Development of a Novel Risk Score for Predicting One-Year Mortality Risk in Patients with Atrial Fibrillation using XGBoost-Assisted Feature Selection

Bin Wang^{1, #}, MD; Feifei Jin^{2, 3, 4, #}, MD; Han Cao^{5, #}, MD; Qing Li¹, MD; Ping Zhang^{1, *}, MD

¹Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical

Medicine, Tsinghua University, Beijing, China.

²Trauma Medicine Center, Peking University People's Hospital, Beijing, China.

³Key Laboratory of Trauma treatment and Neural Regeneration, Peking University,

Ministry of Education, Beijing, China.

⁴National Center for Trauma Medicine of China, Beijing, China.

⁵Medical Data Science Center, Beijing Tsinghua Changgung Hospital, School of

Clinical Medicine, Tsinghua University, Beijing, China.

[#]These authors contributed equally.

* Corresponding Author:

Ping Zhang

Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing,

102218, China

Email: zhpdoc@126.com NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Short title

A Novel Risk Score for Atrial Fibrillation

ORCID

Bin Wang http://orcid.org/0000-0003-0012-9835

Feifei Jin https://orcid.org/0000-0002-4991-0158

Han Cao https://orcid.org/0000-0002-9491-6188

Qing Li https://orcid.org/0000-0001-8218-7929

Word count: 5572

Total number of words in the manuscript: 2981

Number of words in the abstract: 380

Number of figures: 8

Number of tables: 2

1 Development of a Novel Risk Score for Predicting One-Year Mortality Risk in

2 Patients with Atrial Fibrillation using XGBoost-Assisted Feature Selection

3

4 ABSTRACT

5 Background: There is a lack of tools specifically designed to assess mortality risk in 6 patients with atrial fibrillation (AF). The aim of this study was to utilize machine 7 learning methods for identifying pertinent variables and developing an easily 8 applicable prognostic score to predict 1-year mortality in AF patients.

9 Methods: This single-center retrospective cohort study based on the Medical 10 Information Mart for Intensive Care-IV (MIMIC-IV) database focused on patients 11 aged 18 years and older with AF. The study thoroughly scrutinized patient data to 12 identify and analyze variables, encompassing demographic variables, comorbidities, 13 scores, vital signs, laboratory test results, and medication usage. The variable 14 importance from XGBoost guided the development of a logistic model, forming the 15 basis for an AF scoring model. Decision curve analysis was used to compare the AF 16 score with other scores. Python and R software were used for data analysis.

Results: A cohort of 59,595 AF patients was obtained from the MIMIC-IV database;
these patients were predominantly elderly (median age 77.3 years) and male (55.6%).
The XGBoost model effectively predicted 1-year mortality (Area under the curve
(AUC): 0.833; 95% confidence intervals: 0.826-0.839), underscoring the significance
of the Charlson Comorbidity Index (CCI) and the presence of metastatic solid tumors.

22	The CRAMB score (Charlson comorbidity index, readmission, age, metastatic solid
23	tumor, and blood urea nitrogen maximum) outperformed the CCI and
24	CHA2DS2-VASc scores, demonstrating superior predictive value for 1-year mortality.
25	In the test set, the area under the ROC curve (AUC) for the CRAMB score was 0.756
26	(95% confidence intervals: 0.748-0.764), surpassing the CCI score of 0.720 (95%
27	confidence intervals: 0.712-0.728) and the CHA2DS2-VASc score of 0.609 (95%
28	confidence intervals: 0.600-0.618). Decision curve analysis revealed that the CRAMB
29	score had a consistently positive effect and greater net benefit across the entire
30	threshold range than did the default strategies and other scoring systems. The
31	calibration plot for the test set indicated that the CRAMB score was well calibrated.
32	Conclusions: This study's primary contribution is the establishment of a benchmark
33	for utilizing machine learning models in construction of a score for mortality
34	prediction in AF. The CRAMB score was developed by leveraging a large-sample
35	population dataset and employing XGBoost models for predictor screening. The
36	simplicity of the CRAMB score makes it user friendly, allowing for coverage of a
37	broader and more heterogeneous AF population.
38	
39	Keywords: Atrial fibrillation; Mortality; Risk score; Machine learning; Risk factors

- 40
- 41
- 42

43 List of abbreviations

- 44 **ABC-death:** Age, biomarkers (N-terminal pro B-type natriuretic peptide, troponin T,
- 45 growth differentiation factor-15), and clinical history of heart failure
- 46 **AF:** Atrial fibrillation
- 47 **AUC:** Area under the curve
- 48 BASIC-AF risk score: Biomarkers, age, ultrasound, intraventricular conduction
- 49 delay, and clinical history
- 50 **BUN:** blood urea nitrogen
- 51 CCI: Charlson Comorbidity Index
- 52 CHA2DS2-VASc: congestive heart failure, hypertension, age, diabetes mellitus, prior
- 53 stroke or TIA or thromboembolism, vascular disease, age, sex category
- 54 **CI:** Confidence interval
- 55 CRAMB: Charlson comorbidity index, readmission, age, metastatic solid tumor, and
- 56 maximum blood urea nitrogen
- 57 **DCA:** Decision curve analysis
- 58 HR: hazard ratio
- 59 **ICU:** Intensive care unit
- 60 MIMIC-IV: Medical Information Mart for Intensive Care-IV
- 61 **OR:** Odds ratio
- 62 **ROC:** Receiver operating characteristic

