1 Refining the Prothrombotic State and Prognosis in Atrial Fibrillation With Left Atrial Appendage 3D

2 Echocardiogr	aphy
----------------	------

3

4 Brief Title: Left Atrial Appendage 3D Volume in AF

5

6 Laurie Soulat-Dufour, MD, PhD; Sylvie Lang, PhD; Théo Simon, MD; Stephane Ederhy, MD; Saroumadi

7 Adavane-Scheuble, MD; Marion Chauvet Droit, MD; Elodie Capderou, MD; Camille Arnaud, MD; Eleonore

8 Sotto, MD; Raphael Cohen, MD; Thibault d'Izarny Gargas, MD; Aliocha Scheuble, MD; Nadjib Hammoudi,

9 MD, PhD; Anne-Sophie Beraud, MD, Karima Addetia, MD; Franck Boccara, MD, PhD; Roberto M. Lang,

10 MD; Ariel Cohen, MD, PhD

11

12 Affiliations

13 Department of Cardiology, Saint Antoine and Tenon Hospital, AP-HP, Sorbonne Université, Paris, France

14 (L.S.-D., S.L., T.S., S.E., S.A.-S., M.C., E.C., C.A., E.S., R.C., T.D.'I., F.B., A.C.). Unité INSERM UMRS

15 1166 "Unité de recherche sur les maladies cardiovasculaires, du métabolisme et de la nutrition", Institut

16 Hospitalo-Universitaire, Institut de Cardiométabolisme et Nutrition (ICAN), F-75013, Sorbonne Université,

17 Paris France (L.S.-D., A.C.). Section of Cardiology, Heart and Vascular Center, University of Chicago,

18 5758 South Maryland Ave. MC9067, DCAM 5509, Chicago, IL 60637, USA (K.A., R.M.L.). Sorbonne

19 Université, GRC n°22, C²MV-Complications Cardiovasculaires et Métaboliques chez les patients vivant

20 avec le Virus de l'immunodéficience humaine, Inserm UMR_S 938, Centre de Recherche Saint-Antoine,

21 Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition, Paris, France (F.B). Sorbonne

22 Université, ACTION Study Group, INSERM UMR_S 1166, and Hôpital Pitié-Salpêtrière (AP-HP), Paris,

23 France (N.H.). Department of Cardiology Clinique Pasteur, Toulouse, France.

24

25 Correspondence to: Ariel Cohen, MD, PhD, Service de Cardiologie, AP-HP – and Hôpital Tenon and

Hôpital Saint-Antoine, 184, rue du faubourg saint Antoine, Paris Cedex 12; Unité INSERM UMRS-ICAN;

27 Sorbonne-Université, Paris, France.

28 Tel: +33 1 49 23 1 49 28 28 84.

- 29 E-mail: ariel.cohen@aphp.fr
- 30 Tel: +33149282886
- 31 Fax: +33149282435
- 32 Twitter: @lsoulatdufour

33 BACKGROUND: Left atrial (LA) volume is an echocardiographic marker of remodeling, thromboembolic 34 risk, and prognosis in atrial fibrillation (AF); limited data are available on LA appendage (LAA) 35 characterization beyond morphology. We sought to evaluate LAA characteristics in 2-dimensional (2D) 36 and 3-dimensional (3D) transesophageal echocardiography (TEE) and the correlation with LA/LAA 37 prothrombotic state and prognosis. 38 METHODS: We prospectively studied 206 hospitalized patients with AF using 2D transthoracic 39 echocardiography (TTE) and 2D/3D TEE of the LAA ≤24 hours from admission. Patients were divided 40 according to the presence or absence of LAA sludge and/or thrombus. Data on clinical events were 41 collected for 2 years. 42 RESULTS: Patients with LAA sludge/thrombus (n=35) on admission had higher LA volumes, lower left 43 ventricular ejection fraction, lower LAA emptying and filling flow velocity, larger 2D LAA measurements 44 (2D LAA ostium diameter, 2D LAA area) as well as larger 3D LAA measurements (higher 3D LAA 45 volumes (LAAV), higher 3D end-systolic [ES] LAA ostium area), and more frequently non-chicken wing 46 morphology. On multivariable logistic regression analysis, LAA filling flow velocity and 3D ES LAAV were 47 associated with the presence of LAA sludge/thrombus at admission (P=0.031 and P<0.0001 respectively). 48 Receiver operating characteristic curve analysis revealed the optimal cut-off for 3D ES LAAV to 49 discriminate patients at risk of death within 2 years was 9.3 mL. Kaplan-Meier curves demonstrated a 50 significant difference in survival at 2-year follow-up according to this value: 3 deaths occurred in the group 51 with 3D ES LAAV <9.3mL and 11 in those with volume \geq 9.3 mL (*P*=0.02). 52 **CONCLUSIONS:** 3D characterization of LAAV depicts a degree of LAA remodeling in AF that appears 53 associated with LA/LAA thrombogenicity and mid-term prognosis.

55 CONDENSED ABSTRACT

- 56 Limited data are available on left atrial appendage (LAA) remodeling in atrial fibrillation (AF). We
- 57 hypothesized that 3-dimensional (3D) evaluation of the LAA volume in AF could help to refine the
- 58 prothrombotic state and prognosis in AF. Patients with LAA sludge and/or thrombus exhibited lower LAA
- 59 filling and emptying flow velocities, and higher 2-dimensional (2D) and 3D LAA measurements. On
- 60 multivariable analysis, LAA filling flow velocity and 3D end-systolic LAA volume were associated with the
- 61 presence of LAA sludge/thrombus at admission (respectively, *P*=0.031 and *P*<0.0001). Kaplan–Meier
- 62 curves demonstrated a significant difference in survival at 2 years according to 3D ES LAA volume
- 63 (P=0.02). Three dimensional LAA volume reflects the degree of LAA remodeling in AF and is associated
- 64 with prothrombotic state and prognosis.
- 65
- 66 Key Words: three-dimensional echocardiography; atrial fibrillation; left atrial appendage
- 67
- 68

