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Development of a Novel Risk Score for Predicting One-Year Mortality Risk in 1 

Patients with Atrial Fibrillation using XGBoost-Assisted Feature Selection 2 

 3 

ABSTRACT 4 

Background: There is a lack of tools specifically designed to assess mortality risk in 5 

patients with atrial fibrillation (AF). The aim of this study was to utilize machine 6 

learning methods for identifying pertinent variables and developing an easily 7 

applicable prognostic score to predict 1-year mortality in AF patients. 8 

Methods: This single-center retrospective cohort study based on the Medical 9 

Information Mart for Intensive Care-IV (MIMIC-IV) database focused on patients 10 

aged 18 years and older with AF. The study thoroughly scrutinized patient data to 11 

identify and analyze variables, encompassing demographic variables, comorbidities, 12 

scores, vital signs, laboratory test results, and medication usage. The variable 13 

importance from XGBoost guided the development of a logistic model, forming the 14 

basis for an AF scoring model. Decision curve analysis was used to compare the AF 15 

score with other scores. Python and R software were used for data analysis. 16 

Results: A cohort of 59,595 AF patients was obtained from the MIMIC-IV database; 17 

these patients were predominantly elderly (median age 77.3 years) and male (55.6%). 18 

The XGBoost model effectively predicted 1-year mortality (Area under the curve 19 

(AUC): 0.833; 95% confidence intervals: 0.826-0.839), underscoring the significance 20 

of the Charlson Comorbidity Index (CCI) and the presence of metastatic solid tumors. 21 
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The CRAMB score (Charlson comorbidity index, readmission, age, metastatic solid 22 

tumor, and blood urea nitrogen maximum) outperformed the CCI and 23 

CHA2DS2-VASc scores, demonstrating superior predictive value for 1-year mortality. 24 

In the test set, the area under the ROC curve (AUC) for the CRAMB score was 0.756 25 

(95% confidence intervals: 0.748-0.764), surpassing the CCI score of 0.720 (95% 26 

confidence intervals: 0.712-0.728) and the CHA2DS2-VASc score of 0.609 (95% 27 

confidence intervals: 0.600-0.618). Decision curve analysis revealed that the CRAMB 28 

score had a consistently positive effect and greater net benefit across the entire 29 

threshold range than did the default strategies and other scoring systems. The 30 

calibration plot for the test set indicated that the CRAMB score was well calibrated. 31 

Conclusions: This study's primary contribution is the establishment of a benchmark 32 

for utilizing machine learning models in construction of a score for mortality 33 

prediction in AF. The CRAMB score was developed by leveraging a large-sample 34 

population dataset and employing XGBoost models for predictor screening. The 35 

simplicity of the CRAMB score makes it user friendly, allowing for coverage of a 36 

broader and more heterogeneous AF population. 37 

 38 

Keywords: Atrial fibrillation; Mortality; Risk score; Machine learning; Risk factors 39 

 40 

 41 
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List of abbreviations 43 

ABC-death: Age, biomarkers (N-terminal pro B-type natriuretic peptide, troponin T, 44 

growth differentiation factor-15), and clinical history of heart failure 45 

AF: Atrial fibrillation 46 

AUC: Area under the curve 47 

BASIC-AF risk score: Biomarkers, age, ultrasound, intraventricular conduction 48 

delay, and clinical history 49 

BUN: blood urea nitrogen 50 

CCI: Charlson Comorbidity Index 51 

CHA2DS2-VASc: congestive heart failure, hypertension, age, diabetes mellitus, prior 52 

stroke or TIA or thromboembolism, vascular disease, age, sex category 53 

CI: Confidence interval 54 

CRAMB: Charlson comorbidity index, readmission, age, metastatic solid tumor, and 55 

maximum blood urea nitrogen 56 

DCA: Decision curve analysis 57 

HR: hazard ratio 58 

ICU: Intensive care unit 59 

MIMIC-IV: Medical Information Mart for Intensive Care-IV 60 

OR: Odds ratio 61 

ROC: Receiver operating characteristic  62 
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Introduction 63 