63 Introduction

64	Atrial fibrillation (AF) is a prevalent cardiac arrhythmia linked to considerable
65	morbidity and mortality. It is characterized by an irregular and often rapid heart rate,
66	resulting in compromised blood flow and potential complications such as stroke, heart
67	failure, and other cardiovascular events [1]. AF has a broad impact on cardiac
68	function, functional status, and quality of life and is also a risk factor for stroke [2].
69	Additionally, AF is a significant risk factor for stroke and becomes more prevalent
70	with age, affecting more than 2 million individuals in the United States, 14% to 17%
71	of whom are aged 65 years and older [3]. Individuals diagnosed with AF experienced
72	a 3.7 times greater likelihood of mortality from any cause than the general population
73	[4]. AF represents a significant public health issue due to its considerable impact on
74	morbidity and mortality as well as its economic strain on healthcare systems.
75	The assessment tool for evaluating the risk of stroke in patients with AF, known as
76	the congestive heart failure, hypertension, age, diabetes mellitus, prior stroke or TIA
77	or thromboembolism, vascular disease, age, sex category (CHA2DS2-VASc) score [5],
78	has been associated with cardiovascular events and mortality in diverse patient groups,
79	including those with diabetes [6] and individuals without AF [7]. Nevertheless, tools
80	specifically designed to assess mortality risk in patients with AF are lacking. Although
81	recent studies have introduced new AF risk scores [8, 9], these scores were developed
82	based on data from clinical trials, limiting their applicability to the broader AF
83	population.

4 / 40

84	Consequently, additional research is necessary to identify potential models for
85	scoring AF risk. The objective of this study was to employ machine learning methods
86	to identify relevant variables and create an easily applicable prognostic score for
87	predicting 1-year mortality in AF patients.
88	
89	
90	Methods
91	Study design and setting
92	This was a single-center retrospective cohort study. The data utilized in this research
93	originated from the Medical Information Mart for Intensive Care-IV (MIMIC-IV
94	version 2.2) database [10, 11]. Over the period from 2008 to 2019, the intensive care
95	unit (ICU) at Beth Israel Deaconess Medical Center admitted more than 50,000
96	critically ill patients, as documented in MIMIC-IV. Approval for the MIMIC-IV
97	database was granted by the Massachusetts Institute of Technology (Cambridge, MA)
98	and Beth Israel Deaconess Medical Center (Boston, MA), with consent obtained for
99	the initial data collection.
100	
101	Study population
102	The study population included patients aged 18 years and older with a discharge
103	diagnosis of AF. Patients with AF were identified by searching International
104	Classification of Diseases diagnostic terminology in the MIMIC-IV database by

matching the keyword "atrial fibrillation". The types of queried AF diagnostic terms
were manually reviewed to ensure compliance. The exclusion criterion was lack of
patient data on survival outcomes.

109 Study variables

110 The variables examined in the research included the characteristics of the study

111 population, complications, various scores (such as Charlson Comorbidity Index and

112 the CHA2DS2-VASc score), vital signs, and an array of laboratory tests (including

113 routine bloodwork, blood biochemistry, coagulation, blood lipids, cardiac markers,

114 etc.). Additionally, the investigation considered use of vasopressors (norepinephrine,

115 epinephrine, phenylephrine, dopamine, dobutamine, vasopressin, and milrinone),

116 antithrombotic agents (heparin, enoxaparin, warfarin, aspirin, clopidogrel, ticagrelor,

117 rivaroxaban, edoxaban, dabigatran etexilate, fondaparinux sodium, prasugrel, and

118 apixaban), and beta blockers (propranolol, metoprolol, bisoprolol, carvedilol, labetalol,

119 atenolol, and nebivolol) and various other data points. For laboratory test items,

120 summary statistics, including minimum and maximum values during hospitalization,

121 were utilized to derive variables. An indicator column for the respective drug was

122 generated based on whether the drug was used during hospitalization.

123

124 **Outcome variable**

6 / 40

125	The primary outcome measured was 1-year mortality. Survival time was calculated by
126	utilizing the date of death information available in the MIMIC-IV database restricted
127	to a 1-year timeframe.
128	
129	
130	
131	Machine learning model development and validation
132	The dataset was randomly partitioned into training and test samples at a 3:1 ratio. To
133	prevent model overfitting, tenfold cross-validation and model calibration techniques
134	were applied. To accommodate varying degrees of missing values in dataset variables,
135	the mainstream machine learning model XGBoost was employed due to its ability to
136	handle missing data. The discriminative performance of the models was assessed
137	using the area under the receiver operating characteristic (ROC) curve. Feature
138	scaling was deemed unnecessary before inputting the data into the model. A total of
139	164 candidate variables were incorporated into the model training process.
140	Furthermore, a calibration curve was utilized as a graphical representation to evaluate
141	the concordance between the predicted probabilities and observed outcomes in binary
142	classification models. On the calibration curve, the x-axis denotes the mean predicted
143	probability assigned by the model to a specific class, and the y-axis signifies the
144	observed frequency of positive instances. Ideally, a well-calibrated model produces a

145 calibration curve that closely aligns with the diagonal line (y=x), signifying a perfect

146 correspondence between the predicted probabilities and actual outcomes.

