeling the entire ICD10 ontology by representing ICD10s as combinations of their 
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ancestors via an attention mechanism 35  as well as generating embeddings based on ICD10 

text descriptions instead of the ICD10 codes 36. Third, additional data modalities could be 

included to provide a more comprehensive view on a patient’s disease presentation, as well 

as to investigate factors potentially confounding the interpretation of the clustering, such as 

additional longitudinal EHR data modalities (e.g. medications, lab tests and surgical 

procedures) and demographics (e.g. age, sex, education) or molecular data modalities 

commonly available in biobanks (e.g. genomics, proteomics) 37.  

In conclusion, we demonstrated that TransVarSur is highly effective at disentangling complex 

relationships between cluster-specific disease trajectories and survival times, as retrieved 

from EHR data. Hence, TransVarSur can be a powerful tool for supporting the development 

of precision medicine approaches by its ability to discover novel risk-associated patient 

subgroups.  
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METHODS 

EHR dataset from UK Biobank 

For our analyses, we use both the primary and secondary (hospital) care diagnosis records 

made available via the UK Biobank (UKBB) resource 38. From the total of 451,265 patients 

with available EHRs, we only include those with a diagnosis sequence covering a period of at 

least one month and containing between 5 and 200 records, which resulted in a dataset of 

352,891 patients. We then map all resulting diagnosis codes from [Read v2/3 and ICD9] to 

ICD10 38. A summary of the data can be seen the Table 4.   

 

Table 4. Summary of the data sets used in this study 

CD: Crohn’s disease; T2D: Type-2 diabetes 

  UKBB EHR Benchmark 
(T2D/T1D) 

CD use case 

Source Primary care 5,999,672 60,148 53,470 

 Secondary care 3,434,668 68,628 39,179 

     

Age 0-30 219,721 937 1920 

 30-60 5,468,079 52,645 51,673 

 60- 3,746,540 75,194 39,056 

Sex Male 157,065 1,459 825 

 Female 195,826 865 1,083 

Number of 
records 

 9,434,340 128,776 92,649 

Number of 
patients 

 352,891 2,324 1,908 
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TransVarSur architecture 

Here we describe in detail the overall architecture of TransVarSur presented in Figure 1.  

In our study, every patient 𝑝 ∈ {1, 2, … , 𝑃} is defined by a three-element tuple (𝑥𝑝, 𝛿𝑝, 𝑡𝑝). 

Specifically, 𝑥𝑝signifies the patient’s sequence of diagnoses. The censoring indicator, 𝛿𝑝, is 

assigned 0 when the survival time of the 𝑝-th patient is censored and 1 in all other cases. The 

censored survival time is represented by 𝑡𝑝, while the survival distribution 𝑆(𝑡|𝑥) = 𝑃(𝑇 > 𝑡|𝑥) 

parameters are optimized using the maximum likelihood method. To enable clustering, an 

unobserved cluster assignment variable 𝑐𝑝 ∈ {1, 2, … , 𝐾} is also considered. Consequently, 

our model pursues two primary goals: 1) deduce the cluster assignment 𝑐𝑝 for each individual 

patient 𝑝, and 2) establish the survival distribution based on the variables 𝑥𝑝 and 𝑐𝑝. 

 

The generative process 

Here, we describe the generative process of TransVarSur. First, a cluster assignment 𝑐 ∈
{1, 2, … , 𝐾} is sampled from a categorical distribution: 𝑝(𝑐) = 𝐶𝑎𝑡(𝜋). Then a latent embedding 

𝑧 is sampled from a Gaussian distribution: 𝑝(𝑧|𝑐) = 𝒩(𝜇𝑐 , 𝜎𝑐
2).  The diagnoses sequence 𝑥 is 

generated from 𝑝(𝑥|𝑧) which is modeled by a transformer-based decoder neural network. 

Finally, the survival time 𝑡 is generated by 𝑝(𝑡|𝑧, 𝑐).  