69 Non-standard Abbreviations and Acronyms

- 70 2D 2-dimensional
- 71 3D 3-dimensional
- 72 AF atrial fibrillation
- 73 BNP B-type natriuretic peptide
- 74 CRP C-reactive protein
- 75 ED end-diastole
- 76 ES end-systole
- 77 I indexed
- 78 LAA left atrial appendage
- 79 LAAV left atrial appendage volume
- 80 TEE transesophageal echocardiography
- 81 TTE transthoracic echocardiography

83 INTRODUCTION

84 A prothrombotic state in atrial fibrillation (AF) fulfils Virchow's triad of blood hypercoagulability, endothelial 85 injury and abnormal blood stasis.¹ Left atrial (LA) blood stasis (i.e., transesophageal echocardiography 86 [TEE]-detected reduced LA appendage [LAA] blood flow, LAA spontaneous echo contrast, sludge) occurs 87 as a direct consequence of AF and contributes to thrombus formation. The thromboembolism risk assessment is essential in the management of AF.² 88 89 Cardiac imaging plays a central role in evaluating the AF substrate (i.e., atrial cardiomyopathy).^{3,4} 90 Two-dimensional (2D)/3-dimensional (3D) transthoracic echocardiography (TTE), TEE, cardiovascular 91 magnetic resonance imaging and computed tomography are useful imaging modalities for the volumetric and functional assessment of atrial remodeling.⁵ Several cardiac imaging parameters have been 92 93 described as markers of cardioembolic risk; large LA volumes.⁶ left ventricular systolic dysfunction,⁷ TEEdetected LA spontaneous echo contrast,⁸ decreased LAA emptying and filling velocities,⁹ and presence of 94 95 aortic atheroma.¹⁰ 96 Limited data are available on the association between LAA parameters and LAA prothrombotic state in computed tomography, magnetic resonance imaging¹¹⁻¹³ and TEE ¹⁴⁻¹⁶ (Table S1). While LA 97

98 volume appears associated with patient prognosis,¹⁷ little is known about the relationship between LAA

99 parameters and LAA prothrombotic state and prognosis.

100 The aims of this study in an AF population were threefold: 1) to provide a comprehensive

101 evaluation of LAA using 2D and 3D TEE; 2) to determine which LAA parameter is best associated with a

102 prothrombotic state; and 3) to study the relationship between LAA-derived parameters and prognosis.

103

104 METHODS

105 Study Design and Population

106 FASTRHAC is a multicenter, prospective study of patients hospitalized for AF (Ethics committee

107 authorization: CPP IIe de France V, number: 2014-A00280-47. NCT 02741349). The FASTRHAC

108 methods have been described previously.^{5, 18} All consecutive patients (\geq 18 years) hospitalized for

109 paroxysmal or persistent AF diagnosed on a 12-lead electrocardiogram who provided written informed

110 consent were included. Exclusion criteria were organic valvular disease defined according to the

111	guidelines, ¹⁹⁻²¹ presence of a mechanical or biological prosthesis, contraindication to anticoagulant
112	treatment, lack of affiliation to a social security regimen, severe psychiatric history, and subjects
113	considered unlikely to present for follow-up. Comprehensive clinical characteristics, biological variables,
114	and 2-D and 3D TTE and TEE data were collected over 2 years. CHA2DS2-VASc score (Congestive heart
115	failure, Hypertension, Age ≥75 [doubled], Diabetes mellitus, prior Stroke or transient ischemic attack or
116	thromboembolism [doubled], Vascular disease, Age 65 to 74, Sex category [female]) was determined in
117	each patient.
118	This analysis focuses on the first 218 consecutive patients enrolled in the study who underwent
119	3D TEE at admission and had a comprehensive follow-up of 2 years (Figure 1).
120	
121	Transthoracic and Transesophageal Echocardiography
122	2D and 3D TTE and TEE were performed within 24 hours of admission by experienced cardiologists using
123	X5-1, X72T and X82T transducers connected to an EPIQ 7 or CVx (Philips Medical Systems, Andover,
124	MA, USA). The data were transferred and analyzed offline using a TOMTEC workstation (Image Arena;
125	TOMTEC, Unterschleissheim, Germany) (L.S.D., T.S., E.C. and C.A.). 2D and 3D measurements were
126	analyzed following US and European Chamber Quantitation Guidelines. ^{22, 23} Volumetric measurements
127	were indexed to body surface area.
128	2D transesophageal evaluation of the LAA included the following parameters (Figure 2):
129	evaluation of spontaneous echo contrast between 0° and 120° according to the Fatkin classification ⁸
130	(grades 0, 1, 2, 3, sludge, thrombus); measurements at 90° of 2D ES and ED LAA ostium diameter, 2D
131	ES and ED LAA area; measurements at 90° of LAA emptying and filling flow velocities; and evaluation of
132	trabeculation severity (mild, moderate, severe).
133	The analysis of LAA with 3D TEE used 3D 1-beat zoom mode. 3D datasets of the LAA were
134	deemed adequate for analysis if all cavity segments were visible in the dynamic dataset. 3D full-volume
135	datasets were analyzed using software specifically designed for 3D volumetric analysis (Tomtec, Generic
136	Volume Software). The 3D TEE evaluation of the LAA included the following parameters (Figure 2): ES
137	and ED LAA volumes (LAAV); ES and ED LAA ostium areas; LAA morphology; and LAA number of lobes.
138	

139 Statistical Analysis

140 The study population was divided into 2 groups according to the presence or absence of sludge and/or 141 thrombus in the LAA. Then, using the non-parametric Kruskal-Wallis rank test for continuous variables 142 and the χ^2 or Fisher's exact test for categorical variables, the baseline parameters were compared 143 between the 2 groups. First, logistic regression analyses were performed to identify determinants of the 144 presence of sludge and/or thrombus in the LAA. For each continuous variable, the choice between a 145 continuous or categorical classification was based on the lowest value of Akaike's information criterion for 146 the corresponding univariate Cox model. To avoid collinearity and overfitting problems, each clinical and 147 biological variable was entered into a stepwise backward multivariable model and variables with P<0.20 148 were retained. The same method was repeated for the echocardiographic variables (Table S2). Finally, a 149 multivariable model adjusted for the selected variables was constructed on the population of interest. 150 Second, a receiver operating characteristic curve was depicted to analyze the capacity of the 3D 151 ES LAAV to identify patients at risk of dving within 2 years. A cut-off of 9.3 mL was determined (Figure S1) 152 and was used to build the Kaplan-Meir survival curves and was compared using the log-rank test. Cox 153 regression models analyses were performed to identify variables associated with death within 24 months 154 of follow-up. 155 Biological characterization of the population with a C-reactive protein (CRP) value >10 mg/L and B-type natriuretic peptide (BNP) value ≥400 pg/mL were based on a careful analysis of the literature.^{24, 25} 156 157 All analyses were performed using STATA V12 (StataCorp, College Station, TX). P<0.05 was 158 considered statistically significant.