147

Development of the scoring scale 148

149	The XGBoost model assigned importance to predictor variables, and variables with
150	higher importance were selected based on this ranking. These selected variables were
151	subsequently integrated into a logistic model to construct the scoring model. Manual
152	testing was employed to evaluate the impact of introducing or removing variables on
153	the area under the curve (AUC) of the logistic model in the test set. After striking a
154	balance between AUC performance and the increase in model complexity associated
155	with the number of variables included, the chosen variables for the AF scoring model
156	were ultimately determined. A nomogram was used to construct the finalized AF
157	scores. Decision curve analysis (DCA) was employed to assess the clinical utility and
158	net benefit of the AF scoring model, CCI, and CHA2DS2-VASc scores within the test
159	set [12, 13]. DCA quantifies the net benefit of a clinical prediction model at different
160	risk thresholds, avoiding the simplistic assumptions of all patients being at low or
161	high risk. The superior model is identified by the highest net benefit at the chosen
162	threshold. The flow chart of the study is shown in Figure 1.
163	

Data analysis 164

165	Python software (version 3.11.5	was used to construct mad	chine learning models,
-----	-------------------	----------------	---------------------------	------------------------

- 166 evaluate performance, and generate AUCs and calibration curves. R software (version
- 167 4.3.2) was used for logistic and Cox regression analyses, forest plot creation, DCA,
- and nomogram generation. Baseline characteristics are presented as the mean
- 169 (standard deviation), median (Q1, Q3), or percentage (%), as determined by the
- 170 distribution characteristics of the data. The DeLong test was applied to determine
- 171 whether the AUC of a given prediction significantly differed from that of another
- 172 prediction [14]. Python was used for descriptive tables [15] and DeLong tests. When
- 173 constructing the original machine learning model, no handling of missing values was
- 174 conducted. However, during the development of the logistic model for the AF score,
- 175 missing values were removed from the dataset based on the variables included in the
- 176 AF score, as logistic models are unable to manage missing values. In all analyses,
- 177 statistical significance was defined as a two-sided p value < 0.05.
- 178
- 179
- 180 **Results**

181 Baseline characteristics

- 182 This study enrolled 59,595 individuals diagnosed with AF from the MIMIC-IV
- 183 database. Among them, 55.6% were male. The cohort had a median age of 77.3 years
- 184 (with an interquartile range of 68.1-85.3), a median CHA2DS2-VASc score of 4
- 185 (interquartile range, 3-5), a median CCI of 6 (interquartile range, 4-8), and a median

- 186 hospitalization duration of 4 days (interquartile range, 1-7). Additional results are
- 187 presented in **Table 1**.
- 188

189 Screening variables using the XGBoost model

- 190 The XGBoost model showed an AUC and 95% confidence intervals (95% CI) of
- 191 0.833 (95% CI, 0.826-0.839) when predicting 1-year mortality in the test set (Figure
- 192 2). Figure 3 illustrates the significance of the predictor variables determined by the
- 193 XGBoost model. Notably, CCI and the presence of metastatic solid tumors were
- 194 identified as the top two variables, with considerably greater importance than the

195 other variables.

196

197 Derivation and evaluation of the AF score

198 The 1-year mortality risk score for AF was calculated as CRAMB, which represents

199 CCI, readmission, age, metastatic solid tumor, and maximum blood urea nitrogen

- 200 (BUN) (variable "bun_max") (Figure 3). The variable "readmission" was derived
- 201 from the variable "hospstay_seq" (hospital stay sequence, indicating the number of
- 202 hospitalizations) for convenient clinical application. Logistic and Cox regression
- analyses were employed to assess the predictive value of these five variables for the
- 204 outcome of death, as expressed as odds ratios (ORs). Both the forest plot (Figure 4)
- and the forest plot of hazard ratios (HRs) (Figure 5) revealed that these variables
- 206 were significantly different.

207	A nomogram was used to calculate the CRAMB score (Figure 6). In the test set,
208	the area under the curve (AUC) for the CRAMB score was 0.756 (95%
209	CI=0.748-0.764), surpassing CCI, at 0.720 (95% CI=0.712-0.728), and the
210	CHA2DS2-VASc score, at 0.609 (95% CI=0.600-0.618). Table 2 displays
211	supplementary performance metrics corresponding to these scores. The DeLong test
212	results comparing the CRAMB score with existing scores (CCI and CHA2DS2-VASc)
213	revealed statistically significant differences ($p < 0.001$), as indicated in Table 2 . The
214	DCA results provided in Figure 7 demonstrate that the CRAMB score consistently
215	exhibited a positive and greater net benefit across the entire threshold range than the
216	default strategies, assuming either high or low risk, as indicated by CCI and
217	CHA2DS2-VASc scores, and the hypothesis of not using a scoring system. The
218	calibration plot (Figure 8) for the test set indicated that the CRAMB score was well
219	calibrated.
220	
221	
222	Discussion
223	Main findings
224	This study's primary contribution is the establishment of a benchmark for utilizing
225	machine learning models in the construction of AF scores for mortality prediction.
226	This study introduces and validates a novel risk score for assessing the 1-year
227	mortality risk in patients with AF. By leveraging a large-sample population dataset