 

Survival modeling 

The survival time 𝑝(𝑡|𝑧, 𝑐) is modeled by a Weibull distribution and adjusts for right-censoring: 

𝑝(𝑡|𝑧, 𝑐) = 𝑓(𝑡)𝛿𝑆(𝑡|𝑧, 𝑐)1−𝛿 = [
𝑘

𝜆𝑐
𝑧 (

𝑡

𝜆𝑐
𝑧)

𝑘−1
𝑒𝑥𝑝 (− (

𝑡

𝜆𝑐
𝑧)

𝑘
)]

𝛿

[𝑒𝑥𝑝 (− (
𝑡

𝜆𝑐
𝑧)

𝑘
)]

1−𝛿

     (1) 

Where 𝜆𝑐
𝑧 = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑧𝑇𝛽𝑐)，𝛽𝑐 ∈ {𝛽1, 𝛽2, … , 𝛽𝐾}; 𝑓(𝑡) is the Weibull distribution, and 𝑆(𝑡|𝑧, 𝑐) 

is the survival function 17. 

 

Evidence Lower Bound 

Variables 𝑥 and 𝑡 are independent given z. Hence, 𝑥 and 𝑐 are also independent, and joint 

distribution 𝑝(𝑥, 𝑡) can be expressed as: 

𝑝(𝑥, 𝑡) = ∫ ∑ 𝑝(𝑥, 𝑡, 𝑧, 𝑐) =𝐾
𝑐=1𝑧 ∫ ∑ 𝑝(𝑥|𝑧)𝑝(𝑡|𝑧, 𝑐)𝑝(𝑧|𝑐)𝑝(𝑐)𝐾

𝑐=1𝑧
              (2) 

Since the likelihood function in Equation 2 is intractable, we maximize the lower bound of the 

log marginal probability: 

log 𝑝(𝑥, 𝑡) ≥ 𝔼𝑞(𝑧, 𝑐|𝑥, 𝑡) log [
𝑝(𝑥|𝑧)𝑝(𝑡|𝑧,𝑐)𝑝(𝑧|𝑐)𝑝(𝑐)

𝑞(𝑧,𝑐|𝑥,𝑡)
]                          (3) 

We approximate the probability of the latent variables 𝑧 and 𝑐 given the observations with a 

variational distribution 𝑞(𝑧, 𝑐|𝑥, 𝑡) = 𝑞(𝑧|𝑥)𝑞(𝑐|𝑧, 𝑡) . In our model, the first term 𝑞(𝑧|𝑥)  is 

parameterized by a transformer-based neural network. The second term is equal to the true 

probability  𝑝(𝑐|𝑧, 𝑡): 

𝑞(𝑐|𝑧, 𝑡) = 𝑝(𝑐|𝑧, 𝑡) =
𝑝(𝑧,𝑡|𝑐)𝑝(𝑐)

∑ 𝑝(𝑧,𝑡|𝑐)𝑝(𝑐)𝐾
𝑐=1

=
𝑝(𝑡|𝑧,𝑐)𝑝(𝑧|𝑐)𝑝(𝑐)

∑ 𝑝(𝑡|𝑧,𝑐)𝑝(𝑧|𝑐)𝑝(𝑐)𝐾
𝑐=1

                  (4) 
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Thus, the evidence lower bound (ELBO) can be written as 

𝐿(𝑥, 𝑡) = 𝔼𝑞(𝑧|𝑥)𝑝(𝑐|𝑧,𝑡) log 𝑝(𝑥|𝑧) + 𝔼𝑞(𝑧|𝑥)𝑝(𝑐|𝑧, 𝑡) log 𝑝(𝑡|𝑧, 𝑐) − 𝐷𝐾𝐿(𝑞(𝑧, 𝑐|𝑥, 𝑡)||𝑝(𝑧, 𝑐))        (5) 

The ELBO can be approximated using the stochastic gradient variational Bayes (SGVB) 

estimator to be maximized efficiently using stochastic gradient descent. For the complete 

derivation, we refer the reader to previous work 17. 