159

160 **Results**

161 Patient Baseline Characteristics

3D LAA evaluation was feasible in 206 of 218 patients undergoing TEE (94.5%) (Figure 1). At admission,
LAA spontaneous echo contrast grade 0 was found in 85 (41.3%) patients, grade 1 in 47 (22.8%), grade 2
in 26 (12.6%), grade 3 in 15 (7.3%), sludge in 33 (16.0%) and thrombus in 7 (3.4%). One-hundred and
twenty-nine (62.6%) patients were male, and the median age was 66.3±11.5 years; 75.7% patients had a

166 CHA₂DS₂-VASc \geq 2, 30.1% had paroxysmal AF and 69.9% had persistent AF at admission (Table 1).

167 Thirty-five (17.0%) patients had LAA sludge/thrombus at admission (Table 1). Patients with LAA 168 sludge/thrombus had a higher prevalence of heart failure (and hospitalization due to AF associated with 169 heart failure). Patients with sludge and/or thrombus had higher values for BNP and CRP. There were no 170 significant differences between the groups regarding clinical and cardiovascular risk factors, CHA2DS2-171 VASc score, or troponin and D-dimer values. 172 Echocardiographic characteristics are shown in Table 2. On 2D TTE, patients with LAA 173 sludge/thrombus had higher median LA volume and lower median LVEF than those without. On 2D TEE, 174 patients with LAA sludge/thrombus had lower LAA emptying and filling flow velocities and greater LAA 175 measurements (ostium diameter, area). On 3D TEE, patients with LAA sludge/thrombus had a higher 176 median LAAV, greater ED LAA ostium area, and more frequently exhibited a non-chicken wing 177 morphology. 178 179 **Determinants of LAA Prothrombotic State** 180 On univariable analysis, predictors of LAA sludge/thrombus at admission were: history of heart failure or 181 acute heart failure, persistent AF, hospitalization for AF with heart failure, CRP >10 mg/L, BNP 182 ≥400 pg/mL, decreased LVEF, LAVI ≥45 mL/m², decreased LAA filling flow velocity, greater 2D LAA 183 measurements (LAA ostium diameter, LAA area), increased 3D LAA measurements (LAAV, ostium area) 184 and non-chicken wing morphology (Table S3). On multivariable analysis, LAA filling flow velocity and 3D 185 ES LAAV were associated with LAA sludge/thrombus at admission (Table 3). 186 187 Clinical, Biological and Echocardiography Characteristics According to 3D ES LAAV 188 Receiver operating characteristic curve analysis revealed that the optimal cut-off for 3D ES LAAV to 189 discriminate patients at risk of death within 2 years was 9.3 mL (area under the curve 0.61±0.05; 95% 190 confidence interval 0.50-0.72) (Figure S1). 191 Patients with LAAV ≥9.3 mL were more frequently male, had a history of heart failure or renal 192 failure and were hospitalized for AF associated with heart failure. They had also higher values for BNP, 193 CRP and glycated hemoglobin A_{1c} (Table S4). Patients with LAAV \geq 9.3 mL had a lower median LVEF, 194 greater LA volumes, more severe grade of LAA sludge and/or thrombus, lower LAA emptying flow

