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ABSTRACT

Institutions of higher education faced a number of challenges during the COVID-19 pandemic. Chief
among them was whether or not to re-open during the second wave of COVID-19 in the fall of
2020, which was controversial because incidence in young adults was on the rise. The migration
of students back to campuses worried many that transmission within student populations would
spread into surrounding communities. In light of this, many colleges and universities implemented
mitigation strategies, with varied degrees of success. Washington State University (WSU), located in
the city of Pullman in Whitman County, WA, is an example of this type of university-community
co-location, where the role of students returning to the area for the fall 2020 semester was contentious.
Using COVID-19 incidence reported to Whitman County, we retrospectively study the transmission
dynamics that occurred between the student and community subpopulations in fall 2020. We develop
a two-population ordinary differential equation mechanistic model to infer transmission rates within
and across the university student and community subpopulations. We use results from Bayesian
parameter estimation to determine if sustained transmission of COVID-19 occurred in Whitman
County and the magnitude of cross-transmission from students to community members. We find these
results are consistent with estimation of the time-varying reproductive number and conclude that the
students returning to WSU-Pullman did not place the surrounding community at disproportionate risk
of COVID-19 during fall 2020 when mitigation efforts were in place.

Keywords: Mathematical modeling, Bayesian inference, Structured populations, Infectious disease, COVID-19, Higher
education

Introduction1

The COVID-19 pandemic dramatically reshaped pedagogy in higher education [1, 2, 3], impacted the mental health and2

behavior of university students [4], restructured institutional response and governance within colleges and universities3

[1, 3], and forced difficult decisions on students and their families [5]. Looking back, decisions affecting both4

public health and education were difficult to balance [6, 7]. University (or college) towns, communities that are5

socioeconomically dominated by a college or university, pose unique public health challenges because they house6

populations with different demographics and interests that are regulated under common policy. Campus closures and7

online learning that potentially reduced transmission of acute respiratory syndrome coronavirus 2 (SARS-CoV-2),8

arguably had an adverse affect on many college students [8]. At the same time, universities were thought to have9

intensified transmission [9, 10], with high incidence among student populations conceivably putting non-student10

community residents at greater risk [11, 12]. During the pandemic, colleges and universities were labeled as hot spots of11

virus transmission [13] and the re-opening of college campuses, particularly for the fall 2020 semester, was controversial12

[11, 6] with different institutions adopting a wide variety of mitigation and teaching strategies [12, 14]. Even in the13

aftermath, the precise role that college-age and university students played transmission amongst the greater community14

remains up for debate [see 8].15
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Locally, college and university student populations were pivotal in the spread of SARS-CoV-2 when campuses re-opened16

in the fall of 2020 for two overarching reasons, mobility and social mixing [8]. By August 2020, incidence across the17

United States was in decline except for young adults, whose demographic saw an increase in incidence with outbreaks18

reported at many colleges and universities [12, 14, 10]. As campuses re-opened for the fall 2020 semester, many19

students migrated back to university towns and resumed communal living. Both factors, mobility and social mixing,20

contributed to increasing incidence by concentrating imported cases on college campuses with the potential for onward21

transmission in residential and social settings directly linked or adjacent to life on campus [11]. Even though increased22

incidence put the health of students, faculty and staff, and the surrounding community at greater risk of infection with23

SARS-CoV-2, it was not guaranteed that increased incidence in students translated directly to increased transmission24

from students to community residents.25

In anticipation of re-opening campuses in the face of high COVID-19 incidence, most colleges and universities26

increased mitigation and testing efforts to offset the potential for increased transmission [12] and were successful. For27

example, the University of Illinois at Urbana-Champaign implemented the multi-modal “SHIELD: Target, Test, and28

Tell” program along with other non-pharmaceutical interventions in fall 2020 and found these mitigation strategies29

reduced transmission, hospitalizations and deaths [15]. Several other studies focusing on transmission between student30

and co-located resident populations demonstrated, using either mobility data [e.g., 14] or genomic surveillance data31

[e.g., 9, 16, 17], that cross-transmission was highly limited. In contrast, other findings still argue campus outbreaks32

translated into peaks of infection within their home communities [e.g., 6]. Thus, it is important to retrospectively study33

transmission dynamics of SARS-CoV-2 in university towns to optimize mitigation strategies for the future.34

Here we use mathematical modeling and Bayesian parameter estimation to study transmission dynamics of SARS-35

CoV-2 within a university student population and a co-located resident community population. Specifically, we36

study the outbreak of COVID-19 that occurred at Washington State University (WSU) during fall 2020. We develop37

a two-population compartmental model to estimate transmission that occurred within the student and community38

populations and cross-transmission between populations using COVID-19 incidence reported to Whitman County,39

