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Abstract 

One of the most pressing questions after a stroke is whether an individual patient will recover in 

the long-term. Previous studies demonstrated that spatial neglect – a common behavioral deficit 

after right hemispheric stroke – is a strong predictor for poor performance on a wide range of 

everyday tasks and for resistance to rehabilitation. The possibility of predicting long-term 

prognosis of spatial neglect is therefore of great relevance. The aim of the present study was to 

test the prognostic value of different imaging and non-imaging features from right hemispheric 

stroke patients: individual demographics (age, sex), initial neglect severity, and acute lesion 

information (size, location). Patients’ behavior was tested twice in the acute and the chronic 

phases of stroke and prediction models were built using machine learning-based algorithms with 

repeated nested cross-validation and feature selection. Model performances indicate that 

demographic information seemed less beneficial. The best variable combination comprised 

individual neglect severity in the acute phase of stroke, together with lesion location and size. The 

latter were based on individual lesion overlaps with a previously proposed chronic neglect region-

of-interest (ROI) that covers anterior parts of the superior and middle temporal gyri and the basal 

ganglia. These variables achieved a remarkably high level of accuracy by explaining 66% of the 

total variance of neglect patients, making them promising features in the prediction of individual 

outcome prognosis.  
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Abbreviations 

CoC – center of cancellation; CV – cross validation; FS – feature selection; IPL – inferior parietal 

lobule; MSE – mean squared error; MTG/STG – middle/superior temporal gyrus; PC(A) – principal 

component (analysis); ROI – region of interest; R² – coefficient of determination; SLF – superior 

longitudinal fasciculus; SVR – support vector regression; WB – whole-brain. 
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Introduction 

Spatial neglect is one of the most frequent cognitive disorders following right hemisphere brain 

damage, forming the counterpart to aphasia after left hemisphere lesions. It is characterized by 

impaired orienting towards the contralesional (usually left) side, leading to neglect of 

contralesionally located objects or people. In contrast to stroke survivors without neglect, patients 

with spatial neglect experience prolonged inpatient periods, impaired functional recovery and a 

poor rehabilitation outcome if left untreated (Di Monaco et al., 2011; Iosa et al., 2021; Jehkonen 

et al., 2000; Kalra et al., 1997). Found in about one quarter to one third of all patients with acute 

right hemisphere stroke (Becker & Karnath, 2007; Rengachary et al., 2011), spatial neglect poses 

a great challenge to our health system. About one third of these acute neglect patients manifest 

chronic neglect more than a year after the neurological incident (Karnath et al., 2011). One of the 

most pressing questions after a stroke is whether an individual patient will recover in the long 

term. An early differentiation between patients who will vs. who will not (fully) recover from spatial 

neglect is therefore of great relevance for the affected patients, their relatives, as well as clinicians. 

Improved prognosis could not only provide a more realistic expectation of one's own disease 

course but would also help guide individually tailored treatment.  

Previous research evaluating potential predictors for neglect recovery had suggested 

initial neglect severity (Moore et al., 2021; Samuelsson et al., 1997; Stone et al., 1992), lesion 

size (Hier et al., 1983; Jehkonen et al., 2007; Levine et al., 1986), and lesion location (Farnè et 

al., 2004; Hier et al., 1983; Samuelsson et al., 1997). In addition, demographic data such as age 

and sex are commonly investigated in prediction studies of post-stroke recovery (Hier et al., 1983; 

Hope et al., 2013). However, the different studies provided heterogeneous and even contradictory 

results with respect to the most predictive factors for neglect recovery. Studies are missing that 

employ modern machine learning-based methods while using behavioral, demographic, and 

anatomical lesion data to predict persistent neglect. In the present longitudinal study, we thus 

investigated the clinically important question whether behavioral, demographic, and structural 

stroke lesion information acquired during the acute phase of stroke can predict long-term neglect 

prognosis. We examined the predictive values of imaging and non-imaging data in models of 

different variable combinations. Beyond, in a previous investigation of our group (Karnath et al., 

2011), it was examined whether acute anatomical scans could predict the recovery of spatial 

neglect 1.4 years post-stroke by using voxel-wise lesion analysis approaches (Rorden et al., 

2007; Rorden & Karnath, 2004). At the cortical level anterior parts of the superior and middle 

temporal gyri and subcortically the basal ganglia were found to be critically involved when neglect 
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behavior became a chronic disorder (cf. Fig. 2C in Karnath et al., 2011). Therefore, lesion to these 

structures was also investigated as a possible predictor for neglect prognosis.  

 

Methods 

Patient sample 

Neurological patients consecutively admitted to the Center of Neurology at Tübingen University 

were screened for an acute right hemispheric stroke. Patients with a left hemispheric stroke, with 

diffuse or bilateral brain lesions, with lesions restricted to the brainstem or cerebellum, with 

tumors, with no visible demarcations, or without acute imaging data were not enrolled. We 

included 72 patients in total. All patients were screened for spatial neglect on average 5.8 days 

(SD 6.4 days) post-stroke the first time. Patients suffering from spatial neglect were re-

investigated in the chronic phase of stroke approximately 1.6 years (566.5 days ± SD 398.3 days), 

but not before 6 months, after the initial examination. According to the diagnostic tests of both 

acute and chronic time points (cf. next paragraph), patients were assigned to three different 

groups: the “chronic” group consisted of 12 patients who showed spatial neglect during both acute 

and chronic phases; the “recovered” group consisted of 30 patients who showed spatial neglect 

during the acute but no longer during the chronic phase of stroke; the “control” group consisted 

of 30 stroke patients who showed no neglect symptoms in the acute phase of stroke. Twenty-five 

patients (5 chronic and 20 control patients) of these 72 patients were also included in the creation 

of the chronic neglect ROI map in the preceding study of our group (Karnath et al., 2011). All 

patients did consent to the participation in the study, which was approved by the Ethic 

Commission of the Medical Faculty of the University of Tübingen and was performed in 

accordance with the revised Declaration of Helsinki of 1964. Demographic and clinical data of all 

patients are presented in Table 1. 