228	and employing XGBoost models for predictor screening, the CRAMB (Charlson
229	comorbidity index, readmission, age, metastatic solid tumor, and blood urea nitrogen
230	maximum) score was developed. XGBoost excels in variable selection by effectively
231	capturing nonlinear relationships and handling missing data [16]. Its built-in feature
232	importance mechanism automatically identifies key variables, a capability lacking in
233	logistic regression. Furthermore, compared with logistic regression, XGBoost's
234	ensemble learning often results in superior predictive performance, and its
235	regularization techniques boost resilience against overfitting, making it a robust
236	choice for predictive modeling and variable selection. The variables incorporated in
237	the CRAMB score were validated through logistic and Cox regression analyses,
238	demonstrating their predictive significance for mortality. The CRAMB score
239	exhibited excellent calibration, and DCA illustrated its clinical utility. Importantly, the
240	findings of this study revealed that the CRAMB score outperformed the widely used
241	CHA2DS2-VASc risk score in predicting mortality, despite the latter's original focus
242	on predicting ischemic stroke.
243	
244	Predictors of death in patients with AF

245 Predictors and risk factors for death in patients with AF span a broad spectrum of

246 clinical and demographic variables. Hypertension has been identified as a significant

risk factor for incident heart failure and all-cause mortality in AF patients [17].

248 Moreover, an independent association has been observed between red cell distribution

12 / 40

249 width and the risk of all-cause mortality in AF patients, with elevated red cell

250 distribution width linked to increased mortality risk [18].

251	Left ventricular hypertrophy has been confirmed to be an independent risk factor
252	for stroke and death in AF patients [19]. Moreover, patients with chronic kidney
253	disease who develop AF face an increased risk of stroke and death [20], and renal
254	function has been associated with the risk of stroke and bleeding in AF patients [21].
255	Additionally, age correlates with elevated risks of stroke and mortality in patients with
256	either AF or sinus rhythm [22]. Those undergoing hemodialysis with new-onset AF
257	exhibit heightened risks of death and stroke [23], and chronic kidney disease and
258	hemodialysis impact mortality, length of stay, and total cost of hospitalization in
259	patients admitted with a primary diagnosis of paroxysmal AF [24]. Furthermore, the
260	biatrial volume predicts AF recurrence after ablation, impacting mortality [25].
261	Although a growing body of evidence indicates a connection between cancer and
262	AF [26-28], the exact extent and underlying mechanisms of this association remain
263	unclear. Proposed factors such as cancer-related inflammation, anticancer treatments,
264	and other comorbidities associated with cancer are believed to influence atrial
265	remodeling, potentially heightening the susceptibility of cancer patients to AF [26].
266	Specifically, new-onset AF has been associated with higher mortality in cancer
267	patients [29, 30], and patients with solid tumors face an elevated risk of developing
268	AF compared to those without cancer. The highest risk of AF occurs within 90 days of

269	cancer diagnosis (OR 7.62, 95% CI 3.08 to 18.88), and this risk gradually decreases
270	over time [30].
271	There is considerable evidence affirming the significance of BUN as a mortality
272	predictor in patients with CVD [31-33]. Moreover, research indicates that BUN levels
273	at admission serve as a predictive marker for mortality in patients with heart failure
274	[32]. Elevated BUN levels (>13.51 mg/dL) in healthy older women have also been
275	linked to a greater incidence of heart failure [34]. The present study contributes novel
276	insights into the role of BUN in predicting mortality among AF patients through the
277	use of the CRAMB score.
278	In summary, a review of the literature on predictor variables associated with AF
279	death revealed that the variables used in constructing the CRAMB score are
280	reasonable.
281	
282	
283	Comparison with similar studies
284	Hijazi et al. proposed an innovative biomarker-based tool designed to predict
285	mortality in patients with AF [8]. This score, named ABC-death (age, biomarkers
286	(N-terminal pro B-type natriuretic peptide, troponin T, growth differentiation
287	factor-15), and clinical history of heart failure), was developed and internally
288	validated in 14,611 AF patients randomized to either apixaban or warfarin over a
289	median period of 1.9 years. External validation was conducted in a cohort of 8,548 AF

290	patients randomized to dabigatran or warfarin for 2.0 years. The study utilized a
291	two-step variable selection method, initially fitting a model with all candidate
292	predictors and then approximating a blinded, smaller model with the most predictive
293	variables through ordinary least squares (OLS) and backward elimination. However,
294	this approach has limitations, potentially excluding relevant variables and assuming
295	linearity. Due to the exclusion of more severely ill patients in these two clinical trials,
296	the scores developed from these datasets may not be applicable to other populations
297	of severely ill patients with a greater number of comorbidities.
298	In a separate study, Samaras et al. introduced the BASIC-AF risk score (biomarkers,
299	age, ultrasound, ventricular conduction delay, and clinical history), a novel prognostic
300	tool for predicting mortality in AF patients [9]. This score was developed and
301	validated using data from 1,130 patients in a single-center clinical trial; notably, the
302	dataset was not split into training and test sets due to sample size restrictions. The
303	study [9] incorporated traditional cardiac biomarkers and introduced
304	echocardiography variables, identifying indexed left atrial volume as a significant
305	predictor. This study [9] employed a random forest model for variable selection, and
306	the random forest model has challenges with missing values, as it constructs decision
307	trees based on specific features, posing difficulties in managing missing data.
308	Imputing or estimating missing values introduces potential biases, and within the
309	ensemble structure of random forests, this problem is compounded, compromising the
310	model's reliability in the case of incomplete data. XGBoost outperforms random