Washington. We also estimate the time-varying reproductive number to make a comparison of a real-time estimation40

to our retrospective transmission estimates. With the posterior distributions generated from Bayesian model fitting,41

we address two questions motivated by uncertainty around the potential risk university student populations pose to42

surrounding communities during epidemics of respiratory disease: (1) Was the COVID-19 outbreak that occurred43

during fall 2020 in Whitman County a result of sustained transmission within and across the university student and44

community subpopulations? (2) If cross-transmission did occur, what was the magnitude of population mixing?45

Methods46

Study population and COVID-19 case reporting47

Whitman County, located in a rural agricultural area of southeastern Washington, is home to WSU and the city of48

Pullman. WSU is a large, public research land-grant university, and draws its student body from all over Washington49

State and beyond. The city of Pullman is a quintessential university town and the largest city in Whitman County.50

Although the Whitman County community residents and WSU student populations overlap geographically, the two51

subpopulations do not mix randomly. Students are largely concentrated in housing on or near the WSU campus —52

"College Hill", while community members live in other areas of the city of Pullman or are dispersed throughout53

Whitman County.54

Far from the Seattle area metropolis, Whitman County was less affected than western Washington by the pandemic in55

early 2020, but lockdown measures and masking requirements were implemented at both WSU and Pullman city public56

spaces and many private businesses as part of statewide actions. All WSU courses were still fully remote in fall 202057

and the campus was officially closed for student housing save for special exemptions, however, many students returned58

to the area, living in apartments or Greek housing near the campus. During this time Whitman County experienced a59

sharp, dramatic rise in reported COVID-19 cases, primarily among those associated with WSU. Within the first three60

weeks of the WSU fall 2020 semester, Whitman County reported an outbreak of COVID-19 within the student and61

subsequently the community populations with one of the highest rates reported in Washington State and nationally at the62

time [18]. COVID-19 testing was available for both community residents and WSU students throughout the outbreak.63

University testing sites, in collaboration with local public health, enabled all returning students, faculty, and staff to64

receive free testing before and after the beginning of the semester. While some negative test requirements were in place,65

many of these relied on self-attestation and arrival testing was not mandated for students. For Whitman County citizens,66

testing was available throughout the city for residents at clinics, pharmacies, and non-permanent testing sites. Positive67

COVID-19 cases were reported to Whitman County public health. The epidemic weekly time series data we present68

here begins on August 17, 2020, the week before the first day of the WSU fall semester, and reports until December 27,69

2
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2020 (the time series is congruent with weeks 34-52). Case reports for each week include the totals for the student and70

community subpopulations.71

Mathematical model and R072

To study the transmission dynamics that occurred in Whitman County during the COVID-19 outbreak of fall 2020, we73

developed a metapopulation model with explicit intra- and inter-community interactions. Specifically, we used a two-74

population Susceptible-Exposed-Infected-Recovered (SEIR) ordinary differential equations (ODE) model framework75

with transmission occurring within the university student, u, and Whitman County community, c, subpopulations and76

cross-transmission between these two subpopulations. We assumed the latency rate (σ) and recovery rate (γ) were77

equivalent in both populations, and cross-transmission (βm) from university students to community member was equal78

to transmission from community members to university students. We also assumed that population sizes, N , remained79

constant throughout the duration of the 2020 fall semester, with no substantial loss to death or migration once the80

students arrived back on campus. Figure (1) is a diagram of the mechanistic model, definitions of model parameters and81

their symbols are given in Table 1, and the ODE’s specifying the model are given in Appendix A.1 of the Supplement.82

Su Eu Iu Ru
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Figure 1: Diagram of the two-population Susceptible-Exposed-Infected-Recovered (SEIR) model. The subscript u
specifies the university student population and the subscript c specifies the Whitman County community population.
Parameters represented include the within subpopulation transmission rates, βu and βc, the cross-transmission rate, βm,
the latency rate, σ, and the recovery rate γ.

