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Key Points: 

• Germline HLA-DQ genotype is an independent predictor of durable response and lower 
incidence of relapse/progression after CAR T-cell therapy in rrLBCL 

• HLA-DQ1/DQ1 genotype could influence the host immune response after CAR T-cell 
therapy and increase the chances of a durable response 
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Abstract  
 
CD19-directed chimeric antigen receptor (CAR) T cells have greatly improved the prognosis of 

relapsed/refractory large B-cell lymphoma (rrLBCL), yet treatment failure occurs in more than 

half of patients, usually in the first 3 months after treatment. While they primarily act through 

CAR-dependent, HLA-independent recognition of tumor targets, CAR-T cells may also 

indirectly contribute to long-term tumor immunosurveillance by stimulating endogenous 

immunity. We hypothesized that HLA diversity, measured by the HLA evolutionary divergence 

(HED) metric which reflects the breadth of the immunopeptidome presented to host T cells, 

could influence antitumor response after CAR T-cell therapy, as seen after immune chekpoint 

inhibitor treatment. We studied 127 rrLBCL patients treated with commercial CAR-T cells in 

our center, of whom 50 % achieved durable response.  We observed no impact of diversity at 

any HLA locus, except for HED-DQA1 that was surprisingly negatively associated with 

response. Analysis of the distribution of HLA-DQ alleles according to clustering of HED values 

pointed to the DQ1/DQ1 genotype as an independent predictor of durable response and lower 

incidence of relapse/progression. These findings highlight the unsuspected role of germline 

HLA-DQ molecules in the response to CAR-T cells and suggest an important contribution of 

cross-talk between CAR-T cells and endogenous immune cells.  
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Introduction 

Chimeric antigen receptor (CAR)-T cells targeting CD19 have revolutionized the treatment of 

relapsed/refractory large B-cell lymphomas (rrLBCL), yet less than half of patients show 

durable response. Among factors associated with CAR T-cell treatment failure, the emergence 

of CD19-negative escape variants and lack of CAR T-cell persistence are important causes of 

tumor relapse1,2. In addition to their HLA-independent, on-target recognition of CD19+ tumor 

cells, CAR-T cells can boost the host immune response, which helps limit antigen-loss-

mediated relapse and likely contributes to long-term tumor immunosurveillance3,4. 

The highly polymorphic HLA class 1 and class 2 molecules bind and present antigenic peptides 

to CD8 and CD4 T lymphocytes respectively, subsequently initiating antigen-specific immune 

responses. According to the heterozygote advantage5–7, heterozygous HLA alleles present a 

broader repertoire of antigenic peptides to T cells, which in turn promotes a more diverse T-

cell response. HLA diversity can be further quantified by the HLA evolutionary divergence 

(HED) metric, which reflects the breadth of the immunopeptidome presented to T cells8 and 

in turn, the strength of immune response. HED is associated with the response to immune 

checkpoint inhibitors in cancer patients9–11 and with the outcomes of hematopoietic stem cell 

or solid organ transplantation12–15. Notably, HLA heterozygosity and higher HED have recently 

been associated with a reduced risk of cancer development, including non-Hodgkin 

lymphomas16,17.  

Herein, we hypothesized that HLA diversity, by increasing the repertoire of tumor antigens 

presented to endogenous T cells, could promote the host immune response after CAR T-cell 

therapy and increase the chances of a durable response.  

 

Methods 

We performed a retrospective analysis of all patients who received commercial CAR-T cells for 

rrLBCL at St-Louis Hospital between June 2018 and January 2022 and had available DNA 

sample for HLA genotyping. Patients received axicabtagene-ciloleucel (axi-cel) or 

tisagenlecleucel (tisa-cel) depending on the availability of manufacturing slots. All patients 

received a cyclophosphamide and fludarabine-containing lymphodepleting regimen. 

Response (categorized as complete or partial response) or no response (stable or progressive 

disease) assessment was done at 1, 3, 6 months and then every 6 months per institutional 

practice and based on Lugano critera18. Primary outcomes were response at 6 months and 
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cumulative incidence of relapse/progression (CIR). Secondary outcomes were progression-

free survival (PFS) and overall survival (OS). The study was approved by the review board of 

Saint-Louis hospital, Assistance Publique-Hôpitaux de Paris (BIOCART-CPP 2019-77) and all 

patients signed informed consent prior to treatment.	 