311 forest models in variable selection because of its advanced regularization technique, 312 gradient boosting framework for error correction, and more sophisticated 313 tree-growing strategy. This approach results in improved predictive accuracy and 314 precise estimation of variable importance. 315 Yan et al. focused on the development and validation of a prediction model for 316 in-hospital death in patients with heart failure and AF [33]. Although that study did 317 not directly align with the task of developing a score for risk of death in AF, it is 318 relevant because it addresses the intersection of heart failure and AF, which are often 319 comorbid conditions. The prediction model developed by Yan et al. may offer insights 320 into prognostic factors and risk assessment strategies that may be applicable to the 321 development of AF risk scores. The present study [33] developed a scoring model 322 using 5998 patients admitted to the ICU from the MIMIC-IV database and used 323 logistic regression to screen approximately 38 prespecified variables, ultimately 324 including 16 variables to construct the score. However, the complexity of the scoring 325 system prevented an evaluation of the importance of variables in variable screening 326 based on traditional logistic regression. 327 Compared to the ABC-death risk score and BASIC-AF risk score, the CRAMB score 328 was constructed based on the MIMIC-IV database, leading to significant differences 329 in population characteristics compared to clinical trial populations. Directly 330 comparing the AUC performance of the three scores is not appropriate. Although this 331 study identified important predictor variables, such as the cardiac biomarker troponin

332	T and comorbidities such as diabetes, their addition to the CRAMB score yielded only
333	a marginal AUC benefit of less than 0.01 in absolute terms. Conversely, replacing or
334	eliminating existing variables in the CRAMB score resulted in varying degrees of
335	AUC performance reduction. This discrepancy may be attributed to the wide
336	heterogeneity of the AF population in the MIMIC-IV database. Therefore, this study
337	addresses a gap in the development of scoring methods and screening predictor
338	variables within a broader population than did previous studies of this nature. Future
339	research on AF scores should focus on the characteristics of the population used for
340	score development, comprehensively considering the importance and applicability of
341	the variables included.
342	
343	Limitations
344	The primary limitation of this study is its reliance on single-center data, preventing
345	external validation of the developed AF score. Importantly, the predictor variables
346	used for developing the AF risk score in this study may not be comprehensive enough.
347	Additionally, the MIMIC-IV dataset includes derived databases such as
210	
540	MIMIC-IV-ECHO [35], which contains echocardiogram data; MIMIC-IV-ECG,
348 349	MIMIC-IV-ECHO [35], which contains echocardiogram data; MIMIC-IV-ECG, which contains electrocardiogram data [36]; and MIMIC-IV-Note, which contains
349 350	MIMIC-IV-ECHO [35], which contains echocardiogram data; MIMIC-IV-ECG, which contains electrocardiogram data [36]; and MIMIC-IV-Note, which contains deidentified free-text clinical notes [37]. These derived datasets offer more patient

352

353 Conclusions

354	This study's primary contribution is the establishment of a benchmark for utilizing
355	machine learning models in the construction of a score for mortality prediction in AF
356	patients. By leveraging a large-sample population dataset and employing XGBoost
357	models for predictor screening, the CRAMB (CCI, readmission, age, metastatic solid
358	tumor, and blood urea nitrogen maximum) score was developed. The CRAMB score's
359	simplicity makes it user-friendly, allowing for coverage of a broad and heterogeneous
360	AF population. Moreover, the proposed model has superior predictive performance
361	compared to that of the clinically utilized CHA2DS2-VASc risk score for 1-year
362	mortality among AF patients. External validation of the CRAMB score in new
363	datasets holds potential value for enhancing clinical practice.
364	
365	Acknowledgments
366	Not applicable.
367	
368	Sources of Funding
369	This work was supported by the Real World Study Project of Hainan Boao Lecheng
370	Pilot Zone (Real World Study Base of NMPA) (No. HNLC2022RWS017).
371	
372	Disclosures

373

None.

374 **References**

375	1.	Schnabel RB, Yin X, Gona P, Larson MG, Beiser AS, McManus DD, et al. 50
376		year trends in atrial fibrillation prevalence, incidence, risk factors, and
377		mortality in the Framingham Heart Study: a cohort study. Lancet.
378		2015;386:154-62. https://doi.org/10.1016/S0140-6736(14)61774-8
379	2.	Westerman S, Wenger NK. Gender Differences in Atrial Fibrillation: A
380		Review of Epidemiology, Management, and Outcomes. Current Cardiology
381		Reviews. 2019;https://doi.org/10.2174/1573403x15666181205110624
382	3.	Hart RG, Benavente O, Jacobs LG. The Sin of Omission: A Systematic
383		Review of Antithrombotic Therapy to Prevent Stroke in Atrial Fibrillation.
384		Journal of the American Geriatrics Society.
385		2001;https://doi.org/10.1046/j.1532-5415.2001.49016.x
386	4.	Lee E, Choi EK, Han KD, Lee H, Choe WS, Lee SR, et al. Mortality and
387		causes of death in patients with atrial fibrillation: A nationwide
388		population-based study. PLoS One. 2018;13:e0209687.
389		https://doi.org/10.1371/journal.pone.0209687
390	5.	January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC, Jr., et
391		al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS
392		Guideline for the Management of Patients With Atrial Fibrillation: A Report
393		of the American College of Cardiology/American Heart Association Task
394		Force on Clinical Practice Guidelines and the Heart Rhythm Society in