 

Transformer-based encoder and decoder 

Transformer neural networks are used in both the encoder and the decoder. We use the 

classical transformer architecture with 6 layers, 16 attention heads, a 768-dimensional latent 

space, and 1280-dimensional intermediate layers. The maximum sequence length is set to 

200 as mentioned before. 

 

Summarizing with a pooling layer: SeqPool 

In the original BERT language model, a token [CLS] was used mainly to summarize the 

information from the sequence 4. However, EHR sequences tend to be considerably longer, 

for instance containing ten or more visits. Relying solely on one summarization token would 

inevitably result in a loss of information. As a solution, we utilize a SeqPool layer to consolidate 

the entire sequence of a patient into a single, comprehensive embedding for that individual 39. 

SeqPool maps the output sequence using the transformation 𝑇 ∶  ℝ𝑏×𝑛×𝑑  → ℝ𝑏×𝑑. 

Given: 

𝑋𝐿 = 𝑓(𝑋0) ∈ ℝ𝑏×𝑛×𝑑 

where 𝑋𝐿 is the output of an 𝐿 layer transformer encoder 𝑓, and 𝑏 is the batch size, 𝑛 is the 

sequence length, 𝑑 is the total embedding dimension. 𝑋𝐿 is fed to a linear layer 𝑔(𝑋𝐿) ∈

ℝ𝑑×1, and softmax activation is applied to the output: 

𝑋𝐿
′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔(𝑋𝐿)𝑇) ∈ ℝ𝑏×1×𝑛 

This generates an importance weighting for each input token, which is applied as follows 39: 

𝑧 = 𝑋𝐿
′ 𝑋𝐿 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔(𝑋𝐿)𝑇) × 𝑋𝐿 ∈ ℝ𝑏×1×𝑑 

By flattening, the output 𝑧 ∈ ℝ𝑏×𝑑 is produced which is a summarized embedding for the full 

patient sequence. 

 

Pre-training and fine-tuning strategy 

We pre-train the encoder part of our model on the entire UK Biobank EHR dataset (Table 1, 

column 1). Following the original BERT paper, we use a masked diagnosis learning strategy 

for pre-training. Specifically, for each patient, in the diagnosis sequence, we set an 80% 

probability to replace a code by [MASK], a 10% probability to replace a code by a random 

other code, and the remaining 10% probability to keep the code unchanged.  

After pre-training the TransVarSur encoder, we fine-tune TransVarSur end-to-end on specific 

use cases, such as Crohn’s disease (CD) patients (Table 1, column 3). Important to note here 

is that in the fine-tuning stage, the decoder will benefit from the pre-trained encoder, because 
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weights are shared between the two. The number of components of the Gaussian mixture 

distribution is determined by minimizing the Bayesian information criterion (BIC) and 

maximizing the concordance index (CI). We normalized BIC to range from 0 to 1 and then 

maximize √𝐶𝐼2 + (1 − 𝐵𝐼𝐶𝑛𝑜𝑟𝑚)2. 

Simulation and benchmark data 

We validate and compare TransVarSur with a range of baseline methods in two settings. 

1) Simulated data 

Following a previously taken approach 17, we use a pseudo transformer decoder to model and 

simulate the autocorrelation in diagnosis sequences (Figure S8). More specifically, let 𝐾 be 

the number of clusters, 𝑁 the number of data points, 𝐿 the capped sequence length, 𝐻 the 

dimensionality of embedding, 𝐷 the size of vocabulary, 𝐽 the number of latent variables, 𝑘 the 

shape parameter of the Weibull distribution and 𝑝𝑐𝑒𝑛𝑠 the probability of censoring. Then, the 

data generating process can be summarized as follows: 