[Table 1 near here] 
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Table 1. Sample characteristics.  

Stroke 

phase 

Parameter Chronic  

(N = 12) 

Recovered  

(N = 30) 

Controls  

(N = 30) 

Acute Age 69.3 (8.9) 64.1 (12.0) 55.7 (16.0) 

Sex (F/M) 7/5 14/16 13/17 

Interval stroke to imaging 5.0 (6.7) 2.8 (2.2) 4.3 (4.5) 

Etiology (I/H) 11/1 26/4 26/4 

Lesion size 88.7 (73.1) 69.7 (50.9) 26.3 (35.8) 

Overlap with the chronic neglect ROI 6.7 (6.6) 5.7 (5.8) 1.9 (3.7) 

Interval stroke-onset to assessment 11.3 (10.8) 5.0 (5.0) 4.3 (3.8) 

Letter CoC 0.59 (0.26) 0.44 (0.30) 0.01 (0.02) 

Bells CoC 0.63 (0.30) 0.44 (0.30) 0.01 (0.03) 

Copying (% correct) 37 (20) 61 (27) 97 (5) 

Average neglect z-score 22.8 (10.7) 16.2 (10.3) 0.0 (0.8) 

Visual field defects (% present) 66.7 21.7 6.7 

Chronic Interval acute to chronic assessment 535.3 (264.6) 579.0 (444.0)  

Letter CoC 0.26 (0.33) 0.01 (0.02)  

Bells CoC 0.27 (0.27) 0.01 (0.03)  

Copying (% correct) 69 (22) 95 (4)  

Note. Patients’ clinical and demographic characteristics are reported as mean (SD) or N/N. Age is reported 

in years, time interval in days, and lesion size/overlap in ml. Overlap refers to the lesion size overlapping 

with the chronic neglect ROI (Karnath et al., 2011). Average neglect z-score was calculated as the mean 

of the z-standardized neglect scores (letter, bells, copying). Abbreviations: F – females; M – males; I – 

ischemic stroke; H – hemorrhagic stroke; CoC – Center of Cancellation (Rorden & Karnath, 2010).  

 

Behavioral data 

Visual field defects were examined by the common neurological confrontation technique. Patients 

were assessed using the following clinical tests to quantify the severity of spatial neglect: letter 

cancellation task (Weintraub & Mesulam, 1985), bells cancellation test (Gauthier et al., 1989), 

and the copying task (Johannsen & Karnath, 2004). All three tests were presented on a 

horizontally oriented A4 sheet of paper. For both cancellation tests, we calculated the “center of 
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cancellation” (CoC; Rorden & Karnath, 2010). The CoC score measures neglect severity in a 

continuous manner, while capturing both the number and location of omissions. CoC scores 

greater than 0.081 (letter) or 0.083 (bells) were considered as being pathological for a left-sided 

neglect (cf. Rorden & Karnath, 2010). In the copying task, omission of at least one of the 

contralateral features of each figure was scored as 1, and omission of each whole figure was 

scored as 2; one additional point was given when contralesional figures were drawn on the 

ipsilesional side of the test sheet; the maximum score was 8. A score of minimum 2 (i.e. ≥ 25% 

omissions) indicated neglect behavior in the copying task (Johannsen & Karnath, 2004). A patient 

was considered of showing spatial neglect when at least one out of the three diagnostic tests was 

pathological. Following this reasoning, a patient was only considered as “control” if all three 

diagnostic tests were available and non-pathological. 

 

Imaging data 

Brain lesions were demonstrated by clinical MRI (68%) or CT (32%) scans that were acquired for 

diagnostic reasons at admission. For patients who underwent MRI scanning, we used diffusion-

weighted imaging (DWI) within the first 48h post-stroke and a T2-FLAIR sequence when imaging 

was conducted 48h or later after stroke onset. For image preprocessing and data analyses, we 

used MATLAB R2019a and R2023a (The MathWorks, Inc., Natick, USA). Stroke lesion 

delineation was performed via the semi-automated “Clusterize Toolbox” (Clas et al., 2012; de 

Haan et al., 2015) for SPM12 (Statistical Parametric Mapping; Wellcome Department of Imaging 

Neuroscience, London, UK). The resulting binary lesion map was transformed into standard MNI 

space (Montreal Neurological Institute) with voxels of size 1x1x1mm using the “Clinical Toolbox” 

(Rorden et al., 2012) by normalizing the anatomical brain scan together with the lesion map to 

age-matched templates. In thirteen cases, only manual delineated lesion maps created for 

previous studies (by using MRIcron software; https://www.nitrc.org/projects/mricron) were 

available in MNI space. Finally, all lesion maps were restricted to cerebrum tissue, i.e. ventricles, 

cerebellum etc. were masked. A simple overlap of the brain lesions is presented in Figure 1.  

[Figure 1 near here] 
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Figure 1. Lesion overlay. Simple overlay maps are presented for the whole sample (upper row), chronic 

neglect patients only (second row), recovered neglect patients only (third row), and control patients only 

(lowest row) on axial slices of the ch2-template using MRIcron software. The color legend represents the 

number of patients with damage to a voxel. For the total sample, bluish colors refer to voxels that were 

damaged less than five times among all patients and therefore were excluded from further analyses. 

Numbers above the brain slices refer to z-coordinates in mm in standard MNI space. 

 

Data analysis 

Target variables 

We calculated different scores to quantify the prognosis of spatial neglect and investigated which 

one can most accurately be predicted by our algorithm and predictors. We tested the following 

three variables that describe different aspects of neglect in the chronic phase of stroke: chronic 

z-score, z-score difference, and effectiveness of recovery (Fig. 2A). 