395		Collaboration V	Vith the	Society	of	Thoracic	Surgeons.	Circulation.
396		2019;140:e125-e	51. https://	/doi.org/10).1161	1/CIR.0000	00000000000000	565
397	6.	Tourountzis T, L	ioulios G,	Ginikopo	ulou	E, Stasini	F, Skarlatou	Z, Stai S, et
398		al. The prognost	ic value o	f CHA(2)	DS(2	2) -VASc a	and modified	d-CHADS(2)
399		scores for cardio	vascular e	vents in d	iabeti	cs and nor	-diabetics h	aemodialysis
400		patients.	Nephrol	ogy	(Carlton).	202	23;28:387-98.
401		https://doi.org/10	.1111/nep	.14165				
402	7	Renda G Ricci	i F Patti	G Aun	σΝ	Petersen	SE Gallir	na Setal

- 403 CHA(2)DS(2)VASc score and adverse outcomes in middle-aged individuals
 404 without atrial fibrillation. Eur J Prev Cardiol. 2019;26:1987-97.
 405 https://doi.org/10.1177/2047487319868320
- 406 8. Hijazi Z, Oldgren J, Lindback J, Alexander JH, Connolly SJ, Eikelboom JW,
- 407 et al. A biomarker-based risk score to predict death in patients with atrial
- 408 fibrillation: the ABC (age, biomarkers, clinical history) death risk score. Eur
- 409 Heart J. 2018;39:477-85. https://doi.org/10.1093/eurheartj/ehx584
- 410 9. Samaras A, Kartas A, Akrivos E, Fotos G, Dividis G, Vasdeki D, et al. A
- 411 novel prognostic tool to predict mortality in patients with atrial fibrillation:
- 412 The BASIC-AF risk score. Hellenic J Cardiol. 2021;62:339-48.
- 413 https://doi.org/10.1016/j.hjc.2021.01.007

- 414 10. Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, et al.
- 415 MIMIC-IV, a freely accessible electronic health record dataset. Sci Data.
- 416 2023;10:1. https://doi.org/10.1038/s41597-022-01899-x
- 417 11. Johnson A, Bulgarelli L, Pollard T, Horng S, Celi LA, Mark R. MIMIC-IV
- 418 (version 2.2). https://doi.org/10.13026/6mm1-ek67. Accessed August 26 2023.
- 419 12. Vickers AJ, van Calster B, Steyerberg EW. A simple, step-by-step guide to
- 420 interpreting decision curve analysis. Diagn Progn Res. 2019;3:18.
- 421 https://doi.org/10.1186/s41512-019-0064-7
- 422 13. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating
- 423 prediction models. Med Decis Making. 2006;26:565-74.
 424 https://doi.org/10.1177/0272989X06295361
- 425 14. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under
 426 two or more correlated receiver operating characteristic curves: a
 427 nonparametric approach. Biometrics. 1988;44:837-45.
- 428 15. Pollard TJ, Johnson AEW, Raffa JD, Mark RG. tableone: An open source
 429 Python package for producing summary statistics for research papers. JAMIA
- 430 Open. 2018;1:26-31. https://doi.org/10.1093/jamiaopen/ooy012
- 431 16. Chen T, Guestrin C: XGBoost. In: Proceedings of the 22nd ACM SIGKDD
- 432 International Conference on Knowledge Discovery and Data Mining.
 433 Association for Computing Machinery; 2016: 785-94.

- 434 Middeldorp ME, Ariyaratnam JP, Kamsani SH, Albert CM, Sanders P. 17. 435 Hypertension and atrial fibrillation. J Hypertens. 2022;40:2337-52. 436 https://doi.org/10.1097/HJH.00000000003278 437 Saliba W, Barnett-Griness O, Rennert G. Red cell distribution width and 18. 438 all-cause mortality in patients with atrial fibrillation: A cohort study. J 439 Arrhythm. 2017;33:56-62. https://doi.org/10.1016/j.joa.2016.06.001 440 Yao HM, Wang XL, Peng X, Chen SY, Wan X, Zuo W, Gan X. Increased red 19. blood cell distribution width might predict left ventricular hypertrophy in 441 442 patients with atrial fibrillation. Medicine (Baltimore). 2020;99:e22119. https://doi.org/10.1097/MD.00000000022119 443 444 20. Carrero JJ, Trevisan M, Sood MM, Bárány P, Xu H, Evans M, et al. Incident 445 Atrial Fibrillation and the Risk of Stroke in Adults With Chronic Kidney 446 Disease. Clinical Journal of the American Society of Nephrology.
- 447 2018;https://doi.org/10.2215/cjn.04060318
- Bonde AN, Lip GY, Kamper AL, Fosbol EL, Staerk L, Carlson N, et al. Renal
 Function and the Risk of Stroke and Bleeding in Patients With Atrial
 Fibrillation: An Observational Cohort Study. Stroke. 2016;47:2707-13.
 https://doi.org/10.1161/STROKEAHA.116.014422
- 452 22. Xing Y, Sun Y, Li H, Tang M, Huang W, Zhang K, et al.
 453 CHA(2)DS(2)-VASc score as a predictor of long-term cardiac outcomes in