Atrial fibrillation (AF) is a prevalent cardiac arrhythmia linked to considerable 64 

morbidity and mortality. It is characterized by an irregular and often rapid heart rate, 65 

resulting in compromised blood flow and potential complications such as stroke, heart 66 

failure, and other cardiovascular events [1]. AF has a broad impact on cardiac 67 

function, functional status, and quality of life and is also a risk factor for stroke [2]. 68 

Additionally, AF is a significant risk factor for stroke and becomes more prevalent 69 

with age, affecting more than 2 million individuals in the United States, 14% to 17% 70 

of whom are aged 65 years and older [3]. Individuals diagnosed with AF experienced 71 

a 3.7 times greater likelihood of mortality from any cause than the general population 72 

[4]. AF represents a significant public health issue due to its considerable impact on 73 

morbidity and mortality as well as its economic strain on healthcare systems. 74 

The assessment tool for evaluating the risk of stroke in patients with AF, known as 75 

the congestive heart failure, hypertension, age, diabetes mellitus, prior stroke or TIA 76 

or thromboembolism, vascular disease, age, sex category (CHA2DS2-VASc) score [5], 77 

has been associated with cardiovascular events and mortality in diverse patient groups, 78 

including those with diabetes [6] and individuals without AF [7]. Nevertheless, tools 79 

specifically designed to assess mortality risk in patients with AF are lacking. Although 80 

recent studies have introduced new AF risk scores [8, 9], these scores were developed 81 

based on data from clinical trials, limiting their applicability to the broader AF 82 

population. 83 
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Consequently, additional research is necessary to identify potential models for 84 

scoring AF risk. The objective of this study was to employ machine learning methods 85 

to identify relevant variables and create an easily applicable prognostic score for 86 

predicting 1-year mortality in AF patients. 87 

 88 

 89 

Methods 90 

Study design and setting 91 

This was a single-center retrospective cohort study. The data utilized in this research 92 

originated from the Medical Information Mart for Intensive Care-IV (MIMIC-IV 93 

version 2.2) database [10, 11]. Over the period from 2008 to 2019, the intensive care 94 

unit (ICU) at Beth Israel Deaconess Medical Center admitted more than 50,000 95 

critically ill patients, as documented in MIMIC-IV. Approval for the MIMIC-IV 96 

database was granted by the Massachusetts Institute of Technology (Cambridge, MA) 97 

and Beth Israel Deaconess Medical Center (Boston, MA), with consent obtained for 98 

the initial data collection. 99 

 100 

Study population 101 

The study population included patients aged 18 years and older with a discharge 102 

diagnosis of AF. Patients with AF were identified by searching International 103 

Classification of Diseases diagnostic terminology in the MIMIC-IV database by 104 
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matching the keyword "atrial fibrillation". The types of queried AF diagnostic terms 105 

were manually reviewed to ensure compliance. The exclusion criterion was lack of 106 

patient data on survival outcomes. 107 

 108 

Study variables 109 

The variables examined in the research included the characteristics of the study 110 

population, complications, various scores (such as Charlson Comorbidity Index and 111 

the CHA2DS2-VASc score), vital signs, and an array of laboratory tests (including 112 

routine bloodwork, blood biochemistry, coagulation, blood lipids, cardiac markers, 113 

etc.). Additionally, the investigation considered use of vasopressors (norepinephrine, 114 

epinephrine, phenylephrine, dopamine, dobutamine, vasopressin, and milrinone), 115 

antithrombotic agents (heparin, enoxaparin, warfarin, aspirin, clopidogrel, ticagrelor, 116 

rivaroxaban, edoxaban, dabigatran etexilate, fondaparinux sodium, prasugrel, and 117 

apixaban), and beta blockers (propranolol, metoprolol, bisoprolol, carvedilol, labetalol, 118 

atenolol, and nebivolol) and various other data points. For laboratory test items, 119 

summary statistics, including minimum and maximum values during hospitalization, 120 

were utilized to derive variables. An indicator column for the respective drug was 121 

generated based on whether the drug was used during hospitalization. 122 

 123 

Outcome variable 124 
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The primary outcome measured was 1-year mortality. Survival time was calculated by 125 

utilizing the date of death information available in the MIMIC-IV database restricted 126 

to a 1-year timeframe. 127 

 128 

 129 

 130 

Machine learning model development and validation 131 

The dataset was randomly partitioned into training and test samples at a 3:1 ratio. To 132 

prevent model overfitting, tenfold cross-validation and model calibration techniques 133 

were applied. To accommodate varying degrees of missing values in dataset variables, 134 

the mainstream machine learning model XGBoost was employed due to its ability to 135 

handle missing data. The discriminative performance of the models was assessed 136 

using the area under the receiver operating characteristic (ROC) curve. Feature 137 

scaling was deemed unnecessary before inputting the data into the model. A total of 138 