105	valacity and grapter 2D LAA macauraments (actium diameter, area) in 2D TEE, actions with LAAV/20.2
193	velocity, and greater 2D LAA measurements (ostium diameter, area). In 3D TEE, patients with LAAV 29.3
196	mL had greater 3D LAA measurements (volume, ostium area) and no significant difference in LAA
197	morphology including number of lobes (Table S5).
198	
199	Clinical, Biological and Echocardiography Characteristics According to AF Pattern
200	Patients with persistent AF had a higher body mass index, higher prevalence's of hypertension and
201	diabetes, history of AF, heart failure, renal failure, hospitalization for AF and heart failure, a higher
202	CHA ₂ DS ₂ -VASc score, higher BNP, CRP, and HbA _{1c} values, and lower glomerular filtration rate (Table
203	S6).
204	Echocardiographic analysis showed that patients with persistent AF had a lower LVEF, higher
205	LAV and pulmonary artery pressures, higher degree of LAA spontaneous echo contrast, higher rates of
206	LAA sludge and/or thrombus, lower LAA emptying and filling flow velocities, greater 2D LAA area and
207	ostium diameter, and greater 3D LAAV and ostium area (Table S7).
208	
209	Clinical Events During 2 Years of Follow-Up
210	Over a mean ± standard deviation follow-up of 22.0±5.4 months, 56 (27.2%) patients had recurrent AF, 23
211	(11.2%) had heart failure, 5 (2.4%) myocardial infarction, 2 (1.0%) stroke, and 14 (6.8%) died (11
211 212	(11.2%) had heart failure, 5 (2.4%) myocardial infarction, 2 (1.0%) stroke, and 14 (6.8%) died (11 cardiovascular deaths). Kaplan–Meier curves demonstrated a significant difference in survival at 2 years
211212213	(11.2%) had heart failure, 5 (2.4%) myocardial infarction, 2 (1.0%) stroke, and 14 (6.8%) died (11 cardiovascular deaths). Kaplan–Meier curves demonstrated a significant difference in survival at 2 years according to 3D ES LAAV: 3 deaths occurred in the group with 3D ES LAAV <9.3 mL and 11 in the group
211212213214	(11.2%) had heart failure, 5 (2.4%) myocardial infarction, 2 (1.0%) stroke, and 14 (6.8%) died (11 cardiovascular deaths). Kaplan–Meier curves demonstrated a significant difference in survival at 2 years according to 3D ES LAAV: 3 deaths occurred in the group with 3D ES LAAV <9.3 mL and 11 in the group with a volume \geq 9.3 mL (<i>P</i> =0.02) (Figure 3).
 211 212 213 214 215 	(11.2%) had heart failure, 5 (2.4%) myocardial infarction, 2 (1.0%) stroke, and 14 (6.8%) died (11 cardiovascular deaths). Kaplan–Meier curves demonstrated a significant difference in survival at 2 years according to 3D ES LAAV: 3 deaths occurred in the group with 3D ES LAAV <9.3 mL and 11 in the group with a volume \geq 9.3 mL (<i>P</i> =0.02) (Figure 3). On univariable analysis, female sex, history of heart failure, presence of heart failure at admission,
 211 212 213 214 215 216 	(11.2%) had heart failure, 5 (2.4%) myocardial infarction, 2 (1.0%) stroke, and 14 (6.8%) died (11 cardiovascular deaths). Kaplan–Meier curves demonstrated a significant difference in survival at 2 years according to 3D ES LAAV: 3 deaths occurred in the group with 3D ES LAAV <9.3 mL and 11 in the group with a volume \geq 9.3 mL (<i>P</i> =0.02) (Figure 3). On univariable analysis, female sex, history of heart failure, presence of heart failure at admission, CRP >10 mg/L, low LVEF, high left atrial volume index, grade 2 spontaneous echo contrast, low LAA
 211 212 213 214 215 216 217 	(11.2%) had heart failure, 5 (2.4%) myocardial infarction, 2 (1.0%) stroke, and 14 (6.8%) died (11 cardiovascular deaths). Kaplan–Meier curves demonstrated a significant difference in survival at 2 years according to 3D ES LAAV: 3 deaths occurred in the group with 3D ES LAAV <9.3 mL and 11 in the group with a volume ≥9.3 mL (<i>P</i> =0.02) (Figure 3). On univariable analysis, female sex, history of heart failure, presence of heart failure at admission, CRP >10 mg/L, low LVEF, high left atrial volume index, grade 2 spontaneous echo contrast, low LAA filling and emptying velocities, and LAAV ≥9.3 mL were predictors of death (Table S8). On multivariable
 211 212 213 214 215 216 217 218 	(11.2%) had heart failure, 5 (2.4%) myocardial infarction, 2 (1.0%) stroke, and 14 (6.8%) died (11 cardiovascular deaths). Kaplan–Meier curves demonstrated a significant difference in survival at 2 years according to 3D ES LAAV: 3 deaths occurred in the group with 3D ES LAAV <9.3 mL and 11 in the group with a volume \geq 9.3 mL (<i>P</i> =0.02) (Figure 3). On univariable analysis, female sex, history of heart failure, presence of heart failure at admission, CRP >10 mg/L, low LVEF, high left atrial volume index, grade 2 spontaneous echo contrast, low LAA filling and emptying velocities, and LAAV \geq 9.3 mL were predictors of death (Table S8). On multivariable analysis, CRP >10 mg/L was associated with death (Table 4).
 211 212 213 214 215 216 217 218 219 	(11.2%) had heart failure, 5 (2.4%) myocardial infarction, 2 (1.0%) stroke, and 14 (6.8%) died (11 cardiovascular deaths). Kaplan–Meier curves demonstrated a significant difference in survival at 2 years according to 3D ES LAAV: 3 deaths occurred in the group with 3D ES LAAV <9.3 mL and 11 in the group with a volume \geq 9.3 mL (<i>P</i> =0.02) (Figure 3). On univariable analysis, female sex, history of heart failure, presence of heart failure at admission, CRP >10 mg/L, low LVEF, high left atrial volume index, grade 2 spontaneous echo contrast, low LAA filling and emptying velocities, and LAAV \geq 9.3 mL were predictors of death (Table S8). On multivariable analysis, CRP >10 mg/L was associated with death (Table 4).
 211 212 213 214 215 216 217 218 219 220 	(11.2%) had heart failure, 5 (2.4%) myocardial infarction, 2 (1.0%) stroke, and 14 (6.8%) died (11 cardiovascular deaths). Kaplan–Meier curves demonstrated a significant difference in survival at 2 years according to 3D ES LAAV: 3 deaths occurred in the group with 3D ES LAAV <9.3 mL and 11 in the group with a volume \geq 9.3 mL (<i>P</i> =0.02) (Figure 3). On univariable analysis, female sex, history of heart failure, presence of heart failure at admission, CRP >10 mg/L, low LVEF, high left atrial volume index, grade 2 spontaneous echo contrast, low LAA filling and emptying velocities, and LAAV \geq 9.3 mL were predictors of death (Table S8). On multivariable analysis, CRP >10 mg/L was associated with death (Table 4).
 211 212 213 214 215 216 217 218 219 220 221 	(11.2%) had heart failure, 5 (2.4%) myocardial infarction, 2 (1.0%) stroke, and 14 (6.8%) died (11 cardiovascular deaths). Kaplan–Meier curves demonstrated a significant difference in survival at 2 years according to 3D ES LAAV: 3 deaths occurred in the group with 3D ES LAAV <9.3 mL and 11 in the group with a volume ≥9.3 mL (<i>P</i> =0.02) (Figure 3). On univariable analysis, female sex, history of heart failure, presence of heart failure at admission, CRP >10 mg/L, low LVEF, high left atrial volume index, grade 2 spontaneous echo contrast, low LAA filling and emptying velocities, and LAAV ≥9.3 mL were predictors of death (Table S8). On multivariable analysis, CRP >10 mg/L was associated with death (Table 4). DISCUSSION The findings from our study suggest that increased 3D LAAV is associated with LAA prothrombotic

only determinants associated with LAA sludge/thrombus, independently of clinical, biological, and other
 echocardiographic parameters. Kaplan–Meier curves demonstrated a significant difference in survival at 2
 years when using 3D ES LAAV.

226

227 3D LAAV: A New Parameter to Evaluate Prothrombotic State in AF

228 Several parameters have been described using echocardiography to evaluate LAA prothrombotic state in 229 AF. In TEE, LA/LAA spontaneous echo contrast⁸ and LAA emptying or filling velocities⁹ are the most 230 commonly validated and used parameters. In the literature, 3D LAA morphology (chicken wing, windsock, 231 cactus, cauliflower) is also associated with thromboembolic history, with a higher thromboembolic risk for non-chicken-wing morphology.¹³ However, LAA morphology is a subjective evaluation. In our study, 3D 232 233 ES LAAV was more accurately associated with thromboembolic state (on multivariable analysis) (Table 3) 234 when compared with 3D LAA morphology (on univariable analysis) (Table S3). Thus, we propose to 235 consider 3D LAAV as an additional pertinent parameter to evaluate the LAA thrombogenic state in AF.