1) Let 𝜋𝑐 =
1

𝐾
, for 1 ≤ 𝑐 ≤ 𝐾 

2) Sample 𝑐𝑖~𝐶𝑎𝑡(𝜋), for 1 ≤ 𝑖 ≤ 𝑁 

3) Sample 𝜇𝑐,𝑗~𝑢𝑛𝑖𝑓(−10,10), for 1 ≤ 𝑐 ≤ 𝐾 and 1 ≤ 𝑗 ≤ 𝐽 

4) Sample 𝑧𝑖~𝒩(𝜇𝑐𝑖
, 𝛴𝑐𝑖

), for 1 ≤ 𝑖 ≤ 𝑁 

5) Sample 𝑠𝑒𝑞𝑖~𝑢𝑛𝑖𝑓(0, 𝐿), for 1 ≤ 𝑖 ≤ 𝑁 

6) Let 𝑔𝑟𝑒𝑠(𝑧) = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑅𝑒𝐿𝑈(𝑤𝑧 + 𝑏), 𝐿 × 𝐻), where 𝑤 ∈  ℝ𝐿𝐻×𝐽  and 𝑏 ∈  ℝ𝐿𝐻  random 

matrices and vectors.  

7) Let 𝑥𝑖 = 𝑔𝑟𝑒𝑠(𝑧𝑖), for 1 ≤ 𝑖 ≤ 𝑁 

8) Let 𝑔𝑎𝑡𝑡(𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑤𝑄𝑥+𝑏𝑄)(𝑤𝐾𝑥+𝑏𝐾)𝑇

√𝐻
+ 𝑚𝑎𝑠𝑘) (𝑤𝑉𝑥 + 𝑏𝑉), where 𝑤𝑄, 𝑤𝐾 , 𝑤𝑉 and 

𝑏𝑄 , 𝑏𝐾 , 𝑏𝑉 are random matrices and vectors. Mask is based on 𝑠𝑒𝑞𝑖 

9) Let 𝑥𝑖 = 𝑔𝑎𝑡𝑡(𝑔𝑎𝑡𝑡(𝑔𝑎𝑡𝑡(𝑥𝑖))), for 1 ≤ 𝑖 ≤ 𝑁 

10) Let  𝑔𝑑𝑒𝑐(𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑒𝐿𝑈(𝑤𝑥 + 𝑏)), where 𝑤 ∈  ℝ𝐷×𝐻  and 𝑏 ∈  ℝ𝐷  random 

matrices and vectors.   

11) Let 𝑥𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑔𝑑𝑒𝑐(𝑥𝑖))[1: 𝑠𝑒𝑞𝑖], for 1 ≤ 𝑖 ≤ 𝑁 

12) Sample 𝛽𝑐,𝑗~𝑢𝑛𝑖𝑓(−2.5,2.5), for 1 ≤ 𝑐 ≤ 𝐾 and 1 ≤ 𝑗 ≤ 𝐽 

13) Sample 𝑢𝑖~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑧𝑖
𝑇𝛽𝑐𝑖

), 𝑘), for 1 ≤ 𝑖 ≤ 𝑁 

14) Sample 𝛿𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑝𝑐𝑒𝑛𝑠), for 1 ≤ 𝑖 ≤ 𝑁 

15) Let 𝑡𝑖 = 𝑢𝑖, if 𝛿𝑖 = 1, and sample 𝑡𝑖~𝑢𝑛𝑖𝑓(0, 𝑢𝑖) otherwise, for 1 ≤ 𝑖 ≤ 𝑁 

 

In our experiments, we fix 𝐾 = 3, 𝑁 = 30000, 𝐽 = 5, 𝐷 =

1998 (ICD10 category level vocabulary), 𝑘 = 1, 𝑝𝑐𝑒𝑛𝑠 = 0.3,  𝐿 = 100 and for the pseudo-

attention operation, we use 3 attention layers with 10 heads in each layer. We split the 

generated data into three parts, one for training, one for validating and one for testing the 

model. We repeat this process for 5 times to arrive at five performance estimates. 