[Figure 2 near here] 
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Figure 2. Variables and model selection procedure. (A) Predictor variables (green) and target variables 

(blue) are presented. Principal components of the lesion location data were selected in two different ways: 

we either kept all PCs that cumulatively explained a certain proportion of the total imaging variance (black 

squares, in the following identifiable by “%”), or we identified the five most important PCs, i.e. that were 

most strongly associated with the target variable, filtered by a feature selection approach (blue squares, in 

the following identifiable by “FS”). (B) The chronic neglect region of interest (cf. Fig. 2C in Karnath et al., 
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2011) is depicted in green in MNI space (numbers refer to the z-coordinates in mm). The overlap of an 

individual lesion map with the chronic neglect ROI was used to derive the ROI-based predictor variables. 

(C) The forward sequential feature selection is exemplarily illustrated; the first iteration represents the 

selection of the most predictive single variable (in the presented example: acute behavior), followed by 

multiple iterations of variable combinations. As long as the prediction error could further be minimized, the 

number of predictors was increased. The model selection procedure was designed to minimize the 

prediction error of chronic and recovered neglect patients (excluding control patients). For each target 

variable, this model selection procedure was applied individually.  

 

Chronic z-score. To describe the overall neglect severity with only one score, we 

calculated the z-scores for the letter and bells cancellation tasks as well as for the copying task 

by using the acute data of the control patients for standardization. Neglect severity was then 

determined as a continuous variable by averaging the three z-transformed test scores, separately 

for the initial and chronic values. The chronic z-score served as one target variable and represents 

the severity of persistent neglect itself.  

Difference between acute and chronic z-scores. The acute z-score was calculated 

equivalent as described for the chronic z-score. The z-score difference was then calculated by 

subtracting the chronic z-score from the acute z-score. This target variable thus describes the 

quantitative difference, which is the direct improvement, in neglect severity between the acute 

and chronic stages.  

Effectiveness of recovery. To evaluate the recovery rate of spatial neglect between initial 

and chronic post-stroke phases, we calculated the effectiveness of recovery. Calculation was 

based on a previously reported formula (adapted from Grasso et al., 2005; Shah et al., 1990; for 

details, see Supplementary Material). In short, this variable depicts the proportion of potential 

recovery that was actually achieved, dependent on the acute neglect severity. Effectiveness of 

recovery was 100% if a patient’s neglect had entirely resolved in the chronic phase; recovery was 

0% if a patient’s neglect severity score did not improve at all. The recovery score was calculated 

for each diagnostic test (letter, bells, and copying) separately and was averaged afterwards.  

Because control patients are very unlikely to exhibit neglect behavior during the chronic 

phase of stroke, we set their chronic neglect z-scores to zero and their recovery scores to 100%. 
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Predictor variables 

We tested the predictive value of the severity of acute neglect behavior, demographic data, 

volume of the brain injury, and its location (Fig. 2A). To operationalize acute neglect behavior, we 

used the mean acute CoC of letter and bells cancellation tasks as this measure can be easily 

obtained in a clinical context. For the demographic data, we used age at stroke-onset and sex. 

Further, we tested the whole-brain lesion size (“WB lesion size”). To determine the validity of a 

previously suggested anatomical map as a predictor of chronic neglect and to compare it to the 

predictive value of the total stroke lesion, we further created lesion maps that included only those 

portions of the lesion that overlapped with this map, hereafter labeled as “chronic neglect region 

of interest (ROI)”. The latter comprised at the cortical level parts of the superior and middle 

temporal gyri and subcortically the basal ganglia (especially the putamen) which had been 

reported to be critically involved when neglect behavior became a chronic disorder (Fig. 2B above; 

Karnath et al., 2011). Besides the whole-brain lesion size, we therefore also investigated the size 

of the individual lesion overlaps with the chronic neglect ROI (“ROI lesion size”) as a measure of 

ROI-based lesion extent. This feature- can also be seen as the relative damage of the total chronic 

neglect ROI.  

Furthermore, we tested different variables of lesion location to investigate the impact of 

lesion topography on prediction accuracy. Voxels damaged less than 5 times among all patients 

were excluded to ignore rarely affected voxels with low statistical power. We ran a principal 

component analysis (PCA) to reduce the dimensionality of each map variant (i.e. 1. whole-brain 

lesion maps and 2. ROI-based overlaps). Principal components (PCs) were previously found to 

yield more accurate predictions compared to voxel-wise maps (Kasties et al., 2021). We 

implemented two separate approaches of component selection to keep the target variable-specific 

most predictive PCs. Firstly, we selected PCs that cumulatively explained at least a specified 

amount of total variance (see Fig. 2A). For each target variable and map variant separately, we 

tried different thresholds and used the winning threshold – that produced the most accurate 

predictions – for further analyses (for details, see Supplementary Material). These lesion location 

variables are termed “WB-%-PCs” and “ROI-%-PCs” in the following. Secondly, we selected PCs 

that were identified as being most relevant for the target variable (see Fig. 2A). Again, for each 

target variable and map variant separately, we tried three different feature selection filter methods 

(for details, see Supplementary Material). We then selected the five most important components 

that were most strongly associated with the target variable, identified by the winning filter method. 

The resulting lesion location variables are termed “WB-FS-PCs” and “ROI-FS-PCs” in the 
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following. One of our questions was whether the ROI-based lesion size and/or map might be more 

informative than the whole-brain lesion size/map, as it was proposed to contain only regions 

critical for neglect chronicity.  

Prediction algorithm 

First, each target/predictor variable was set to the range of 0 to 1. To predict neglect prognosis, 

we applied a supervised learning algorithm, support vector regression (SVR) (Brereton & Lloyd, 

2010; Smola & Schölkopf, 2004). We used the nonlinear radial basis function (RBF) kernel, as 

nonlinear kernels were found to be more accurate than linear ones in previous lesion-behavior 

studies (Hope et al., 2018; Zhang et al., 2014); in accordance, predictions were overall less 

accurate using a linear kernel in a pilot investigation of the current study. We implemented an 

epsilon-SVR using the “libsvm” package for MATLAB (Chang & Lin, 2011). The algorithm is a 

custom script for MATLAB that is based on the algorithm described and visualized in Röhrig et al. 