454		elderly patients with or without atrial fibrillation. Clin Interv Aging.
455		2018;13:497-504. https://doi.org/10.2147/CIA.S147916
456	23.	Shih CJ, Ou SM, Chao PW, Kuo SC, Lee YJ, Yang CY, et al. Risks of Death
457		and Stroke in Patients Undergoing Hemodialysis With New-Onset Atrial
458		Fibrillation: A Competing-Risk Analysis of a Nationwide Cohort. Circulation.
459		2016;133:265-72. https://doi.org/10.1161/CIRCULATIONAHA.115.018294
460	24.	Gulati A. Impact of Chronic Kidney Disease on Outcomes in Patients
461		Admitted to the Hospital for Paroxysmal Atrial Fibrillation: A National
462		Inpatient Sample Database Analysis. Journal of Cardiology Research Review
463		& Reports. 2021;https://doi.org/10.47363/jcrrr/2021(2)153
464	25.	Kumagai Y, Iwayama T, Arimoto T, Kutsuzawa D, Hashimoto N, Tamura H,
465		et al. Biatrial volume, estimated using magnetic resonance imaging, predicts
466		atrial fibrillation recurrence after ablation. Pacing Clin Electrophysiol.
467		2018;41:1635-42. https://doi.org/10.1111/pace.13521
468	26.	Chu G, Versteeg HH, Verschoor AJ, Trines SA, Hemels MEW, Ay C, et al.
469		Atrial fibrillation and cancer - An unexplored field in cardiovascular oncology.
470		Blood Rev. 2019;35:59-67. https://doi.org/10.1016/j.blre.2019.03.005
471	27.	Lateef N, Kapoor V, Ahsan MJ, Latif A, Ahmed U, Mirza M, et al. Atrial
472		fibrillation and cancer; understanding the mysterious relationship through a
473		systematic review. J Community Hosp Intern Med Perspect. 2020;10:127-32.
474		https://doi.org/10.1080/20009666.2020.1726571

475	28.	Herrmann J. Ad	lverse cardia	c effects of	cancer the	rapies: ca	rdiotoxic	ity and
476		arrhythmia.	Nat	Rev	Cardiol.	20	020;17:4	74-502.
477		https://doi.org/10	0.1038/s4156	9-020-0348	-1			
478	29.	Murtaza M, Ba	aig MMA, A	Ahmed J,	Serbanoiu	LI, Busna	atu SS.	Higher
479		Mortality Assoc	iated With Ne	ew-Onset A	trial Fibrilla	ation in Ca	ncer Pati	ents: A
480		Systematic Revi	ew and Meta	-Analysis. F	Front Cardio	vasc Med.	. 2022;9:	867002.
481		https://doi.org/10	0.3389/fcvm.	2022.86700	2			
482	30.	Yuan M, Zhang	g Z, Tse G,	Feng X, k	Korantzopou	ilos P, Le	etsas KP	, et al.
483		Association of	Cancer and	the Risk o	of Developi	ng Atrial	Fibrilla	tion: A
484		Systematic R	Review and	d Meta-A	Analysis.	Cardiol	Res	Pract.
485		2019;2019:8985	273. https://d	oi.org/10.11	155/2019/89	085273		
486	31.	Chiu CC, Wu C	M, Chien TN	, Kao LJ, L	i C, Jiang H	IL. Applyi	ng an In	proved
487		Stacking Ensem	ble Model to	Predict the	Mortality c	of ICU Pat	ients wit	h Heart
488		Failure. J Clin M	Ied. 2022;11:	https://doi.c	org/10.3390/	/jcm11216	5460	
489	32.	Khoury J, Baho	uth F, Stabho	olz Y, Elias	A, Mashia	ch T, Aro	nson D,	Azzam
490		ZS. Blood urea	nitrogen varia	ation upon a	admission a	nd at disch	narge in j	patients
491		with heart	failure.	ESC	Heart	Fail.	2019;6:	809-16.
492		https://doi.org/10	0.1002/ehf2.1	2471				
493	33.	Yan M, Liu H, 2	Xu Q, Yu S, '	Tang K, Xie	e Y. Develo	pment and	d validat	ion of a

494 prediction model for in-hospital death in patients with heart failure and atrial

495		fibrillation.	BMC	Cardiovasc	Disord.	2023;23:	:505.
496		https://doi.org/10).1186/s12872-	023-03521-3			
497	34.	Lan Q, Zheng L	, Zhou X, Wu	H, Buys N, Liu	Z, et al. Th	e Value of B	lood
498		Urea Nitrogen i	n the Prediction	on of Risks of (Cardiovascul	lar Disease i	n an
499		Older Popula	ation. Front	c Cardiovasc	Med.	2021;8:614	117.
500		https://doi.org/10).3389/fcvm.20	21.614117			
501	35.	Gow B, Pollard	T, Greenbaun	n N, Moody B,	Johnson A,	, Herbst E, e	et al.
502		MIMIC-IV-ECH	O: Echocard	iogram Match	ed Subset	(version	0.1).
503		https://physionet	.org/content/mi	mic-iv-echo/0.1/	. Accessed A	August 26 202	23.
504	36.	Gow B, Pollard	T, Nathanson I	LA, Johnson A,	Moody B, F	ernandes C, o	et al.
505		MIMIC-IV-ECG	: Diagnostic El	ectrocardiogram	Matched Su	ubset (version	1.0).
506		https://physionet	.org/content/mi	mic-iv-ecg/1.0/.	Accessed Au	ugust 26 2023	3.
507	37.	Johnson A, Po	llard T, Horn	g S, Celi LA,	Mark R.	MIMIC-IV-N	Note:
508		Deidentified	free-text	clinical r	notes (v	version	2.2).
509		https://physionet	.org/content/mi	mic-iv-note/2.2/.	Accessed A	ugust 26 202	3.
510							

511

512 Figure Legends

513

- 514 **Figure 1** Flow chart of the study.
- 515 CCI: Charlson comorbidity index; AF: atrial fibrillation

516

- 517 Figure 2 ROC curves for the XGBoost model in the test set and the scoring model in
- 518 the test set.
- 519 CCI: Charlson Comorbidity Index; CHA2DS2-VASc score: congestive heart failure,
- 520 hypertension, age, diabetes mellitus, prior stroke or TIA or thromboembolism,
- 521 vascular disease, age, sex category; CRAMB score: Charlson comorbidity index,
- 522 readmission, age, metastatic solid tumor, and blood urea nitrogen maximum.