2) Benchmark data 

There are no standard benchmark datasets for EHR-based patient clustering. Therefore, in 

this study, we design a benchmark based on separating Type 1 diabetes mellitus patients from 

Type 2 diabetes mellitus patients in their progression towards retinal complications. We select 

patients using the ICD10 codes E10 for Type 1 diabetes mellitus and E11.3 for Type 2 diabetes 

mellitus, and then label them with the ICD10 code H36 for the risk event of retinal disorders. 

Finally, for each patient, we delete these three ICD10 codes (E10, E11.3 and H36) from the 
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input diagnoses sequence to avoid information leakage, which gives us our benchmark 

dataset (Table 4, column 2). 

 

Methods comparison and metrics 

We compare TransVarSur to a range of well-established baselines: variational deep survival 

clustering (VaDeSC), the semi-supervised clustering (SSC), survival cluster analysis (sca), 

deep survival machines (DSM) and recurrent neural network-based DSM (RDSM), as well as 

k-means and regularized Cox PH as naïve baselines. Finally, to assess the influence of the 

survival loss on the eventual clustering, we include TransVarSur_nosurv, in which the survival 

loss of TransVarSur is turned off. For all methods, hyperparameters are optimized by 5-fold 

cross validation. We use ICD10-based TF-IDF features as the input for all methods but RDSM 

and TransVarSur, which allow for directly modeling sequences of events. 

We evaluate the clustering performance of models, when possible, in terms of balanced 

accuracy (ACC), normalized mutual information (NMI), adjusted Rand index (ARI), and area 

under the receiver-operating characteristic (AUC). Clustering accuracy is computed by using 

the Hungarian algorithm for mapping between cluster predictions and ground truth labels 40. 

Statistical significance of performance difference is determined using the Mann–Whitney U 

test.  

For the time-to-event predictions, we use the concordance index (CI) to evaluate the ability of 

the methods to rank patients by their event risk. Given observed survival times 𝑡𝑖, predicted 

risk scores 𝛿𝑖, and censoring indicators 𝛿𝑖 , the concordance index is defined as 

𝐶𝐼 =
∑ ∑ 𝟏𝑡𝑗<𝑡𝑖

𝟏𝜂𝑗>𝜂𝑖
𝛿𝑗

𝑁
𝑗=1

𝑁
𝑖=1

∑ ∑ 𝟏𝑡𝑗<𝑡𝑖
𝛿𝑗

𝑁
𝑗=1

𝑁
𝑖=1

 

 

Differential enrichment of diagnoses between clusters  

To identify potential confounding complicating the interpretation of the clusters, we check for 

association with sex, age, education level, location of UKB recruitment, 4 genetic principal 

components and overall EHR sequence length by Chi-square test and one-way ANOVA. Only 

sex and location of UKB recruitment significantly associates with the clustering. We calculate 

differential enrichment of diagnoses between clusters in two ways: 1) for individual diagnoses, 

and 2) for sequences of diagnoses. For the first one, we directly consider the ICD10 code. For 

the second one, we first map the ICD10 codes to Phecode 41 and CALIBER codes 42, which 

provide a higher level of abstraction in defining diseases. For each patient, we then identify 

all, potentially gapped, subsequences of three diagnoses from the EHR data, with the following 

restrictions: 1) for duplicate diagnoses in the diagnosis sequence, we only consider the first 

one, 2) the subsequence should contain a diagnosis of the disease under study (CD) but not 

contain the selected risk event (intestinal obstruction). 

We assess the statistical significance of the differential enrichment using a logistic regression 

predicting patient cluster from subsequence occurrence, adjusting for sex and location of 

recruitment. We correct the resulting p-value for multiple testing using the Benjamini–

Hochberg procedure, and threshold at 0.05 for significance.  
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Analysis of smoking behavior 

We analyze the association of smoking behavior with progression towards intestinal 

obstruction using a multivariate cox regression, individually testing the hazard ratio of two 

predictors related to smoking behavior: 1) data-field 20160 (ever smoked) from UK Biobank, 

and 2) diagnosis ICD10 code F17 (nicotine dependence). We correct both models for potential 

confounding by including sex and location of recruitment as covariates into the model.  