164 candidate variables were incorporated into the model training process. 139 

Furthermore, a calibration curve was utilized as a graphical representation to evaluate 140 

the concordance between the predicted probabilities and observed outcomes in binary 141 

classification models. On the calibration curve, the x-axis denotes the mean predicted 142 

probability assigned by the model to a specific class, and the y-axis signifies the 143 

observed frequency of positive instances. Ideally, a well-calibrated model produces a 144 
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calibration curve that closely aligns with the diagonal line (y=x), signifying a perfect 145 

correspondence between the predicted probabilities and actual outcomes. 146 

 147 

Development of the scoring scale 148 

The XGBoost model assigned importance to predictor variables, and variables with 149 

higher importance were selected based on this ranking. These selected variables were 150 

subsequently integrated into a logistic model to construct the scoring model. Manual 151 

testing was employed to evaluate the impact of introducing or removing variables on 152 

the area under the curve (AUC) of the logistic model in the test set. After striking a 153 

balance between AUC performance and the increase in model complexity associated 154 

with the number of variables included, the chosen variables for the AF scoring model 155 

were ultimately determined. A nomogram was used to construct the finalized AF 156 

scores. Decision curve analysis (DCA) was employed to assess the clinical utility and 157 

net benefit of the AF scoring model, CCI, and CHA2DS2-VASc scores within the test 158 

set [12, 13]. DCA quantifies the net benefit of a clinical prediction model at different 159 

risk thresholds, avoiding the simplistic assumptions of all patients being at low or 160 

high risk. The superior model is identified by the highest net benefit at the chosen 161 

threshold. The flow chart of the study is shown in Figure 1. 162 

 163 

Data analysis 164 
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Python software (version 3.11.5) was used to construct machine learning models, 165 

evaluate performance, and generate AUCs and calibration curves. R software (version 166 

4.3.2) was used for logistic and Cox regression analyses, forest plot creation, DCA, 167 

and nomogram generation. Baseline characteristics are presented as the mean 168 

(standard deviation), median (Q1, Q3), or percentage (%), as determined by the 169 

distribution characteristics of the data. The DeLong test was applied to determine 170 

whether the AUC of a given prediction significantly differed from that of another 171 

prediction [14]. Python was used for descriptive tables [15] and DeLong tests. When 172 

constructing the original machine learning model, no handling of missing values was 173 

conducted. However, during the development of the logistic model for the AF score, 174 

missing values were removed from the dataset based on the variables included in the 175 

AF score, as logistic models are unable to manage missing values. In all analyses, 176 

statistical significance was defined as a two-sided p value < 0.05. 177 

 178 

 179 

Results 180 

Baseline characteristics 181 

This study enrolled 59,595 individuals diagnosed with AF from the MIMIC-IV 182 

database. Among them, 55.6% were male. The cohort had a median age of 77.3 years 183 

(with an interquartile range of 68.1-85.3), a median CHA2DS2-VASc score of 4 184 

(interquartile range, 3-5), a median CCI of 6 (interquartile range, 4-8), and a median 185 
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hospitalization duration of 4 days (interquartile range, 1-7). Additional results are 186 

presented in Table 1. 187 

 188 

Screening variables using the XGBoost model 189 

The XGBoost model showed an AUC and 95% confidence intervals (95% CI) of 190 

0.833 (95% CI, 0.826-0.839) when predicting 1-year mortality in the test set (Figure 191 

2). Figure 3 illustrates the significance of the predictor variables determined by the 192 