(2022). We used either one or multiple independent predictor variables to predict one dependent 

target variable. To get generalized results that might not only be applicable to the current sample, 

we applied a nested cross validation (CV) approach (Krstajic et al., 2014; Varoquaux et al., 2017) 

with five iterations in the outer loop and four iterations in the inner loop. A grid search for optimizing 

the hyperparameters C and gamma was implemented within the inner loop (C = 2(-5), 2(-4), …, 215; 

gamma = 2(-15), 2(-14), …, 25). In the whole model selection procedure, the aim was to minimize the 

prediction error, i.e. the mean squared error (MSE). The winning model of the inner loop 

(determined by the lowest MSE) was tested on the unknown, hold-out test set of the outer loop. 

In the end, each patient was predicted once during the outer loop. This procedure was repeated 

10 times with different sample randomizations to further generalize the algorithm as the random 

assignment of patients to the training-, validation-, and test-sets influences the model 

performance. The out-of-sample predictions obtained by these model repetitions were averaged 

for each patient (i.e. model averaging; Arlot & Celisse, 2010; Varoquaux et al., 2017). These final 

predictions were used to calculate the overall model fit. We again used the MSE to select the best 

model and report the goodness of fit (coefficient of determination, R²) and the Pearson correlation 

coefficient (r) as additional measures of model performance; the R² gives the proportion of total 

variance explained by a model, whereas r describes the linear relationship between actual and 

predicted test scores. We did this whole procedure for each target variable and predictor set 

separately.  

 Previous studies predicting the recovery of cognitive deficits after stroke represent an 

inconsistency in how to deal with control patients, that is, whether to include (Hope et al., 2013; 
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Lunven et al., 2015; Umarova et al., 2016) or not to include (Halai et al., 2020; Hillis et al., 2018; 

Stone et al., 1992) patients without a behavior/deficit of interest. On the one hand, patients that 

do not elicit a certain deficit can help the algorithm to learn which features are not essential for 

the deficit (cf. Hope et al., 2013). On the other hand, we aimed to predict chronic neglect, which 

means that for control patients, the chronic outcome cannot be pathological in the chronic phase 

since it was already non-pathological in the acute phase of stroke (in addition to the circumstance 

that we estimated the exact chronic scores for control cases). For any algorithm, prediction of 

controls’ chronic severity would therefore be quite easy (especially if acute behavior is a 

predictor). The very good predictions for the control subsample would thus artificially enhance the 

overall model accuracy and give an overoptimistic image. For this reason, we chose a 

combination of both variants: we used the total sample including control patients to train the 

algorithm, but we predicted only non-control patients (chronic and recovered) – both in the inner 

and outer loop of the nested CV. Hence, the model selection approach was built to minimize the 

prediction error for neglect patients only. This way, we could answer which variables help to 

distinguish chronic versus recovered patients and not neglect versus non-neglect patients (as it 

might be relevant in the prediction of acute neglect severity, cf. Röhrig et al., 2022). To this end, 

the calculation of model performance metrics (mean MSE, R², r) and hence the whole model 

selection process (see below) was solely based on predictions of neglect patients (without control 

patients).  

Model selection procedure 

To test which predictors can most accurately predict neglect prognosis, we evaluated different 

model variants. For each target variable separately, we investigated the predictive values of (i) 

single variables, (ii) combinations of thereof, and (iii) full models. Models were selected according 

to the smallest MSE (and thus to the largest R²). For the first approach, we tested each predictor 

individually. For the second approach, we implemented a forward sequential feature selection 

method that searched for the most predictive variable combination (Fig. 2C). Starting with the 

predictor that achieved the smallest MSE among all single variables, we added a second variable 

to that first selected predictor. In this feature selection iteration, we added each remaining variable 

to the first selected predictor once. Among these models, we selected the variable that could 

further (or most strongly) minimize the MSE as the second selected predictor. The procedure of 

increasing the number of predictors was repeated as long as the MSE could further be minimized. 

For the third approach, we investigated full models, i.e. including all predictor variables at once. 
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Because different lesion location variables (WB-%-PCs, ROI-%-PCs, WB-FS-PCs, ROI-FS-PCs) 

cover overlapping information, we included at most one of them in each model.  

 

Results 

Clinical and demographic variables 

As expected, we detected higher neglect severity (i.e. a higher chronic z-score) in the chronic 

stroke phase for patients of the chronic subsample and no neglect symptoms for recovered 

patients (cf. Tab. 2). In line with that, findings revealed a higher recovery rate (i.e. a higher 

effectiveness of recovery) for recovered than for chronic patients, whereas the improvement from 

the acute to the chronic stroke phase (i.e. z-score difference) did not statistically differ between 

recovered and chronic patients. Furthermore, compared to recovered neglect patients, chronic 

patients were on average older (t = 1.37), more often female (chi² = 0.47), had larger lesions 

(tunequal = 0.82), and larger lesion overlaps with the chronic neglect ROI (t = 0.45); however, these 

effects were not statistically significant (p > 0.05; cf. Tab. 1). In contrast, chronic patients had 

significantly more often visual field defects than recovered patients (chi² = 5.79, p = 0.016; cf. 

Tab. 1).  

 

Table 2. Target variables of neglect prognosis. 

Parameter Chronic  

(N = 12) 

Recovered 

(N = 30) 

t p 

Average chronic neglect z-score 9.8 (10.4) 0.0 (0.8) 3.29* 0.007 

Difference acute - chronic z-scores 14.0 (9.8) 16.5 (10.5) -0.71 0.48 

Effectiveness of recovery (%) 59.1 (27.9) 93.3 (12.5) -4.08* 0.001 

Note. Target variables are reported for the chronic and recovered neglect subsamples. The chronic z-score 

represents the chronic neglect severity itself; the z-score difference equals the direct improvement from the 

acute to the chronic stage of stroke; and the effectiveness of recovery describes the proportion of potential 

recovery that was actually achieved. Statistical results were obtained from two-sample two-tailed t-tests; 

asterisks mark unequal variances t-tests and bold p-values highlight significant results.  
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Neglect prognosis 

For a better understanding of the following results, please have in mind that an ideal model would 

result in MSE = 0, R² = 1, and r = 1. Note that R² usually ranges between 0 and 1, but as we 

predicted unseen data during the nested CV, R² can be negative in case of less accurate 

predictions compared to when always predicting the average test score. A negative R² and a 

negative r, however, are of no interest as only positive scores represent optimal predictions. 