The basic reproductive number, R0, is a key epidemic parameter that quantifies the transmissibility of a pathogen in83

a completely susceptible population. We use R0 here to determine the potential for sustained transmission in each84

subpopulation and the total population. We quantify the reproductive numbers for each subpopulation, R0u or R0c ,85

considering only local transmission such that R0u,c
= Nu,cβu,cγ

−1, where N is the total subpopulation size, and86

therefore initial size of susceptibles, in either u or c. We derived R0total
using the next-generation matrix (NGM)87

following [19] from our two-population SEIR model. Details of the derivation are given in Appendix A.2 of the88

Supplement. The resulting equation is89

R0total
=

Nuβu +Ncβc +

√(
Nuβu −Ncβc

)2
+ 4NuNcβ2

m

2γ
. (1)

3
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Rt Estimation with EpiEstim90

Very similar to R0, the time-varying reproductive number, Rt, is the average number of secondary infections generated91

by a single individual over the infectious period at time t [20]. Monitoring the reproductive number as an outbreak92

progresses can provide instantaneous feedback to public health officials on the effectiveness of control measures [20].93

The EpiEstim framework developed by Cori et al. [20] is a popular method to estimate Rt from case data and is94

freely available as an R package [21, 22]. EpiEstim is simple to implement, requiring only incidence time series95

and a generation (or serial) interval distribution. In addition to daily incidence data, EpiEstim can utilize temporally96

aggregated data even when the time window of incidence reporting is longer than the mean generation interval (e.g.,97

when incidence is reported over weekly intervals or aggregated to reduce administrative noise, such as the effects of the98

weekends) [23]. Even when incidence data is temporally aggregated, the resulting Rt estimates are made daily. Here we99

use EpiEstim to estimate Rt directly from the Whitman County weekly aggregated case reports for the total population100

and for each subpopulation. We use the generation interval distribution derived directly from our two-population ODE101

model (see Appendix A.3 of the Supplement) with the values for σ and γ from Table 1. These data-driven estimates102

provide a useful comparison to our model-based estimates of R0 to understand if sustained transmission occurred in103

Whitman County during fall 2020.104

Statistical model and Bayesian inference105

To understand the COVID-19 transmission dynamics in Whitman County, we used Bayesian approaches to estimate the106

three transmission parameters, βu, βc, and βm from our two-population model. We implemented the simulation-based107

estimation methods available in the pomp library in R [24, 22] to generate maximum a posteriori (MAP) estimates and108

95% highest posterior density interval (HPD) intervals. The pomp framework required that we also specify a statistical109

distribution to model the sampling process that generated the case reporting data in addition to our two-population110

model. For this we used a negative binomial model, which includes two additional parameters, ρ, the positive testing111

rate, and k, the overdispersion parameter (see Appendix B.1 of the Supplement for details on the negative binomial112

likelihood function). We fixed ρ using the ascertainment rate estimated for Washington State during the first two113

weeks of September 2020 from [25] (Table 1), but estimated k. Initializing the simulation-based methods also required114

specifying values for S, E, I , and R for the university student and community populations at time zero. To approximate115

the initial values Eu0 , Ec0 , Iu0 , and Ic0 we divided the number of reported COVID-19 cases from week 34 (the week116

before classes began in fall 2020 and when students usually arrive back in Whitman County) by ρ. To approximate the117

initial values for Ru0
and Rc0 we multiplied the the subpopulation sizes (Nu, Nc) by the estimated number of total118

COVID-19 cases as of September 3, 2020 in Washington State from [25] (Table 1).119

Table 1: Model symbols for subscripts, variables, parameters and their definitions. Values are given for initial starting
conditions for each variable or for fixed parameter values with references. All rates are in weeks unless specified
otherwise.

Symbol Definition Initial or Fixed Value Reference
u, c University student or Community member NA
βu Transmission rate between university students Estimated
βc Transmission rate between community members Estimated
βm Cross-transmission rate between subpopulations Estimated
σ Latency rate 7/3.59 [26]
γ Rate of recovery from infection 7/3.56 [26]
ρ Positive testing (ascertainment) rate 0.76 [25]
k Overdispersion parameter Estimated
Nu, Nc Subpopulation sizes 14,254, 20,785
Su0

, Sc0 Initial number of susceptibles Nu,c − Eu0,c0 − Iu0,c0 −Ru0,c0

Eu0
, Ec0 Initial number of exposed Case Reportsu0,c0 × ρ−1 [25]

Iu0 , Ic0 Initial number of infected Case Reportsu0,c0 × ρ−1 [25]
Ru0 , Rc0 Initial number of recovered Nu,c × 0.041 [25]

Results120

We begin our analyses of the Whitman County fall 2020 COVID-19 outbreak by focusing on the observed case reports.121

Figure (2) shows the weekly cases reported to Whitman County beginning on week 34 of the calendar year (the week122

before classes commenced at WSU) for the total population and for each subpopulation. Figure (2) also shows the Rt123

estimates from EpiEstim for the total population and each subpopulation. Rt estimated for the total population begins124