236

237 LAA Remodeling in AF

In comparison with healthy individuals, patients with AF had higher LAAV.¹⁴ The increase in LAAV may 238 239 correlate with the degree with LAA dysfunction, and be an integral part of the atrial cardiomyopathy 240 concept, defined as "structural, architectural, contractile or electrophysiological changes affecting the atria with the potential to produce clinically-relevant manifestations".⁴ In a recent study, LAA fibrosis and 241 242 endothelial damage were associated with LAA thrombus and stroke, independently of clinical factors.²⁶ It 243 is interesting to note the association between 3D LAAV and clinical patterns of AF; in our study, patients 244 with paroxysmal AF had a lower median LAAV compared to those with persistent AF (Table S7). These 245 results are consistent with the literature: patients with paroxysmal AF had fewer thromboembolic events and deaths compared to those with persistent or permanent AF.²⁷ 246

Recently reported data indicate that early rhythm control reduces cardiovascular death, stroke,
 hospitalization for heart failure and acute coronary syndrome across AF clinical patterns.²⁸ We
 demonstrated that management of AF focused on restoration of sinus rhythm could induce anatomical

and/or functional cardiac cavity reverse remodeling.⁵ The integration of LAA remodeling could be a key
 future step in understanding the pathophysiological processes involved in AF.

252

253 Clinical events

254 Over 2 years of follow-up, 14 deaths (11 cardiovascular) and 2 strokes occurred, highlighting the

255 effectiveness of AF management in the prevention of strokes. LAAV is associated with the prothrombotic

state (LAA sludge/thrombus) independently of clinical and biological factors. Furthermore, in

257 Kaplan-Meier analysis, 3D LAAV was associated with death in the univariable analysis. Thus, LAAV

appears to be a key parameter of atrial remodeling and could be integrated into the evaluation of

thromboembolic risk (Figure 4).

260

261 Limitations

262 In cardiac imaging, the irregular rhythm in AF always presents a challenge for image acquisition and 263 quantitation. However, accurate 3D evaluation of LAAV was possible in 206 (94.0%) examinations. It 264 would have been interesting to use an additional imaging technique to measure LAAV (e.g., computed 265 tomography or cardiac magnetic resonance imaging); however, our study was performed as part of 266 routine care and did not benefit from examinations not indicated in the patient's usual management. In this 267 study, we described LAA morphology in 2 stages (chicken wing versus non-chicken wing). In our practice, 268 this 2-stage evaluation appears to reduce the subjectivity of LAA morphology evaluation in comparison 269 with the multiple morphology assessment (chicken wing, cauliflower, cactus, windsock). In addition to the 270 LAA morphology evaluation, we suggest that LAAV evaluation is a more objective parameter. In our study, 271 the reason for hospitalization was heart failure and AF in 35.4%, and we cannot exclude that the LAAV 272 could have been modified by changes in filling pressure in the heart failure and AF group. Finally, our 273 population included patients with paroxysmal or persistent AF; the absence of permanent AF does not 274 allow us to extend our results to this population.

275

276 Conclusions

277	3D evaluation of LAAV is a new tool for evaluation of thromboembolic state and prognosis in patients with
278	AF, which appears to be more accurate than LAA morphology for the evaluation of prothrombotic state.
279	LAAV could be integrated into the characterization of LA/LAA remodeling during AF, and into the concept
280	of atrial cardiomyopathy as a pertinent diagnostic tool. Further investigations are necessary to understand
281	the role of LAA remodeling in the thrombogenic function of LAA as well as in the long-term prognosis in
282	patients with AF.
283	
284	Acknowledgments
285	Sophie Rushton-Smith, PhD (Medlink Healthcare Communications, London), provided editorial assistance
286	including editing, checking content and language and formatting, and was funded by the authors.
287	
288	Sources of Funding
289	This work was partially funded by Bayer and the Fondation de France. Dr. Soulat-Dufour has received a
290	grant from Fédération Française de Cardiologie.
291	
292	Disclosures
293	Dr Cohen reports research grants from RESICARD (research nurses) and the companies ARS, Bayer and
294	Boehringer-Ingelheim; and consultant and lecture fees from AstraZeneca, Bayer Pharma, BMS-Pfizer
295	Alliance, Boehringer-Ingelheim, Daiichi Sankyo and Novartis, unrelated to the present work. The other
296	authors declare that they have no competing interest.
297	
298	Supplemental Material
299	Tables S1–S8
300	Figure S1
301	References 1–6
302	

303	Clinical Perspective
304	What Is New?
305	Three-dimensional evaluation of left atrial appendage volume is a useful new tool for evaluating the
306	thromboembolic state and prognosis in patients in atrial fibrillation.
307	
308	What Are the Clinical Implications?
309	Further investigations are needed to clarify the integration of left atrial appendage volume into the imaging
310	diagnostic criteria in atrial cardiomyopathy.

311 **REFERENCES**

312

Ding WY, Gupta D and Lip GYH. Atrial fibrillation and the prothrombotic state: revisiting Virchow's
 triad in 2020. *Heart*. 2020;106:1463-1468.

315 2. Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, Deswal A, Eckhardt

LL, Goldberger ZD, Gopinathannair R, et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and

317 Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart

318 Association Joint Committee on Clinical Practice Guidelines. *Circulation*. 2024;149:e1-e156.

319 3. Donal E, Lip GY, Galderisi M, Goette A, Shah D, Marwan M, Lederlin M, Mondillo S, Edvardsen T,

320 Sitges M, et al. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the

321 evaluation of patients with atrial fibrillation. *Eur Heart J Cardiovasc Imaging*. 2016;17:355-383.

4. Goette A, Kalman JM, Aguinaga L, Akar J, Cabrera JA, Chen SA, Chugh SS, Corradi D, D'Avila

323 A, Dobrev D, et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies:

definition, characterization, and clinical implication. *Europace*. 2016;18:1455-1490.