All prediction accuracies are reported in detail in Tables S1, S2, and S3 in the Supplement. 

Overall, we found that full models did not outperform the best single predictor models. However, 

the feature selection process did further improve the prediction accuracy by detecting a predictive 

variable combination (but only for the z-score difference).  

 

Chronic z-score 

The single variable most predictive for the chronic z-score was WB-FS-PCs (MSE = 0.022 ± SD 

0.057, R² = 0.55, r = 0.77 with p < 0.001; Fig. 3A), which is the lesion location described by the 

five most important PCs derived from the whole-brain lesion maps. Besides this variable, the 

single predictors ROI lesion size (R² = 0.25) and ROI-FS-PCs (R² = 0.07), i.e. the lesion location 

described by the five most important PCs derived from the individual ROI overlaps, did also 

explain some proportion of the total variance, representing predictive power. Nevertheless, the 

prediction accuracy could not further be improved during feature selection (see Fig. 3B). The most 

accurate full model also included the variable WB-FS-PCs (MSE = 0.047 ± SD 0.124, R² = 0.06, 

r = 0.26 with p = 0.09; Fig. 3A).  

[Figure 3 near here] 
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Figure 3. Model performances when predicting the chronic z-score. (A) Results are illustrated for 

single predictors (left) and full models (right); full models included all single variables but only one lesion 

location variable as predictors. Lesion location variables consisted of principle components (PCs) derived 

from the whole-brain (WB) or ROI-based lesion maps, whereby the PCs were either selected according to 

a specific proportion of cumulatively explained variance (%) or the five most important PCs were filtered by 

a feature selection approach (FS). Models are sorted by increasing prediction error for chronic and 

recovered neglect patients (N = 42). Bar plots represent the mean squared error (MSE), coefficient of 

determination (R²), and Pearson correlation coefficient (r). Note that only positive values are depicted since 

a negative R² is not informative except for an insufficient model performance and a negative r represents 

the opposite direction of interest. (B) Results are shown for the predictor selected by feature selection. The 

violin plot (left) illustrates the distribution of the individual prediction errors. (C) Test scores versus predicted 

scores are shown for the best performing model (WB-FS-PCs). Scatter plots illustrate either actual obtained 

out-of-sample predictions (left) or perfect predictions (in case of 100% accuracy; right), each for chronic (N 

= 12) and recovered (N = 30) neglect patients separately. 
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This leaves the most predictive single variable as the best model, which explained 55% of 

the total variance of neglect patients. This model revealed predictions with a strong relationship 

to the test scores for chronic patients (r = 0.82, p < 0.001; Fig. 3C). Although the correlation for 

recovered patients was not powerful (r = -0.14, p = 0.47), predictions clustered within the ideal 

range (see Fig. 3C). The five predictive components (43.1ml, 6.4% cumulative explained imaging 

variance) involved gray matter regions (Brainnetome Atlas; Fan et al., 2016) mainly in the middle 

and superior temporal gyri (MTG/STG), insular gyrus, basal ganglia (putamen, globus pallidus, 

dorsal caudate), inferior parietal lobule (IPL), and postcentral gyrus (Fig. 4A). With respect to 

white matter fiber tracts (JHU ICBM atlas; Mori et al., 2008), mainly the external and internal 

capsules, superior and posterior corona radiate, and superior longitudinal fasciculus (SLF) were 

involved. Further details are reported in Table S4 in the Supplement. Findings revealed that lesion 

location quantified by only five PCs derived from the whole-brain lesion map is the strongest 

predictor for chronic neglect severity, indicating that the patient’s lesion topography is more 

important than other clinical or demographic information.  

[Figure 4 near here] 
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Figure 4. Predictive lesion locations. The five principal components (PCs) are visualized together (cyan) 

that were obtained from (A) the whole-brain lesion map or (B) the lesion overlap with the chronic neglect 

ROI, that were selected based on the respective target variable by a feature selection filter method, and 

that were found to be together predictive for (A) the chronic z-score respectively (B) the z-score difference. 

Upper row each: PCs are presented on axial slices in standard MNI space on the ch2-template via MRIcron 

software, with z-coordinates above each slice. Lower row each: PCs are shown within the right hemisphere 

(“R”) of a 3D glass brain in anterior, right, and superior views via DSI studio software.  
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Difference of acute z-score minus chronic z-score 

The z-score difference, i.e. the direct improvement of neglect severity between acute and chronic 

phase of stroke, was best predicted by the variable acute behavior, which is the initial neglect 

severity (MSE = 0.026 ± SD 0.06, R² = 0.59, r = 0.77 with p < 0.001; Fig. 5A). In contrast to the 

chronic z-score, the feature selection detected a combination of three variables as the most 

predictive variable combination for the z-score difference. In addition to the acute behavior, 

selected variables were ROI-FS-PCs, i.e. the lesion location described by the five most important 

PCs derived from the individual lesion overlaps with the chronic neglect ROI, and ROI lesion size, 

i.e. the size of the stroke lesion overlapping with the chronic neglect ROI (MSE = 0.022 ± SD 

0.048, R² = 0.66, r = 0.81 with p < 0.001; Fig. 5B). Although all full models performed similarly 

well, the most accurate full model included variable ROI-FS-PCs (MSE = 0.028 ± SD 0.071, R² = 

0.56, r = 0.75 with p < 0.001; Fig. 5A). 

[Figure 5 near here] 
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Figure 5. Model performances when predicting the z-score difference. (A) Results are illustrated for 

single predictors (left) and full models (right), and (B) for predictors selected by feature selection; the 

number in front of the variable name represents the iteration of the forward sequential feature selection in 

which the variable was chosen. (C) Test scores versus predicted scores are shown for the best performing 

model (acute behavior, ROI-FS-PCs, ROI lesion size). For all further details, see legend of Figure 3 above. 