HLA-A, -B, -C, -DRB1, -DQA1, -DQB1 and -DPB1 genotyping was performed using the NGSgo 

HLA Typing Assay (GENDX, Utrecht, The Netherlands) and sequencing on a Miseq platform 

(Illumina, San Diego, USA). The corresponding amino acid sequences of the peptide-binding 

region (encoded by exons 2 and 3 for class 1 genes, and exon 2 for class 2 genes) were 

extracted from the IMGT/HLA database19. The divergence (HED) between the peptide-binding 

regions of the two HLA alleles at each locus was calculated using the Grantham distance8. For 

HLA-DQA1, the amino acid at position 56 was ignored in the HED calculation because of a 

deletion mutation in several alleles.  

Continuous variables are presented as median and range, categorical variables as number and 

percentage. Comparison between groups was evaluated by unpaired t-test or Mann-Whitney 

test for continuous variables, and Fisher’s exact test for categorical variables. CIR was 

estimated using non-relapse mortality (NRM) as a competing risk and groups were compared 

with the Gray’s test. PFS and OS were estimated by the Kaplan-Meier method and groups 

were compared with the log-rank test. Multivariable analyses were performed using logistic 

regression for response at 6 months, Fine-Gray subdistribution hazard regression for CIR, and 

Cox proportional hazards model for PFS and OS, including all variables statistically significant 

(p < 0.05) in the univariable analysis. Analysis was conducted using GraphPad Prism 10.0 and 

R 4.2.1, RStudio, and the tidycmprsk package.  

 

Results and Discussion 

The characteristics of the 127 study patients are shown in Table 1. Among them, 63 (49.6%) 

were responders (R), defined as those who showed response at 6 months after CAR T-cell 

infusion, and 64 (50.4%) were non responders (NR) due to disease relapse or death at the 6-

month timepoint. Eleven patients died free from relapse after 6 months, including 7 from 

COVID-19.  Median follow-up was 19 months. At day 1000, the estimated CIR was 53.6 %, PFS 

38.0 % and OS 48.0 % (Figure 1A). At the time of decision to proceed to CAR T-cell therapy, 

extranodal sites ≥ 2 and high IPI were associated with a higher risk for non-response. At the 

time of treatment, poor PS, high IPI, elevated LDH levels, high total metabolic tumor volume 
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and the type of CAR T-cell product (tisa-cel versus axi-cel) were associated with an increased 

risk of treatment failure.  

We analyzed the potential impact of HLA diversity on the chances of a durable response 

assessed by the response at 6-months and CIR. There was no effect of HLA heterozygosity. We 

also did not observe any significant difference in the distribution of HED at any locus between 

responders and non-responders, except at the HLA-DQA1 locus (Table 1, Figure 1B). 

Intriguingly, HED-DQA1 was lower in responders (median, 7.37 in responders versus 16.6 in 

non-responders, p = 0.055). Moreover, CIR was lower in patients with low HED-DQA1 (ie., 

below the median in the entire cohort) compared to those with high HED (45% vs 61%, p = 

0.034) (Figure 1C). Overall, PFS and OS tended to be higher in patients with low HED-DQA1 

(Figure 1D). 

Upon these unexpected results, we examined the distribution of HED at the HLA-DQA1 locus 

and observed that HED values were distributed into 3 distinct clusters of very high, low and 

very low divergence (HED >16, 2.5 <HED <7.5, and HED <1.5, respectively) in contrast to a 

more continuous distribution at other loci (Figure 1B). When analyzing which pairs of 

heterozygous DQA1 alleles were represented in these clusters, we found that highly divergent 

pairs (HED >16) always consisted of an allele of the DQA1*01 supertype together with a non-

DQA1*01 allele (i.e., allele of the DQA1*02, 03, 04, 05 or 06 supertype). Conversely, slightly 

divergent pairs consisted of either two alleles of the DQA1*01 supertype (HED <1.5) or two 

non-DQA1*01 alleles (HED 2.5-7.5) (Figure 2A). 

DQ molecules consist of ab	heterodimers that can be formed as both cis and trans variants 

depending on whether the a	and b	chains are encoded by the DQA1 and DQB1 genes on the 

same (cis) or opposite (trans) chromosomes, but not all combinations can form stable 

DQab heterodimers. Interestingly, the HLA-DQA1 and HLA-DQB1 alleles that can pair 

effectively fall into two mutually exclusive groups hereinafter designed as the DQ1 group 

(any DQA1*01 allele which can pair with any DQB1*05 or DQB1*06 allele) and the non-DQ1 

group (any non-DQA1*01 allele which can pair with any DQB1*02, 03 or 04 allele)20,21. 