5. Soulat-Dufour L, Lang S, Addetia K, Ederhy S, Adavane-Scheuble S, Chauvet-Droit M, Jean ML,

326 Nhan P, Ben Said R, Kamami I, et al. Restoring Sinus Rhythm Reverses Cardiac Remodeling and

327 Reduces Valvular Regurgitation in Patients With Atrial Fibrillation. J Am Coll Cardiol. 2022;79:951-961.

328 6. Ogata T, Matsuo R, Kiyuna F, Hata J, Ago T, Tsuboi Y, Kitazono T, Kamouchi M and Investigators

329 FSR. Left Atrial Size and Long-Term Risk of Recurrent Stroke After Acute Ischemic Stroke in Patients

330 With Nonvalvular Atrial Fibrillation. *J Am Heart Assoc.* 2017;6.

331 7. Zabalgoitia M, Halperin JL, Pearce LA, Blackshear JL, Asinger RW and Hart RG.

332 Transesophageal echocardiographic correlates of clinical risk of thromboembolism in nonvalvular atrial

fibrillation. Stroke Prevention in Atrial Fibrillation III Investigators. J Am Coll Cardiol. 1998;31:1622-1626.

8. Fatkin D, Kelly RP and Feneley MP. Relations between left atrial appendage blood flow velocity,

335 spontaneous echocardiographic contrast and thromboembolic risk in vivo. J Am Coll Cardiol.

336 1994;23:961-969.

337 9. Goldman ME, Pearce LA, Hart RG, Zabalgoitia M, Asinger RW, Safford R and Halperin JL.

338 Pathophysiologic correlates of thromboembolism in nonvalvular atrial fibrillation: I. Reduced flow velocity

in the left atrial appendage (The Stroke Prevention in Atrial Fibrillation [SPAF-III] study). *J Am Soc*

340 *Echocardiogr.* 1999;12:1080-1087.

341 10. Amarenco P, Cohen A, Tzourio C, Bertrand B, Hommel M, Besson G, Chauvel C, Touboul PJ and
342 Bousser MG. Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. *N Engl J Med*.
343 1994;331:1474-1479.

Beinart R, Heist EK, Newell JB, Holmvang G, Ruskin JN and Mansour M. Left atrial appendage
dimensions predict the risk of stroke/TIA in patients with atrial fibrillation. *J Cardiovasc Electrophysiol.*2011:22:10-15.

12. Burrell LD, Horne BD, Anderson JL, Muhlestein JB and Whisenant BK. Usefulness of left atrial

348 appendage volume as a predictor of embolic stroke in patients with atrial fibrillation. *Am J Cardiol*.

349 2013;112:1148-1152.

13. Di Biase L, Santangeli P, Anselmino M, Mohanty P, Salvetti I, Gili S, Horton R, Sanchez JE, Bai

R, Mohanty S, et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients
 with atrial fibrillation? Results from a multicenter study. *J Am Coll Cardiol.* 2012;60:531-538.

14. Meltzer SN, Phatak PM, Fazlalizadeh H, Chang I, Bering P, Kenigsberg B, Weissman G, Shah

354 MH, Satler LF, Rogers T, et al. Three-Dimensional Echocardiographic Left Atrial Appendage Volumetric

355 Analysis. *J Am Soc Echocardiogr*. 2021;34:987-995.

15. Yamamoto M, Seo Y, Kawamatsu N, Sato K, Sugano A, Machino-Ohtsuka T, Kawamura R,

357 Nakajima H, Igarashi M, Sekiguchi Y, et al. Complex left atrial appendage morphology and left atrial

appendage thrombus formation in patients with atrial fibrillation. *Circ Cardiovasc Imaging*. 2014;7:337343.

360 16. Chen R, Wu X, Jin H, Wang B, Ma M and Zhao B. Assessment of Left Atrial Appendage

361 Morphology and Function in Patients with Non-valvular Paroxysmal Atrial Fibrillation with Different

362 Rhythms Using Real-Time 3D Transesophageal Echocardiography. Ultrasound Med Biol. 2016;42:118-

363 124.

17. Hoit BD. Left atrial size and function: role in prognosis. *J Am Coll Cardiol*. 2014;63:493-505.

365	18.	Soulat-Dufour L, Lang S, Ederhy S, Ancedy Y, Beraud AS, Adavane-Scheuble S, Chauvet-Droit
366	M, Har	nmoudi N, Scheuble A, Nhan P, et al. Biatrial remodelling in atrial fibrillation: A three-dimensional
367	and str	ain echocardiography insight. Arch Cardiovasc Dis. 2019;112:585-593.
368	19.	Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, lung B, Lancellotti P, Lansac E,
369	Rodrig	uez Munoz D, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease.
370	Eur He	eart J. 2017;38:2739-2791.
371	20.	Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP, 3rd, Gentile F, Jneid H, Krieger EV,
372	Mack N	M, McLeod C, et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart
373	Diseas	e: Executive Summary: A Report of the American College of Cardiology/American Heart
374	Associ	ation Joint Committee on Clinical Practice Guidelines. Circulation. 2021;143:e35-e71.
375	21.	Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y,
376	Hung	J, Lang RM, et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A
377	Report	from the American Society of Echocardiography Developed in Collaboration with the Society for
378	Cardio	vascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30:303-371.
379	22.	Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E,
380	Goldst	ein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by
381	echoca	ardiography in adults: an update from the American Society of Echocardiography and the European
382	Associ	ation of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1-39 e14.
383	23.	Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, Faletra FF, Franke A, Hung J, de
384	Isla LP	, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional
385	echoca	ardiography. Eur Heart J Cardiovasc Imaging. 2012;13:1-46.
386	24.	Mueller C, McDonald K, de Boer RA, Maisel A, Cleland JGF, Kozhuharov N, Coats AJS, Metra M,
387	Mebaz	aa A, Ruschitzka F, et al. Heart Failure Association of the European Society of Cardiology practical
388	guidan	ce on the use of natriuretic peptide concentrations. Eur J Heart Fail. 2019;21:715-731.
200	05	Different New Local NLOPicial and lange of the sector state in the state of O security sector.

- 38925.Ridker PM and Cook N. Clinical usefulness of very high and very low levels of C-reactive protein
- across the full range of Framingham Risk Scores. *Circulation*. 2004;109:1955-1959.