XGBoost model. Notably, CCI and the presence of metastatic solid tumors were 193 

identified as the top two variables, with considerably greater importance than the 194 

other variables. 195 

 196 

Derivation and evaluation of the AF score 197 

The 1-year mortality risk score for AF was calculated as CRAMB, which represents 198 

CCI, readmission, age, metastatic solid tumor, and maximum blood urea nitrogen 199 

(BUN) (variable "bun_max") (Figure 3). The variable "readmission" was derived 200 

from the variable "hospstay_seq" (hospital stay sequence, indicating the number of 201 

hospitalizations) for convenient clinical application. Logistic and Cox regression 202 

analyses were employed to assess the predictive value of these five variables for the 203 

outcome of death, as expressed as odds ratios (ORs). Both the forest plot (Figure 4) 204 

and the forest plot of hazard ratios (HRs) (Figure 5) revealed that these variables 205 

were significantly different. 206 
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A nomogram was used to calculate the CRAMB score (Figure 6). In the test set, 207 

the area under the curve (AUC) for the CRAMB score was 0.756 (95% 208 

CI=0.748-0.764), surpassing CCI, at 0.720 (95% CI=0.712-0.728), and the 209 

CHA2DS2-VASc score, at 0.609 (95% CI=0.600-0.618). Table 2 displays 210 

supplementary performance metrics corresponding to these scores. The DeLong test 211 

results comparing the CRAMB score with existing scores (CCI and CHA2DS2-VASc) 212 

revealed statistically significant differences (p < 0.001), as indicated in Table 2. The 213 

DCA results provided in Figure 7 demonstrate that the CRAMB score consistently 214 

exhibited a positive and greater net benefit across the entire threshold range than the 215 

default strategies, assuming either high or low risk, as indicated by CCI and 216 

CHA2DS2-VASc scores, and the hypothesis of not using a scoring system. The 217 

calibration plot (Figure 8) for the test set indicated that the CRAMB score was well 218 

calibrated. 219 

 220 

 221 

Discussion 222 

Main findings 223 

This study's primary contribution is the establishment of a benchmark for utilizing 224 

machine learning models in the construction of AF scores for mortality prediction. 225 

This study introduces and validates a novel risk score for assessing the 1-year 226 

mortality risk in patients with AF. By leveraging a large-sample population dataset 227 
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and employing XGBoost models for predictor screening, the CRAMB (Charlson 228 

comorbidity index, readmission, age, metastatic solid tumor, and blood urea nitrogen 229 

maximum) score was developed. XGBoost excels in variable selection by effectively 230 

capturing nonlinear relationships and handling missing data [16]. Its built-in feature 231 

importance mechanism automatically identifies key variables, a capability lacking in 232 

logistic regression. Furthermore, compared with logistic regression, XGBoost's 233 

ensemble learning often results in superior predictive performance, and its 234 

regularization techniques boost resilience against overfitting, making it a robust 235 

choice for predictive modeling and variable selection. The variables incorporated in 236 

the CRAMB score were validated through logistic and Cox regression analyses, 237 

demonstrating their predictive significance for mortality. The CRAMB score 238 

exhibited excellent calibration, and DCA illustrated its clinical utility. Importantly, the 239 

findings of this study revealed that the CRAMB score outperformed the widely used 240 

CHA2DS2-VASc risk score in predicting mortality, despite the latter's original focus 241 

on predicting ischemic stroke. 242 

 243 

Predictors of death in patients with AF 244 

Predictors and risk factors for death in patients with AF span a broad spectrum of 245 

clinical and demographic variables. Hypertension has been identified as a significant 246 

risk factor for incident heart failure and all-cause mortality in AF patients [17]. 247 

Moreover, an independent association has been observed between red cell distribution 248 
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width and the risk of all-cause mortality in AF patients, with elevated red cell 249 

distribution width linked to increased mortality risk [18]. 250 

Left ventricular hypertrophy has been confirmed to be an independent risk factor 251 

for stroke and death in AF patients [19]. Moreover, patients with chronic kidney 252 

disease who develop AF face an increased risk of stroke and death [20], and renal 253 

function has been associated with the risk of stroke and bleeding in AF patients [21]. 254 