 

Overall, the best model for predicting the z-score difference included the following 

predictors: acute behavior, ROI-FS-PCs, and ROI lesion size. This model explained 66% of the 

total variance of neglect patients, leaving it as the overall best model among all target variables. 

Looking at the model fit separated by group, chronic as well as recovered patients received good 
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predictions, yielding correlations between actual and predicted test scores of r = 0.60 (p = 0.041) 

for chronic and r = 0.97 (p < 0.001) for recovered patients (Fig. 5C). The five predictive 

components (15.5ml, 19.2% cumulative explained imaging variance) mainly involved gray matter 

regions in the MTG/STG, basal ganglia (putamen, globus pallidus, dorsal caudate), IPL, and 

insular gyrus as well as white matter fiber tracts as the external and internal capsules, posterior 

thalamic radiation, and SLF (Fig. 4B; further details in Tab. S4). The findings highlight that regions 

covered by the chronic neglect ROI were more predictive than the whole-brain stroke lesion when 

predicting the z-score difference. Location and size of lesion overlaps with the chronic neglect 

ROI added relevant information to the acute neglect behavior, although they were not predictive 

among the single predictors. In the end, the initial neglect severity was found to be the best 

prognostic factor.  

Some patients of the current investigation were also included in the creation of the chronic 

neglect ROI map of the previous study (Karnath et al., 2011; see above section ”Patient sample”). 

Since ROI-based predictor variables were found to be within the best performing model, we 

addressed possible concerns due to the sample overlap by additionally calculating the final 

measures of model performance without predictions of the overlapping chronic patients (N = 5). 

We found no decrease in model performance (MSE = 0.014 ± SD 0.032, R² = 0.79, r = 0.91 with 

p < 0.001; Fig. S1 in the Supplement), indicating that the overlapping patients did not boost the 

performance. However, note that the improvement of accuracy, which was even achieved, was 

due to the reduction of the chronic subsample, as chronic patients were less predictable than 

recovered ones.  

To investigate whether every selected predictor contributes significantly to the overall 

model performance, we implemented permutation tests with 5000 iterations each. Acute neglect 

behavior (p < 0.001) and ROI-based lesion location (p = 0.047) were found to be individually 

important for the prediction accuracy, whereas size of the ROI-based lesion overlap did not 

achieve significance (p = 0.061).  

Effectiveness of recovery 

Prediction errors were overall larger for models predicting the effectiveness of recovery, indicating 

that the recovery score can be predicted least well among the evaluated target variables. The 

variable WB lesion size, i.e. the volume of the whole-brain stroke-induced damage, resulted in 

the lowest prediction error among all single predictors (MSE = 0.066 ± SD 0.163, R² = -0.06, r = 

0.10 with p = 0.55; Fig. 6A). As for the chronic z-score, the feature selection for the recovery score 
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detected no variable combination that outperformed the most predictive single predictor (Fig. 6B). 

The model with the lesion location variable ROI-%-PCs served as the best performing full model 

(MSE = 0.068 ± SD 0.153, R² = -0.10, r = -0.31 with p = 0.045; Fig. 6A). 

[Figure 6 near here] 

 

Figure 6. Model performances when predicting the effectiveness of recovery. (A) Results are 

illustrated for single predictors (left) and full models (right), and (B) for the predictor selected by feature 

selection. (C) Test scores versus predicted scores are shown for the best performing model (WB lesion 

size). For all further details, see legend of Figure 3 above. 

 

Although the model including the predictor WB lesion size yielded the lowest error for 

predicting effectiveness of recovery, the overall performance was not sufficient to be meaningful. 

This is illustrated by the poor model fit for chronic (r = 0.11, p = 0.74) and recovered patients (r = 
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-0.11, p = 0.58; Fig. 6C). In fact, findings revealed that none of the models that aimed to predict 

the effectiveness of recovery was able to explain some proportion of total variance (no positive-

valued R²). To summarize, none of the models predicting neglect recovery was detected to 

achieve meaningful predictions, which also weakens the potential prognostic value of the whole-

brain lesion size.   

 

Discussion 

In the present study, individual long-term outcome of spatial neglect was predicted based on acute 

patient data in a sample of chronic and recovered patients with neglect, by implementing a 

repeated nested cross-validation design with feature selection. Out-of-sample predictions suggest 

that the direct improvement of neglect severity between acute and chronic phases of stroke can 

be best predicted, followed by chronic neglect severity itself. On the other hand, the effectiveness 

of recovery turned out to be not sufficiently predictable by the variables and algorithm tested. 

Among different types of predictors, demographic information (age, sex) seemed to be the least 

useful. In contrast, initial neglect severity was helpful when predicting the direct improvement of 

neglect behavior; this variable alone already reached a small prediction error.  

Present findings also highlight the prognostic value of imaging data for post-stroke 

recovery of spatial neglect, which is in line with previous outcomes (Kamakura et al., 2017; 

Karnath et al., 2011; Lunven et al., 2015; Umarova et al., 2016; for review see Imura et al., 2022). 

Although lesion size was predictive to a certain extent, findings suggest a superiority of lesion 

topography. The latter served as a reliable predictor, including brain regions as the middle and 

superior temporal gyri, insular gyrus, inferior parietal lobule, basal ganglia, and white matter tracts 

as external capsule, internal capsule, and superior longitudinal fasciculus. However, prediction 

analyses revealed that the best variable combination comprised the individual neglect severity in 

the acute phase of the stroke, and size and location of individual lesion overlaps with the 

previously proposed chronic neglect ROI (Karnath et al., 2011). Using these variables for 

predicting the direct improvement from the acute to the chronic stroke phase, 66% of the total 

variance of chronic and recovered neglect patients were explained, making them very promising 

features in the prediction of individual outcome prognoses. On the other hand, chronic neglect 

severity could be predicted by using acute lesion data only, reaching an accuracy of 55% 

explained variance. This is of particularly clinical relevance as patients with severe post-stroke 

cognitive impairments might be unable to accomplish multiple paper-and-pencil tests to determine 
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the severity of spatial neglect. In such cases, acute lesion information can be used independently 

from diagnostic behavioral tests to predict chronic outcome already in the acute phase of stroke 

and eventually guide treatment programs. 