4
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just over 3, falls to 1 by week 252 (week 37), and then hovers near 1 throughout the duration of the fall semester. The125

subpopulations demonstrate more fluctuations, however, Rt estimated for the university student population is similar to126

the total population. Rt estimated for the WSU students also begins near 3, falls below 1 by day 252 (week 37), and127

remains near or below one until the end of the semester with a spike to near 3 on day 327 (week 47, the week before128

Thanksgiving break). Rt estimated for the community subpopulation does not begin until day 279 (week 41) because129

the observed case counts are below 11 reports per week and estimates from EpiEstim are unreliable when cases drop130

below 11 [20]. Rt estimated for the community subpopulation begins just above 4 and falls to one by day 297 (week131

43). Then, a spike similar to the WSU estimates occurs in in the community with a peak on day 320 (the last day of132

week 46), and then returns to near 1 for the remainder of the semester.133
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Figure 2: Whitman Co. fall 2020 COVID-19 weekly case reports and Rt daily estimates from the total population
shown in the top row (panel A) and the university student (red) and Whitman Co. community (blue) subpopulations
shown in the bottom row (panel B). Horizontal dotted lines cross the y-axis at 1 for Rt daily estimates.

Next, using Bayesian inference to estimate the three transmission parameters (βu, βc, βm) and R0 in the total population134

and both subpopulations, we investigate if sustained transmission occurred within each subpopulation and quantify the135

magnitude of cross-transmission across subpopulations. Transmission was significantly greater in the university student136

population than in the community (Figure 3), as the 95% HPD intervals are not overlapping (Table2). Cross-transmission137

was much less than local transmission within either subpopulation, but was significantly greater than zero (Table 2).138

All 95% HPD intervals for local and total population R0’s overlap, however, the posterior distribution for R0u does139

include the critical threshold of one. Nevertheless, since all R0’s are near or below one, sustained transmission of140

COVID-19 was likely very weak during fall 2020 in Whitman County. The overdispersion parameter k was unknown141

and therefore estimated, but it not the focus of this study. Values for this parameter are reported in Table (2) and the142

posterior distribution is shown in Appendix B.2 in the Supplement.143
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Figure 3: Posterior densities for each transmission parameter and R0 for the university student and community
subpopulations and the total population. Vertical black dashed lines represent the maximum a posteriori (MAP) estimate.
Vertical red dotted lines delineate the critical threshold where R0 = 1.

Table 2: Results from Bayesian estimation with pomp for each estimated parameter from Table 1 and R0. Maximum a
posteriori (MAP) estimates are modes of the marginal posterior distributions with 95% highest posterior density (HPD)
credible intervals.

Parameter MAP estimate 95% HPD intervals
βu 1.23× 10−4 [1.12× 10−4, 1.32× 10−4]
βc 8.95× 10−5 [7.59× 10−5, 1.05× 10−4]
βm 1.69× 10−6 [0.00, 4.00× 10−6]
k 2.43 [1.29, 4.51]
R0u 0.90 [0.81, 0.95]
R0c 0.95 [0.80, 1.11]
R0total

0.94 [0.86, 1.10]

Discussion144

Our retrospective analyses investigated the transmission dynamics of SARS-CoV-2 that occurred between WSU145

students and the surrounding community during fall 2020. A major strength of our analyses stems from the of pairing146

COVID-19 incidence data with a mechanistic model. This approach allowed for direct estimation of transmission147

and cross-transmission rates within and across the university student and community subpopulations, and for the148

estimation of R0 for the university student, community and total populations. We find that sustained global or local149

transmission of SARS-CoV-2 infection did not occur in Whitman County in fall 2020 even in the face of student150

movement back to the WSU-Pullman campus. The magnitude of cross-transmission between the university student and151

community subpopulations was small and not significantly different from zero. Our results demonstrate support for non-152

pharmaceutical interventions and social distancing policies effectively reducing transmission of SARS-CoV-2 within153

each subpopulation, and the inherent non-random mixing between university students and surrounding communities154

further reducing transmission between the geographically co-located subpopulations.155

6
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In late August 2020, many university students returned to the WSU campus in Pullman, Washington even though course156

delivery was completely remote. Arrival testing was not mandatory for returning students and therefore identifying157

imported cases was not possible. However, importation of COVID-19 cases likely occurred with student immigration158

back to Whitman County. Student COVID-19 incidence peaked in the second week of the fall semester and then159

immediately began falling. This is in contrast, for example, to the outbreak at an Arkansas university reported in160