Additionally, age correlates with elevated risks of stroke and mortality in patients with 255 

either AF or sinus rhythm [22]. Those undergoing hemodialysis with new-onset AF 256 

exhibit heightened risks of death and stroke [23], and chronic kidney disease and 257 

hemodialysis impact mortality, length of stay, and total cost of hospitalization in 258 

patients admitted with a primary diagnosis of paroxysmal AF [24]. Furthermore, the 259 

biatrial volume predicts AF recurrence after ablation, impacting mortality [25]. 260 

Although a growing body of evidence indicates a connection between cancer and 261 

AF [26-28], the exact extent and underlying mechanisms of this association remain 262 

unclear. Proposed factors such as cancer-related inflammation, anticancer treatments, 263 

and other comorbidities associated with cancer are believed to influence atrial 264 

remodeling, potentially heightening the susceptibility of cancer patients to AF [26]. 265 

Specifically, new-onset AF has been associated with higher mortality in cancer 266 

patients [29, 30], and patients with solid tumors face an elevated risk of developing 267 

AF compared to those without cancer. The highest risk of AF occurs within 90 days of 268 
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cancer diagnosis (OR 7.62, 95% CI 3.08 to 18.88), and this risk gradually decreases 269 

over time [30]. 270 

There is considerable evidence affirming the significance of BUN as a mortality 271 

predictor in patients with CVD [31-33]. Moreover, research indicates that BUN levels 272 

at admission serve as a predictive marker for mortality in patients with heart failure 273 

[32]. Elevated BUN levels (>13.51 mg/dL) in healthy older women have also been 274 

linked to a greater incidence of heart failure [34]. The present study contributes novel 275 

insights into the role of BUN in predicting mortality among AF patients through the 276 

use of the CRAMB score. 277 

In summary, a review of the literature on predictor variables associated with AF 278 

death revealed that the variables used in constructing the CRAMB score are 279 

reasonable. 280 

 281 

 282 

Comparison with similar studies 283 

Hijazi et al. proposed an innovative biomarker-based tool designed to predict 284 

mortality in patients with AF [8]. This score, named ABC-death (age, biomarkers 285 

(N-terminal pro B-type natriuretic peptide, troponin T, growth differentiation 286 

factor-15), and clinical history of heart failure), was developed and internally 287 

validated in 14,611 AF patients randomized to either apixaban or warfarin over a 288 

median period of 1.9 years. External validation was conducted in a cohort of 8,548 AF 289 
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patients randomized to dabigatran or warfarin for 2.0 years. The study utilized a 290 

two-step variable selection method, initially fitting a model with all candidate 291 

predictors and then approximating a blinded, smaller model with the most predictive 292 

variables through ordinary least squares (OLS) and backward elimination. However, 293 

this approach has limitations, potentially excluding relevant variables and assuming 294 

linearity. Due to the exclusion of more severely ill patients in these two clinical trials, 295 

the scores developed from these datasets may not be applicable to other populations 296 

of severely ill patients with a greater number of comorbidities. 297 

In a separate study, Samaras et al. introduced the BASIC-AF risk score (biomarkers, 298 

age, ultrasound, ventricular conduction delay, and clinical history), a novel prognostic 299 

tool for predicting mortality in AF patients [9]. This score was developed and 300 

validated using data from 1,130 patients in a single-center clinical trial; notably, the 301 

dataset was not split into training and test sets due to sample size restrictions. The 302 

study [9] incorporated traditional cardiac biomarkers and introduced 303 

echocardiography variables, identifying indexed left atrial volume as a significant 304 

predictor. This study [9] employed a random forest model for variable selection, and 305 

the random forest model has challenges with missing values, as it constructs decision 306 

trees based on specific features, posing difficulties in managing missing data. 307 