391 26. Miyauchi S, Tokuyama T, Takahashi S, Hiyama T, Okubo Y, Okamura S, Miyamoto S, Oguri N,

- 392 Takasaki T, Katayama K, et al. Relationship Between Fibrosis, Endocardial Endothelial Damage, and
- 393 Thrombosis of Left Atrial Appendage in Atrial Fibrillation. JACC Clin Electrophysiol. 2023;9:1158-1168.
- 27. Link MS, Giugliano RP, Ruff CT, Scirica BM, Huikuri H, Oto A, Crompton AE, Murphy SA, Lanz H,
- 395 Mercuri MF, et al. Stroke and Mortality Risk in Patients With Various Patterns of Atrial Fibrillation: Results
- 396 From the ENGAGE AF-TIMI 48 Trial (Effective Anticoagulation With Factor Xa Next Generation in Atrial
- 397 Fibrillation-Thrombolysis in Myocardial Infarction 48). *Circ Arrhythm Electrophysiol.* 2017;10.
- 398 28. Goette A, Borof K, Breithardt G, Camm AJ, Crijns H, Kuck KH, Wegscheider K, Kirchhof P and
- 399 Investigators E-A. Presenting Pattern of Atrial Fibrillation and Outcomes of Early Rhythm Control Therapy.
- 400 J Am Coll Cardiol. 2022;80:283-295.

402 **Table 1.** Clinical and Biological Characteristics in the Global Population and According to the

403 presence of LAA Sludge and/or Thrombus at admission

Variable	All	No LAA sludge	LAA sludge and/or	Р
	(n=206)	and/or thrombus	thrombus	
		(n=171)	(n=35)	
Clinical characteristics and ca	ardiovascular risk fact	ors		
Sex, male	129 (62.6)	105 (61.4)	24 (68.6)	0.43
Age, years	66.3±11.5	66.3±11.7	66.1±10.1	0.88
Body mass index, kg/m ²	27.0 (23.6-30.9)	26.9 (23.2-31.0)	27.1 (23.9-29.5)	0.66
Hypertension	110 (53.4)	92 (53.8)	18 (51.4)	0.80
Diabetes	39 (18.9)	34 (19.9)	5 (14.3)	0.44
Hypercholesterolemia	69 (33.5)	57 (33.3)	12 (34.3)	0.91
Current smoker	37 (18.0)	32 (18.7)	5 (14.3)	0.53
Medical history				<u> </u>
AF	72 (35.0)	58 (33.9)	14 (40.0)	0.49
Heart failure	32 (15.5)	21 (12.3)	11 (31.4)	0.004
Stroke	18 (8.7)	14 (8.2)	4 (11.4)	0.54
Myocardial infarction	30 (14.6)	23 (13.5)	7 (20.0)	0.32
Renal failure	17 (8.3)	15 (8.8)	2 (5.7)	0.55
Reason for hospitalization	1	1		
AF without heart failure	133 (64.6)	117 (68.4)	16 (45.7)	0.011
AF with heart failure	73 (35.4)	54 (31.6)	19 (54.3)	-
AF classification				
Paroxysmal	62 (30.1)	58 (33.9)	4 (11.4)	0.008
Persistent	144 (69.9)	113 (66.1)	31 (88.6)	-
CHA ₂ DS ₂ -VASc score	1	1		
0	15 (7.3)	13 (7.6)	2 (5.7)	0.12

Variable	All	No LAA sludge	LAA sludge and/or	Р
	(n=206)	and/or thrombus	thrombus	
		(n=171)	(n=35)	
1	35 (17.0)	33 (19.3)	2 (5.7)	
≥2	156 (75.7)	125 (73.1)	31 (88.6)	-
Biology				
B-type natriuretic peptide,	n=205	n=170	446 (171-759)	0.0001
pg/mL	238 (123-378)	203 (104-317)		
Troponin, ng/mL	n=205	n=170	0.04 (0.4–0.04)	0.77
	0.04 (0.04-0.04)	0.04 (0.04-0.04)		
D dimers, ng/mL	n=195	n=162	n=33	0.18
	337 (270-543)	325 (270-551)	424 (283–690)	
Glomerular filtration rate*,	75.7 (63.4-89.2)	75.5 (63.1-90.2)	76.0 (65.1-87.3)	0.99
mL/min/1.73 m ²				
C-reactive protein, mg/L	4.0 (3.0-10.0)	3.3 (3.0-7.2)	6.2 (3.0-15.0)	0.025
Low-density lipoprotein	n=204	n=169	1.08 (0.76-1.32)	0.52
cholesterol, g/L	1.04 (0.78-1.23)	1.03 (0.78-1.20)		
Glycated hemoglobin A _{1C} ,	n=194	n=160	n=34	0.08
%	5.8 (5.5-6.2)	5.7 (5.5-6.1)	6.1 (5.6-6.6)	

404 Values presented as count (%) or median (interquartile range).

405 *Calculated with the Modification of Diet in Renal Disease equation.

406 AF indicates atrial fibrillation; and LAA, left atrial appendage.

408 **Table 2.** Echocardiography Characteristics in the Global Population and According to the