523

524 **Figure 3** Feature importance values of the XGBoost model in the training set.

525

526 Figure 4 Forest plot of the logistic model (CRAMB score) for predicting 1-year

527 mortality in the training set.

- 528
- 529 **Figure 5** Forest plot illustrating the ability of the Cox regression model to predict
- 530 1-year mortality in the training set stratified by the CRAMB score.

531

532	Figure 6 Nomogram of the logistic model (CRAMB score) for predicting 1-year
533	mortality in the training set.
534	
535	Figure 7 Decision curve analysis of various scores in the training set.
536	
537	
538	Figure 8 Calibration plots for the XGBoost model in the test set and the scoring
539	model in the test set.
540	
541	

 Table 1 Demographic characteristics of the patients in the baseline cohort.

Item	Category	Missing	Total (59595)	Survivors (33177)	Nonsurvivors (26418)
Age, median [Q1, Q3]	-	0	77.3 [68.1,85.3]	74.2 [65.3,82.5]	81.1 [72.3,87.9]
$S_{over} = (0/2)$	Female	0	26439 (44.4)	14300 (43.1)	12139 (45.9)
Sex, n (%)	Male	0	33156 (55.6)	18877 (56.9)	14279 (54.1)
In here the death $n(0/)$	No	0	56554 (94.9)	33177 (100.0)	23377 (88.5)
In-nospital death, n (%)	Yes	0	3041 (5.1)	[68.1,85.3] 74.2 [65.3,82.5] 81.1 [72.3] 9 (44.4) 14300 (43.1) 12139 (43) 6 (55.6) 18877 (56.9) 14279 (54) 4 (94.9) 33177 (100.0) 23377 (83) (5.1) - 3041 (11.3) 8 (33.1) 12996 (39.2) 6732 (25.3) 7 (66.9) 20181 (60.8) 19686 (74) 6 (69.5) 23724 (71.5) 17692 (67) 9 (30.5) 9453 (28.5) 8726 (33) 1.0,7.0] 3.0 [1.0,6.0] 4.0 [2.0,8)	3041 (11.5)
	No	0	19728 (33.1)	12996 (39.2)	6732 (25.5)
Readmission, n (%)	Yes	0	39867 (66.9)	20181 (60.8)	19686 (74.5)
Intensive concurrit adminsion of (9/)	No	0	41416 (69.5)	23724 (71.5)	17692 (67.0)
Intensive care unit admission, n (%)	Yes	0	18179 (30.5)	9453 (28.5)	8726 (33.0)
Hospital length of stay, median [Q1, Q3]	-	0	4.0 [1.0,7.0]	3.0 [1.0,6.0]	4.0 [2.0,8.0]

Item	Category	Missing	Total (59595)	Survivors (33177)	Nonsurvivors (26418)
CHA2DS2-VASc, median [Q1, Q3]	-	0	4.0 [3.0,5.0]	3.0 [2.0,5.0]	4.0 [3.0,5.0]
Charlson comorbidity index, median [Q1, Q3]	-	0	6.0 [4.0,8.0]	5.0 [3.0,7.0]	7.0 [5.0,9.0]

Table 2 Predictive performance of scores in the test set and DeLong test comparison. The p value for the Delong test was obtained by

Item	Accuracy	Sensitivity	Specificity	ROC AUC	Delong test P value
Charlson Comorbidity Index	0.659	0.563	0.738	0.720	<0.001
CHA2DS2-VASc	0.582	0.397	0.733	0.609	<0.001
CRAMB	0.690	0.594	0.768	0.756	-

comparing the area under the curve (AUC) of the CRAMB score with that of the corresponding score.

CHA2DS2-VASc score: congestive heart failure, hypertension, age, diabetes mellitus, prior stroke or TIA or thromboembolism, vascular disease,

age, sex category

CRAMB score: Charlson comorbidity index, readmission, age, metastatic solid tumor, and blood urea nitrogen maximum

Figure 1 Flow chart of the study.

CCI: Charlson comorbidity index; AF: atrial fibrillation

Figure 2 ROC curves for the XGBoost model in the test set and the scoring model in the test set.

CCI: Charlson Comorbidity Index; CHA2DS2-VASc score: congestive heart failure,

hypertension, age, diabetes mellitus, prior stroke or TIA or thromboembolism,

vascular disease, age, sex category; CRAMB score: Charlson comorbidity index,

readmission, age, metastatic solid tumor, and blood urea nitrogen maximum.

Figure 4 Forest plot of the logistic model (CRAMB score) for predicting 1-year

mortality in the training set.

Figure 5 Forest plot illustrating the ability of the Cox regression model to predict

1-year mortality in the training set stratified by the CRAMB score.

Figure 6 Nomogram of the logistic model (CRAMB score) for predicting 1-year

mortality in the training set.

"bun_max": blood urea nitrogen (BUN) maximum

Figure 7 Decision curve analysis of various scores in the training set.

Figure 8 Calibration plots for the XGBoost model in the test set and the scoring

model in the test set.