Imputing or estimating missing values introduces potential biases, and within the 308 

ensemble structure of random forests, this problem is compounded, compromising the 309 

model's reliability in the case of incomplete data. XGBoost outperforms random 310 
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forest models in variable selection because of its advanced regularization technique, 311 

gradient boosting framework for error correction, and more sophisticated 312 

tree-growing strategy. This approach results in improved predictive accuracy and 313 

precise estimation of variable importance. 314 

Yan et al. focused on the development and validation of a prediction model for 315 

in-hospital death in patients with heart failure and AF [33]. Although that study did 316 

not directly align with the task of developing a score for risk of death in AF, it is 317 

relevant because it addresses the intersection of heart failure and AF, which are often 318 

comorbid conditions. The prediction model developed by Yan et al. may offer insights 319 

into prognostic factors and risk assessment strategies that may be applicable to the 320 

development of AF risk scores. The present study [33] developed a scoring model 321 

using 5998 patients admitted to the ICU from the MIMIC-IV database and used 322 

logistic regression to screen approximately 38 prespecified variables, ultimately 323 

including 16 variables to construct the score. However, the complexity of the scoring 324 

system prevented an evaluation of the importance of variables in variable screening 325 

based on traditional logistic regression. 326 

Compared to the ABC-death risk score and BASIC-AF risk score, the CRAMB score 327 

was constructed based on the MIMIC-IV database, leading to significant differences 328 

in population characteristics compared to clinical trial populations. Directly 329 

comparing the AUC performance of the three scores is not appropriate. Although this 330 

study identified important predictor variables, such as the cardiac biomarker troponin 331 
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T and comorbidities such as diabetes, their addition to the CRAMB score yielded only 332 

a marginal AUC benefit of less than 0.01 in absolute terms. Conversely, replacing or 333 

eliminating existing variables in the CRAMB score resulted in varying degrees of 334 

AUC performance reduction. This discrepancy may be attributed to the wide 335 

heterogeneity of the AF population in the MIMIC-IV database. Therefore, this study 336 

addresses a gap in the development of scoring methods and screening predictor 337 

variables within a broader population than did previous studies of this nature. Future 338 

research on AF scores should focus on the characteristics of the population used for 339 

score development, comprehensively considering the importance and applicability of 340 

the variables included. 341 

 342 

Limitations 343 

The primary limitation of this study is its reliance on single-center data, preventing 344 

external validation of the developed AF score. Importantly, the predictor variables 345 

used for developing the AF risk score in this study may not be comprehensive enough. 346 

Additionally, the MIMIC-IV dataset includes derived databases such as 347 

MIMIC-IV-ECHO [35], which contains echocardiogram data; MIMIC-IV-ECG, 348 

which contains electrocardiogram data [36]; and MIMIC-IV-Note, which contains 349 

deidentified free-text clinical notes [37]. These derived datasets offer more patient 350 

characteristic data, enhancing the screening of variables. 351 

 352 
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Conclusions 353 

This study's primary contribution is the establishment of a benchmark for utilizing 354 

machine learning models in the construction of a score for mortality prediction in AF 355 

patients. By leveraging a large-sample population dataset and employing XGBoost 356 

models for predictor screening, the CRAMB (CCI, readmission, age, metastatic solid 357 

tumor, and blood urea nitrogen maximum) score was developed. The CRAMB score's 358 

simplicity makes it user-friendly, allowing for coverage of a broad and heterogeneous 359 

AF population. Moreover, the proposed model has superior predictive performance 360 

compared to that of the clinically utilized CHA2DS2-VASc risk score for 1-year 361 

mortality among AF patients. External validation of the CRAMB score in new 362 

datasets holds potential value for enhancing clinical practice. 363 
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Figure Legends 512 

 513 

Figure 1 Flow chart of the study. 514 

CCI: Charlson comorbidity index; AF: atrial fibrillation 515 

 516 

Figure 2 ROC curves for the XGBoost model in the test set and the scoring model in 517 

the test set. 518 

CCI: Charlson Comorbidity Index; CHA2DS2-VASc score: congestive heart failure, 519 

hypertension, age, diabetes mellitus, prior stroke or TIA or thromboembolism, 520 

vascular disease, age, sex category; CRAMB score: Charlson comorbidity index, 521 

readmission, age, metastatic solid tumor, and blood urea nitrogen maximum. 522 

 523 

Figure 3 Feature importance values of the XGBoost model in the training set. 524 

 525 

Figure 4 Forest plot of the logistic model (CRAMB score) for predicting 1-year 526 

mortality in the training set. 527 

 528 

Figure 5 Forest plot illustrating the ability of the Cox regression model to predict 529 

1-year mortality in the training set stratified by the CRAMB score. 530 

 531 
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Figure 6 Nomogram of the logistic model (CRAMB score) for predicting 1-year 532 

mortality in the training set. 533 

 534 

Figure 7 Decision curve analysis of various scores in the training set. 535 

 536 

 537 

Figure 8 Calibration plots for the XGBoost model in the test set and the scoring 538 

model in the test set. 539 

 540 
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Table 1 Demographic characteristics of the patients in the baseline cohort. 