Overall, our maximal model performance (i.e. R² = 0.66)  was remarkably superior to a 

reported performance regarding visuospatial abilities of R² = 0.18, which was obtained by the 

Disconnectome Symptom Discoverer (DSD) model developed in a recent study on predicting 

post-stroke cognitive recovery using the structural disconnectome (Talozzi et al., 2023). This 

performance was achieved for the DSD when predicting individual performances on the Bells 

cancellation test using a sophisticated model validation approach, including training and validation 

on different external cohorts. However, as model performance within the training phase did also 

not exceed 30% explained variance (Talozzi et al., 2023), we can speculate whether structural 

disconnection data might be less suited for long-term prediction in comparison to lesion anatomy. 

Contrary, Talozzi and colleagues (2023) observed the opposite, as their structural disconnection 

model outperformed lesion-based models. In contrast to models investigated by Talozzi and 

colleagues (2023), our best predictive model included the acute behavior as an important 

predictor, in addition to lesion-based features. However, it is important to note that the exclusion 

of acute behavior in the DSD model may only partially contribute to the superior performance of 

our best model, because another model of the current study achieved a superior model 

performance of R² = 0.55 by using only lesion-based features. Another potential explanation for 

the superiority of our current approach is that the feature selection procedure implemented – 

especially the filter method pre-selecting important spatial imaging features – did improve model 

accuracy. Additionally, the DSD model relies on linear regression, whereas the current approach 

used support vector regression with a nonlinear kernel. Furthermore, in the samples used for 

external training and validation of the DSD model, neuropsychological test data (i.e. Bells scores) 

were obtained in the subacute phase of stroke (within 30-90 days post-stroke), whereas in the 

current study, chronic behavior (minimum 189 days post-stroke) was predicted using acute 

imaging. For these reasons, we argue that the fundamental backgrounds of the discussed models 

are different in nature and allow only limited space for direct comparisons.  

 

Imaging biomarkers 

Simple, one-dimensional imaging information, namely whole-brain (WB) and ROI-based lesion 

size, was found to be somewhat predictive. The ROI-based lesion size outperformed the WB 
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lesion size and constituted the second-best predictor when predicting the chronic z-score, while, 

on the other hand, this variable was the least good predictor when predicting the z-score 

difference or recovery score. During feature selection, the ROI-based lesion size did again 

outperform the WB lesion size. The reduction of the WB lesion size to chronic neglect regions 

(Karnath et al., 2011) seems to be beneficial for the accuracy in certain conditions only. Among 

the best models, variables of lesion size could either not achieve accurate predictions at all (when 

predicting the recovery score) or did not significantly improve model performance (when 

predicting the z-score difference). In contrast to a recent investigation on the general predictive 

power of lesion size and location on stroke severity and outcome (Sperber et al., 2023), we 

observed that lesion location variables clearly outperformed lesion size variables. On the other 

hand, when predicting the direct improvement, model performance was only 3.6% less accurate 

when using only ROI-based lesion size in addition to acute neglect behavior (i.e. without ROI-

based lesion location; see Tab. S2 in the Supplement). This indicates that lesion location is only 

slightly superior to lesion size, which is in accordance with findings by Sperber et al. (2023). 

However, as size of the ROI-based lesion overlap relies on spatial features of individual stroke 

lesions (i.e. lesion size is limited to specified brain regions), this feature can further be seen as a 

one-dimensional lesion location variable. The circumstance that component-based lesion location 

seems to improve model performances only slightly may be of high interest for clinical settings, 

as the calculation and implementation of lesion size is more applicable than complex principal 

components due to the different degrees of dimensionality (cf. Sperber et al., 2023). Hence, a 

compromise of good accuracy and easy implementation might be lesion size as an overlap of 

individually damaged voxels with predictive topographical features extracted by our principal 

component analysis. Corresponding binary anatomical maps are available in the online material. 

Regarding complex, high-dimensional lesion location information (i.e. topographic 

measures), we found that a pre-selection of relevant PCs yielded more accurate predictions 

compared to PCs that cumulatively explain a specific proportion of total imaging variance. Both 

the WB lesion map and the ROI-based lesion overlap contained prognostic PCs. We found that 

the combination of five PCs of the whole-brain lesion map pre-selected by feature selection 

represents the sole predictor variable of the model most accurately predicting the chronic z-score, 

i.e. chronic neglect severity. Similarly, for the z-score difference (i.e. the direct improvement), the 

five PCs of the ROI-based lesion map filtered via feature selection added some predictive value 

to the so far best-performing model. Results highlight the importance of feature selection and 

future research on potential imaging biomarkers. Interestingly, both PC selections cover similar 

brain areas (cf. Fig. 4 above), suggesting that similar regions were predictive for different 
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measures of neglect prognosis. This also strengthens the hypothesis that the described areas 

might be crucial for persistent symptoms of spatial neglect, supporting findings by Karnath et al. 

(2011).  

The present study revealed that areas covering the MTG/STG, basal ganglia, insula, and 

IPL were predictive, demonstrating the prognostic value of these gray matter regions and 

supporting previous findings (Chechlacz et al., 2012; Karnath et al., 2002; Saj et al., 2012). At the 

connectivity level, we observed that – among other fiber tracts − damage to the SLF was relevant 

for neglect prognosis, which again is in line with previous observations (Chechlacz et al., 2012; 

Karnath et al., 2009; Lunven et al., 2015; Thiebaut de Schotten et al., 2014). In fact, damage to 

these cortical and subcortical structures, in particular, have been reported to be associated with 

chronic neglect (e.g. Karnath et al., 2011; Lunven et al., 2015; Saj et al., 2012). However, please 

note that the present study was not designed to determine whether the mentioned structures are 

frequently lesioned or spared in chronic patients. Instead, the involvement of these structures tells 

us that their lesion status affects long-term prognosis, that is, either damage or preservation of 

corresponding voxels is associated with either chronicity or recovery of spatial neglect.  