409 Presence or Absence of LAA Sludge and/or Thrombus at Admission

Variable	All	No LAA sludge	LAA sludge and/or	Р
	(n=206)	and/or thrombus	thrombus	
		(n=171)	(n=35)	
2D TTE	L			<u> </u>
LVEF*, %	52.00 (38.4-60.0)	54.9 (44.8-60.0)	37.0 (21.0-50.0)	0.0001
ES LAV, mL (n=204)	86.1 (69.2-104.5)	80.8 (68.0-99.8)	99.4 (83.6-115.0)	0.0005
ES LAVi, mL/m ² (n=204)	45.0 (36.2-53.9)	42.8 (35.3-51.4)	51.5 (45.1-56.4)	0.0004
PAP, mmHg (n=168)	29 (24-36)	29 (24-35)	28 (24-36)	0.97
2D TEE				
LAA emptying flow velocity, cm/s	32 (23-49)	35 (26-52)	21 (17-28)	0.0001
(n=199)				
LAA filling flow velocity, cm/s (n=199)	35 (24-50)	38 (29-53)	22 (19-31)	0.0001
ES LAA ostium diameter, mm	20.82 (17.78-23.65)	20.2 (17.5-23.6)	23.1 (20.9–25.5)	0.004
ES LAA area, cm ²	5.98 (4.46-7.94)	5.9 (4.2-7.7)	7.2 (5.4–9.2)	0.02
ED LAA ostium diameter, mm	18.70 (15.10-22.50)	17.7 (14.7-22.0)	21.6 (18.3-24.4)	0.002
ED LAA area, cm ²	4.95 (3.57-7.22)	4.7 (3.4-7.1)	6.4 (4.6-8.7)	0.002
Trabeculations (n=203)				0.16
Mild	102 (50.3)	89 (53.0)	13 (37.1)	
Moderate	81 (39.9)	62 (36.9)	19 (54.3)	
Severe	20 (9.9)	17 (10.1)	3 (8.6)	
Aortic atheroma (n=205)	80 (39.0)	67 (39.2)	13 (38.2)	0.92
3D TEE		1		
ES LAAV, mL	9.02 (6.96-12.15)	8.7 (6.8–11.9)	10.9 (8.7–14.8)	0.003
ES LAA ostium area, mm ² (n=205)	3.90 (3.13-4.98)	3.9 (3.1-4.9)	4.5 (3.2-6.1)	0.05
ED LAAV, mL	7.93 (5.98–10.87)	7.8 (5.6–10.6)	10.0 (7.6-13.0)	0.002

Variable	All	No LAA sludge	LAA sludge and/or	P
	(n=206)	and/or thrombus	thrombus	
	(11-200)			
		(n-171)	(n-25)	
		(1=171)	(1=35)	
24				
ED LAA ostium area, mm ² (n=205)	3.48 (2.69–4.53)	3.4 (2.6-4.3)	4.1 (3.1-6.0)	0.003
LAA morphology (n=205)				0.007
Chicken wing	122 (59 5)	109 (63 7)	13 (38 2)	
Officient wing	122 (00:0)	109 (09.7)	10 (00:2)	
New shisten wing			04 (04 0)	
Non-chicken wing	83 (40.5)	62 (36.3)	21 (61.8)	
Number of lobes (n=205)				0.56
1	94 (45.9)	79 (46 2)	15 (44 1)	
		10(1012)	,	
2	79 (29 1)	62 (26 2)	16 (17 1)	
Ζ.	78 (30.1)	02 (30.3)	10 (47.1)	
3	25 (12.2)	23 (13.5)	2 (5.9)	
4	8 (3.9)	7 (4.1)	1 (2.9)	
			, ,	

410 Values presented as count (%) or median (interquartile range).

411 *Calculated using the Simpson method.

412 AF indicates atrial fibrillation; ED, end diastolic; ES, end systolic; LAA, left atrial appendage;

413 LAAV, left atrial appendage volume; LVEF, left ventricular ejection fraction; TEE, transesophageal

414 echocardiography; and TTE, transthoracic echocardiography.

416 **Table 3. Determinants of Prothrombotic State on Multivariable Logistic Regression Analysis**

417 (n=198)

Variable	Odds ratio (95%	<i>P</i> value
	confidence interval)	
History of heart failure or acute heart failure (vs. no history)	2.07 (0.69–6.24)	0.20
Left ventricular ejection fraction, per 5% decrease	1.08 (0.91–1.28)	0.39
LAA filling flow velocity, per 5 cm/s decrease	1.65 (1.27–2.15)	<0.0001
No chicken-wing morphology (vs. chicken-wing morphology)	1.97 (0.80-4.85)	0.14
3D ES LAAV, per 1 mL increase	1.10 (1.01–1.20)	0.044

418 ES indicates end systolic; LAA, left atrial appendage; and LAAV, left atrial appendage volume.

420 **Table 4.** Multivariable Cox Model for Prediction of Death at 2-year Follow-Up (n=199)

Variable	Multivariable Cox model	Р
	HR (95% CI)	
Female sex (vs. male sex)	0.15 (0.02–1.17)	0.07
AF with heart failure (vs. no heart failure)	4.79 (0.86-26.72)	0.07
Renal failure (vs. no renal failure)	3.53 (0.64–19.38)	0.15
CRP >10 mg/L (vs. >10 mg/L)	3.43 (1.06–11.16)	0.04
LVEF, per 5 % decrease	1.16 (0.93–1.44)	0.18
LAA emptying flow velocity <25 cm/s (vs. ≥25 cm/s)	2.74 (0.86-8.72)	0.09
3D ES LAAV ≥9.3 mL (vs. <9.3 mL)	1.45 (0.38-5.59)	0.59

421 AF indicates atrial fibrillation; CI, confidence interval; CRP, C-reactive protein; ES, end systolic; HR,

422 hazard ratio; LAA, left atrial appendage; LAAV, left atrial appendage volume; and LVEF, left ventricular

423 ejection fraction.

424

425 **Figure 1. Study flow chart.**

- 426 3D indicates 3-dimensional; AF, atrial fibrillation; LAA, left atrial appendage; TEE,
- 427 transesophageal echocardiography; and TTE, transthoracic echocardiography.

430 Figure 2. Evaluation of LAA in 2D (A, B, C) and 3D (D, E, F) TEE.

431 A: examples of LA/LAA spontaneous echo contrast grade 0 (left), sludge (middle), thrombus

(right) according to Fatkin classification⁸; B: evaluation of LAA flow velocities; C: 2D measurements of the 432

433 LAA area at 92° (end-systolic left atrial appendage area and ostium diameter). Examples of different LAA

434 morphologies evaluated with Zoom 3D mode 1 beat; D: left atrial appendage with chicken-wing

435 morphology and a volume of 9.76 mL; E: left atrial appendage with no chicken-wing morphology and a

436 volume of 22.61 mL; and F: left atrial appendage with 2 lobes and a volume of 7.71 mL.

437 2D indicates 2-dimensional; 3D, 3-dimensional; AF, atrial fibrillation; LA, left atrial; LAA, left atrial 438 appendage; and TEE, transesophageal echocardiography.

439

457

458 **Figure 4.** Role of 3D of LAA in AF: Association with Prothrombotic State and Prognosis.

459 3D indicates 3-dimensional; ES, end-systolic; LAA, left atrial appendage; and OR, odds ratio.