Item Category Missing Total (59595) Survivors (33177) Nonsurvivors (26418) 

Age, median [Q1, Q3]  - 0 77.3 [68.1,85.3] 74.2 [65.3,82.5] 81.1 [72.3,87.9] 

Sex, n (%) 

Female 0 26439 (44.4) 14300 (43.1) 12139 (45.9) 

Male 0 33156 (55.6) 18877 (56.9) 14279 (54.1) 

In-hospital death, n (%) 

No 0 56554 (94.9) 33177 (100.0) 23377 (88.5) 

Yes 0 3041 (5.1)  - 3041 (11.5) 

Readmission, n (%) 

No 0 19728 (33.1) 12996 (39.2) 6732 (25.5) 

Yes 0 39867 (66.9) 20181 (60.8) 19686 (74.5) 

Intensive care unit admission, n (%) 

No 0 41416 (69.5) 23724 (71.5) 17692 (67.0) 

Yes 0 18179 (30.5) 9453 (28.5) 8726 (33.0) 

Hospital length of stay, median [Q1, Q3]  - 0 4.0 [1.0,7.0] 3.0 [1.0,6.0] 4.0 [2.0,8.0] 
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Item Category Missing Total (59595) Survivors (33177) Nonsurvivors (26418) 

CHA2DS2-VASc, median [Q1, Q3]  - 0 4.0 [3.0,5.0] 3.0 [2.0,5.0] 4.0 [3.0,5.0] 

Charlson comorbidity index, median [Q1, Q3]  - 0 6.0 [4.0,8.0] 5.0 [3.0,7.0] 7.0 [5.0,9.0] 
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Table 2 Predictive performance of scores in the test set and DeLong test comparison. The p value for the Delong test was obtained by 

comparing the area under the curve (AUC) of the CRAMB score with that of the corresponding score. 

Item Accuracy Sensitivity Specificity ROC AUC Delong test P value 

Charlson Comorbidity Index 0.659 0.563 0.738 0.720 <0.001 

CHA2DS2-VASc 0.582 0.397 0.733 0.609 <0.001 

CRAMB 0.690 0.594 0.768 0.756 - 

CHA2DS2-VASc score: congestive heart failure, hypertension, age, diabetes mellitus, prior stroke or TIA or thromboembolism, vascular disease, 

age, sex category 

CRAMB score: Charlson comorbidity index, readmission, age, metastatic solid tumor, and blood urea nitrogen maximum 
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Figure 1 Flow chart of the study. 

CCI: Charlson comorbidity index; AF: atrial fibrillation 
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Figure 2 ROC curves for the XGBoost model in the test set and the scoring model in 

the test set. 

CCI: Charlson Comorbidity Index; CHA2DS2-VASc score: congestive heart failure, 

hypertension, age, diabetes mellitus, prior stroke or TIA or thromboembolism, 

vascular disease, age, sex category; CRAMB score: Charlson comorbidity index, 

readmission, age, metastatic solid tumor, and blood urea nitrogen maximum. 
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Figure 3 Feature importance values of the XGBoost model in the training set. 
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Figure 4 Forest plot of the logistic model (CRAMB score) for predicting 1-year 

mortality in the training set. 
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Figure 5 Forest plot illustrating the ability of the Cox regression model to predict 

1-year mortality in the training set stratified by the CRAMB score. 
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Figure 6 Nomogram of the logistic model (CRAMB score) for predicting 1-year 

mortality in the training set. 

 

"bun_max": blood urea nitrogen (BUN) maximum 
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Figure 7 Decision curve analysis of various scores in the training set. 
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Figure 8 Calibration plots for the XGBoost model in the test set and the scoring 

model in the test set. 
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