In addition to these anatomical structures which are well known to be related to spatial 

neglect, we found that lesion status of external and internal capsules was predictive for chronic 

behavior of neglect patients. In line with this observation, previous research found significantly 

decreased white matter integrity in right-sided external and internal capsules of recovered (but 

not chronic) neglect patients compared to non-neglect patients (Lunven et al., 2015), suggesting 

that damage to these structures might result in acute neglect with high probability of recovery. In 

contrast, the present analysis did neither find evidence for a major involvement in neglect 

chronicity for the callosal splenium, as reported by Lunven et al. (2015), nor for the uncinate 

fasciculus, as reported by Karnath et al. (2011). However, when comparing previous and current 

results, it should generally be borne in mind that exact comparisons are challenging due to 

variations in methodologies, research questions, behavioral tests used, time intervals for initial 

and follow-up assessments and imaging, inclusion or exclusion of control patients, and 

investigated contrasts (chronic versus recovered, chronic versus control) among studies.  

 

Challenges of neglect prognosis 

Our results clearly showed that the way how chronicity of spatial neglect was calculated (chronic 

z-score, z-score difference, or effectiveness of recovery) had a major impact on whether the 
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predictor variables had high or low prognostic values. Although direct improvement by simple 

subtraction of functional score from acute to chronic stage (z-score difference) is a classic 

measure, it is influenced by floor and ceiling effects (Grasso et al., 2005). Moreover, patients with 

acute scores representing subtle deficits can potentially improve less than patients with acute 

scores representing severe deficits (Grasso et al., 2005; Shah et al., 1990). The recovery score 

addresses these issues by taking the acute neglect severity into account. Nevertheless, the 

recovery score also has limitations. Patients with 50% recovery might have had a very large direct 

improvement or almost no direct improvement, depending on the acute behavior. The algorithm 

built in the current study could not predict such information reliably, possibly because very 

different patient subsamples were considered as being similar. Another possible explanation why 

we could not solidly predict the recovery score is that our algorithm would have needed more 

training examples to reliably detect patterns among the complex recovery scores. Nevertheless, 

one could try implementing models with multiple target variables in future studies. To put all three 

variables examined in the present study into context: a patient with severe neglect but minimal 

recovery achieved the same direct improvement (absolute change in neglect behavior) as a 

patient with slight neglect symptoms and full recovery. Each test variable was best predicted by 

different predictor combinations and could be predicted to different degrees, which supports the 

importance of examining different variables of neglect prognosis.  

What we can state here with certainty is that the different ways to measure spatial neglect 

and its chronicity used in different studies contributes to the heterogeneity of the results reported 

in previous prognostic studies. Another factor contributing to this heterogeneity between 

prognostic studies is the fact that control patients are sometimes included and sometimes not. 

Inconsistent statements exist in the literature about whether control patients should be included. 

One should have in mind that predictions of chronic behavior of control patients do very likely 

boost the performance due to the absence of the target deficit from stroke onset. In general, 

consideration of control patients when calculating model accuracy should depend on the 

underlying research question. The algorithm of the present study was designed to minimize the 

prediction error for chronic and recovered neglect patients only, as we asked which features can 

distinguish chronic versus recovered patients.  
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Limitations 

In the present study, we used PCA to generate useful spatial features, considering the predictive 

power, feature space, and computational resources. But at the same time, principal components 

are less clinically applicable because their prognostic information cannot be used directly, as it 

needs to be translated to an individual patient first. Nevertheless, predictive components can be 

used to identify relevant lesion locations that might aid the development of future lesion predictors. 

In addition, we utilized a repeated nested CV approach to overcome overfitting. The out-of-sample 

predictions still relied on the same patient cohort as the model building, with respect to the 

preprocessing pipeline of the imaging data, imaging parameters, and neuropsychological tests. 

Therefore, external validation is needed to underpin the here presented findings (see Hope et al., 

2023).  

Other variables have been examined in the literature to predict neglect recovery (for 

review, see Durfee & Hillis, 2023) that were not used in the current study. These include, for 

example, premorbid brain atrophy (Levine et al., 1986), burden of white matter hyperintensities 

(Kamakura et al., 2017), fractional anisotropy values (Lunven et al., 2015), anosognosia (Stone 

et al., 1992), acute visual field defects (Samuelsson et al., 1997), acute allocentric (but not 

egocentric) neglect severity (Moore et al., 2021), as well as activation patterns and functional 

connectivity (Cao et al., 2022; Umarova et al., 2016). Changes in structural connectivity might 

also play a role (see Talozzi et al., 2023), although, for post-stroke aphasia, this measure could 

not add predictive value to models using the lesion information itself (Halai et al., 2020; Zhao et 

al., 2023). Future studies should investigate whether (some of) these or other potentially 

prognostic factors can add predictive information to the best-performing model(s) of the current 

study. 

 

Conclusion 

Among different measures of long-term neglect prognosis, the direct improvement between acute 

and chronic stages of stroke was best predicted by using acute neglect severity as well as location 

and size of individual lesion maps overlapping with a previously reported chronic neglect ROI 

(Karnath et al., 2011). This model has achieved a remarkably high level of prediction accuracy, 

with 66% of the behavioral variance explained. Demographic data were not informative for the 

algorithm, whereas the initial behavior and acute lesion location emerged as useful predictors for 
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individual neglect prognoses. Therefore, it is worthwhile to determine topographical features of a 

brain lesion when predicting chronicity of neglect. All in all, a prediction accuracy of almost two-

thirds explained variance has great potential to help guide individualized therapeutic approaches 

to treat spatial neglect in the future. Clinicians could use this information to begin rehabilitation of 

neglect earlier and provide more intensive or frequent therapy sessions to prevent persistent 

neglect in patients predicted to become chronic.  
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