We therefore analyzed the distribution of the DQ1/DQ1, DQ1/non-DQ1 and non-DQ1/non-

DQ1 genotypes among patients and found that it significantly differed according to the 

response (Figure 2B). Patients with a DQ1/DQ1 genotype had a better chance of responding 

than others (OR = 0.33, 95 % CI 0.12-0.98, p = 0.045). Furthermore, the DQ1/DQ1 genotype 

was associated with a lower incidence of relapse/progression (28 % vs 58 %, p = 0.016) 

(Figure 2C), and a trend toward higher PFS and OS (Figure 2D). Importantly, after adjusting for 
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other baseline characteristics significantly associated with response, DQ1/DQ1 genotype 

remained an independent predictor of response (adjusted OR = 0.21, 95 % CI 0.05 - 0.69, 

p = 0.0145) and reduced hazard of relapse/progression (adjusted HR = 0.26, CI 0.10 – 0.69, p= 

0.007) (Figure 2E).  

Altogether, these results in a relatively small cohort of patients point to the HLA-DQ locus as 

a driver of durable response to CAR-T cell treatment in LBCL patients and suggest a critical role 

for cellular cross-talk between CAR-T cells and host immune cells in long-term tumor 

surveillance. Although CAR- T cells act primarily in an HLA-independent fashion, recent studies 

have highlighted the critical role of CAR T-cell-derived IFNg in promoting the recruitment of 

immune cells at the tumor site, upregulating MHC class 2 at the surface of antigen presenting 

cells and increasing presentation of tumor antigens secondary to antigen spreading3,4,22,23.  

Such mechanisms may overcome tumor heterogeneity or antigen-escape variants and 

contribute to a durable response after CAR T-cell therapy. The mechanism by which DQ1 and 

non-DQ1 molecules have opposite effects in this setting remains unclear, but evidence for 

their distinct function has already been suggested by their opposite impact on the risk of 

relapse after hematopoietic stem cell transplantation18. DQ1 molecules might be more 

sensitive to IFNg-induced upregulation or less prone to HLA somatic mutations or allelic losses, 

thus ensuring sustained presentation of tumor antigens to endogenous T cells. Alternatively, 

the presence of non-DQ1 molecules (and therefore a higher HLA-DQ diversity) might be 

associated with a broader repertoire of regulatory T cells in the tumor microenvironment, 

thus participating in treatment failure.  Although our study is limited by the small number of 

patients, it opens the way for more in-depth investigations on the impact of HLA-DQ genotype 

on the endogenous anti-tumor response in larger series of CAR-T cell-treated patients. 
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Table 1. Characteristics of the 127 patients according to the response at 6 months after CART-cell treatment 

	

Variable All patients 
 (n = 127) 

Durable responders 
(n = 63) 

Non-responders  
(n = 64) p-value 

Demographic  
Age at diagnostic (yr) Median (IQR) 60 (16.2) 59 (17.4) 61 (15.4) 0.5305 
Gender Male  82 (64.6) 39 (61.9) 43 (67.2) 

0.5337 
Female 45 (35.4) 24 (38.0) 21 (32.8) 

 
 
Lymphoma subtype 
 (WHO 2016)  

DLBCL 102 (80.3) 50 (79.4) 52 (81.2) 
0.5566 FL 19 (15.0) 11 (17.5) 8 (12.5) 

PMBL 6 (4.7) 2 (3.1) 4 (6.3) 
GC 72 (59.5) 39 (63.9) 33 (55.0) 

0.3168  Non-GC 49 (40.5) 22 (36.1) 27 (45.0) 
At the time of decision to treat 
Extranodal site  < 2  91 (71.7) 52 (85.5) 39 (60.9) 

0.0069 
≥ 2  36 (28.3) 11 (17.5) 25 (39.1) 

Previous lines of treatment < 4  97 (76.4) 47 (74.6) 50 (78.1) 
0.6404 

≥ 4  30 (23.6) 16 (25.4) 14 (21.9) 
PS < 2 117 (92.1) 60 (95.2) 57 (89.1) 

0.3237 
≥ 2 10 (7.9) 3 (4.8) 7 (10.9) 

High IPI No 82 (64.6) 46 (73.0) 36 (56.2) 
0. 0483 

Yes 45 (35.4) 17 (27.0) 28 (43.8) 
At the time of treatment 
PS < 2 120 (94.5) 63 (100) 57 (89.1) 

0.0131 
≥ 2 7 (5.5) 0 (0) 7 (10.9) 

High IPI No 85 (66.9) 49 (77.8) 36 (56.2) 
0.0099 

Yes 42 (33.1) 14 (22.2) 28 (43.8) 

CAR-T cell product tisa-cel 68 (53.5) 26 (41.3) 42 (65.6) 
0.0059 

axi-cel 59 (46.5) 37 (58.7) 22 (34.4) 
LDH ≤ N 81 (63.8) 49 (77.8) 32 (50.0) 