[10], which demonstrated rising cases after classes started on August 24, 2020 and not falling until early September161

after an Arkansas department of health testing event. Similarly at the University of Michigan–Ann Arbor, COVID-19162

incidence increased throughout the fall 2020 semester and peaked in mid-November [16]. Even though the COVID-19163

epidemic at the University of Michigan–Ann Arbor was a result of sustained transmission among the student population,164

Valesano et al. [16] concluded that the outbreak was derived from multiple imported cases with very little spread into165

the community. Transmission dynamics at WSU during fall 2020 had noticeably different characteristics compared to166

these other universities that experienced outbreaks with onward transmission. Some transmission did occur at WSU167

occur, which was detected in the Rt estimates. However, R0u was estimated to be significantly less than 1, and Rt168

estimates for the WSU students dropped to 1 quickly and remained near 1 for the duration of the fall semester. However,169

like other universities, importation could have still been in effect and transmission from WSU students to community170

members was minimal.171

Even with the return of WSU students and increased COVID-19 incidence, the Whitman County community did not172

experience a measurable heightened risk of COVID-19 in fall 2020. Our results demonstrate limited cross-transmission173

between university students and the surrounding community. There was a distinctive delay in the progression of174

COVID-19 cases in the community after the beginning of the fall 2020 semester with the peak in student incidence175

occurring asynchronously with peak incidence in the community. Case numbers in the community did not begin to rise176

until late-October and early-November with Rt estimation not being possible until week 41. Overall, transmission177

within the community subpopulation was minimal, with R0c near 1, and the interaction with the university student178

supopulation did not increase R0total
to be statistically greater than 1, which is consistent with the Rt from the total179

population.180

Although our simulation-based approach allowed us to robustly estimate key epidemiological parameters, we did not181

model other important aspects of university-community metapopulations affecting transmission dynamics. For example,182

changes in human mobility can change disease prevalence and lead to changes in behavioral patterns and contact183

rates [7]. Arrival testing was not mandated for WSU students returning to Whitman County and therefore the case184

importation rate was unknown. Knowing imported cases would have allowed for a more refined estimation of the185

time-varying reproductive number, which is very sensitive to imported cases and could have accounted for the slight186

differences between the Rtestimates and our Bayesian analyses. In addition, mobility patterns of community members187

in and out of Whitman Country were also not documented. Because this information was limited, we did not include188

migration in our mechanistic model. Instead, we began our analyses the week before the fall semester commenced when189

most students arrive and we could assume that the influx of students had reached an equilibrium. We also assumed190

movement in and out of the community population was minimal and at equilibrium. Another potential limitation of our191

approach was the inability to estimate all parameters in our model from the available Whitman County data. In addition192

to the transmission parameters that were estimated, our model also included parameters such as latency, recovery and193

positive testing rates and initial starting values. We did not estimate these parameters, but instead used values that were194

estimated independently from other studies. As such these parameters were estimated from data collected outside of195

Whitman County which could lead to bias in our results if Whitman County disease dynamics were largely dissimilar196

to other populations in Washington State and the U.S during the pandemic. Even though or mechanistic model may197

oversimplify reality and relies on results from data outside Whitman County, we balanced model tractability and198

parameter identifiablity with reasonable assumptions to estimate parameters and draw conclusions about transmission199

dynamics in a university town during fall 2020 of the COVID-19 pandemic.200

Opinions converged during the second wave of COVID-19 in fall 2020 that the re-opening of many colleges and201

universities, which concentrated young adults in university towns, were to blame for high COVID-19 incidence [e.g.,202

13]. Outbreaks among university student and public concern even led to some institutions returning to online learning203

[11]. Retrospectively, our analyses support the hypothesis that systematic interventions, such as social distancing and204

masking, were highly effective in limiting SARS-CoV-2 transmission within and out-of university student populations205

even in the presence of heightened student mobility. Despite high, and occasionally headline-making case counts,206

our study suggests that the large peak in student cases was a pseudo-epidemic brought on by students returning to a207

single municipality with widespread access to testing, rather than widespread student-to-student transmission. In real208

time, this would be impossible to distinguish absent of arrival testing. This, in turn, suggests that arrival testing should209

be considered a key component of understanding the epidemiology of students returning to campus. Further, other210

universities and colleges may wish to revisit their "lessons learned" regarding their pandemic control policies, if sheer211

numbers of cases were the basis by which those policies were evaluated. Health policy makers faced, and will continue212

7
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to face, the dilemma of balancing public health with other competing interest such a the economy [7] and education213

[4] with finite resources. We can now understand that keeping institutions of higher education open with mitigation214

strategies in place will not put co-located communities at excessive risk of COVID-19. This information will help us215

manage public health regulations for higher education in future pandemics of respiratory disease.216
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