 

Pathway-based polygenic risk scores (PRS) 

We compute pathway-based polygenic risk scores (‘pathway PRSs’ henceforth) using PRSet 

to assess genetic differences between the patient clusters in, restricting ourselves to UK 

Biobank participants with European ancestry 43. Quality control steps were performed before 

calculating pathway PRSs, including filtering of SNPs with genotype missingness > 0.05, 

minor allele frequency (MAF) < 0.01 and with Hardy-Weinberg Equilibrium (HWE) p-val < 

5x10-8. We focus on 164 pathways related to Crohn’s disease as retrieved from the Gene 

Ontology – Biological Process (GO-BP) database, selected based on a literature and keyword 

search (“IMMUNE”) (Table S1) 44,45. We calculate pathway PRS for each pathway using 

variants located in coding regions. Association between each pathway PRS and the clusters 

is assessed using logistic regression predicting cluster from pathway PRS, adjusting for age, 

sex, PC1 and recruitment location. And p-val is calculated by log likelihood ratio test. We 

correct the resulting p-val for multiple testing using the Benjamini–Hochberg procedure and p-

val < 0.05 is used as the significance threshold. 

Data and Code availability 
The data and code that support the findings of this study are available from github 
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Figure S1. Using TransVarSur to distinguish T1D from T2D patients. A) UMAP of the 

patient representations; B) Cluster-specific Kaplan–Meier curves for both clusters. 

 

 

 

Figure S2. Association of CD patient subgroups with typical confounders. A) Normalized 

overall EHR length across clusters (One-way ANOVA p-val = 5.49x10-10); B) Distribution of 

age of onset in each cluster (One-way ANOVA p-val = 6.82x10-05); C) Sex distribution in each 

cluster (Chi-squared p-val = 2.35x10-10).; D) Fraction of patients in each cluster with college 

degree (Chi-squared p-val =0.67). 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 16, 2024. ; https://doi.org/10.1101/2024.01.11.24301148doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.11.24301148


 

Figure S3. Distribution of genetic principal components (PCs) across the four CD 

patient subgroups. One-way ANOVA test was conducted to check whether there was a 

significant difference between the clusters (p-val = 0.01, p-val = 0.29, p-val =0.56, p-val = 0.64 

for PC 1, 2, 3 and 4 respectively). 
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Figure S4. Distribution across clusters of EHR sequence length before first CD 

diagnosis. One-way ANOVA p-val = 4.48x10-10. 
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Figure S5. Association of CD patient subgroups with the location of UKB recruitment. 

(Chi-squared p-val = 3.91x10-35). 
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Figure S6. Association of CD clusters with diagnosis subsequences. Diagnosis 

subsequences enriched in cluster 1 (A) relative to cluster 4 (B) (logistic regression with a 

significance threshold at p-val = 0.05). 
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Figure S7. Differentially enriched diagnosis subsequences per cluster. A) cluster 1, B) 

cluster 2, C) cluster 3 and D) cluster 4. Associations were calculated by logistic regression 

with a significance threshold at p-val = 0.05. 
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Figure S8. The generation process of simulation benchmark data. For randomly 

generating one EHR sequence with corresponding time-to-event, we first sample a vector Z 

from a Gaussian mixture distribution initialized with random parameters. Z is then used to 

generate both a time-to-event and an EHR sequence. The time-to-event is generated by 

sampling from a 𝑊𝑒𝑖𝑏𝑢𝑙𝑙 distribution The EHR sequence is generated by feeding Z into a 

transformer-based pseudo-decoder with randomly initialized weights and converting to be one 

of ICD10 code in vocabulary with softmax function. For details we refer the reader to the 

Methods section. 
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