0.0011 
> N 46 (36.2) 14 (22.2) 32 (50.0) 

Ferritin  ≤ N 8 (6.3) 5 (7.9) 3 (4.7) 
0.4917 

> N 119 (93.7) 58 (92.1) 61 (95.3) 
High TMTV No 82 (64.6) 51 (81.0) 31 (48.4) 

0.0001 
Yes 45 (35.4) 12 (19.0) 33 (51.6) 

HLA  
HLA-A homozygosity n (%) 18 (14.1) 9 (14.3) 9 (14.1) 0.9712 

HED Median (IQR) 6.4 (6.3) 6.4 (6.1) 6.7 (6.2) 0.7388 
HLA-B homozygosity n (%) 8 (6.3) 5 (7.9) 3 (4.7) 0.4617 

HED Median (IQR) 8.5 (3.5) 8.1 (3.8) 8.6 (3.4) 0.6488 
HLA-C homozygosity no. (%) 8 (6.3) 4 (6.5) 4 (6.3) 0.9999 

HED Median (IQR) 4.9 (2.8) 5.1 (2.6) 4.8 (2.7) 0.7307 
HLA-DRB1 homozygosity no. (%) 12 (9.4) 7 (11.1) 5 (7.8) 0.5600 

HED Median (IQR) 11.0 (7.3) 10.0 (7.0) 11.9 (8.2) 0.5357 
HLA-DQB1 homozygosity no. (%) 17 (13.8) 8 (13.3) 9 (14.3) 0.9712 

HED Median (IQR) 12.7 (9.9) 11.2 (8.7) 14.8 (9.3) 0.1831 
HLA-DQA1 homozygosity no. (%) 20 (16.0) 10 (16.1) 10 (15.9) 0.9739 

HED Median (IQR) 16.2 (17.7) 7.4 (17.9) 16.6 (18.3) 0.0553 
HLA-DPB1 homozygosity no. (%) 32 (26.4) 18 (29.5) 14 (23.3) 0.3848 

HED Median (IQR) 4.0 (6.3) 4.0 (6.1) 4.0 (5.9) 0.6408 
Continuous variables are presented as median and interquartile range (IQR), and categorical variables as number 
and percentage. High TMTV defined as > 80 mL.  
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Abbreviations: DLBCL, diffuse large B-cell lymphoma; FL, transformed follicular lymphoma; GC, germinal center; 
HED, HLA evolutionary divergence; IPI, International Prognostic Index; IQR, interquartile range; LDH, lactate 
dehydrogenase; N, normal; no., number; PMBL, primary mediastinal B-cell lymphoma; PS, performance status; 
IQR, inter-quartile range; TMTV, total metabolic tumor volume; WHO, World Health Organization; yr, years. 
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Figure Legends 
 
Figure 1. Impact of HED on response to CAR-T cell therapy.  

A) 1000-day estimates of CIR (left panel), PFS and OS (right panel) in the 127 rrLBCL 

patients treated with commercial CAR-T cells. B) Distributions of HED values at the 

different HLA loci according to response at 6 months. R: durable response (n = 63); NR: 

non-response (n = 64). C) CIR is lower in patients with low HED-DQA1 (ie., below the 

median in the entire cohort) compared to those with high HED. Gray’s test with NRM as a 

competing risk. D) PFS and OS tend to be increased in patients with low (i.e., below 

median) HED at the DQA1 locus. P-values comparing groups, log-rank test. 

Figure 2: HLA-DQ genotype identifies patients with a better chance of responding to CAR T-

cell therapy 

 A) Three clusters of high (>16, black dots), low (2.5-7.5, blue dots) and very low (<1.5, red 

dots) HED values at the DQA1 locus correspond to distinct heterozygous combinations of 

DQab alleles in the entire patient cohort. HED values equal to zero correspond to 

homozygotes (empty dots). B) Relative distribution of DQ1/DQ1, DQ1/nonDQ1 and 

nonDQ1/nonDQ1 genotypes according to response at 6 months. R, response; NR, non-

response. P-value comparing DQ1/DQ1 versus other genotypes, Fisher’s exact test. C) The 

DQ1/DQ1 genotype is associated with lower CIR compared to other genotypes. Gray’s test. 

D) PFS and OS tend to be increased in patients with a DQ1/DQ1 genotype. P-values 

comparing groups, log-rank test. E) Multivariable analysis showing the DQ1/DQ1 genotype 

as an independent protective factor contributing to the response at 6 months and the 

lower CIR. Forest plots including the respective covariates show adjusted OR (logistic 

regression) and HR (Fine-Gray regression) with 95% CI. 
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Figure 1 
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Figure 2 
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