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Article Summary (35/40)

Non-falciparum and asymptomatic Plasmodium falciparummalaria are prevalent across Rwanda, with P.

falciparum linked to poverty, rural areas, and low elevation. Mixed infections are frequent. Molecular

surveillance is crucial to guide effective malaria control efforts.
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Abstract

Background: Recent molecular surveillance suggests an unexpectedly high prevalence of non-falciparum

malaria in Africa. Malaria control is also challenged by undetected asymptomatic P. falciparum malaria

resulting in an undetectable reservoir for potential transmission. Context-specific surveillance of

asymptomatic P. falciparum and non-falciparum species is needed to properly inform malaria control

programs.

Methods: We performed quantitative real time PCR for four malaria species in 4,595 primarily adult

individuals in Rwanda using the 2014-2015 Demographic Health Survey. We assessed correlates of

infection by species to explore attributes associated with each species. Asymptomatic P. ovale spp., P.

malariae, and P. falciparum malaria infection had broad spatial distribution across Rwanda. P. vivax

infection was rare.

Results: Overall infection prevalence was 23.6% (95%CI [21.7%, 26.0%]), with P. falciparum and

non-falciparum at 17.6% [15.9%, 19.0%] and 8.3% [7.0%, 10.0%], respectively. Parasitemias tended to be

low and mixed species infections were common, especially where malaria transmission and overall

prevalence was the highest. P. falciparum infection was associated with lower wealth, rural residence

and low elevation. Fewer factors were associated with non-falciparum malaria.

Conclusions: Asymptomatic non-falciparum malaria and P. falciparum malaria are common and widely

distributed across Rwanda in adults. Continued molecular monitoring of Plasmodium spp. is needed to

strengthen malaria control.

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.01.09.24301054doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.09.24301054
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

Despite global efforts in malaria control, malaria prevalence has increased in recent years from 233

million to 249 million cases, with most of this increase coming from countries in the WHO African

Region.[1] Malaria infection is caused by five species of the Plasmodium parasite, with most cases and

morbidity in Africa attributable to Plasmodium falciparum. Diagnosis of malaria in Africa relies

principally on rapid diagnostic tests (RDTs) detecting the antigen P. falciparum histidine rich protein 2

(HRP2), often with a second less sensitive band for pan-species lactate dehydrogenase (LDH).[2]

Designed to detect clinical malaria, RDTs for malaria surveillance will often miss low density P. falciparum

infections and infections with non-falciparum species. Alternate approaches are needed to define the

asymptomatic reservoir.

Molecular detection, such as through real-time PCR, can identify infections at lower parasitemia levels

than RDTs can, and better characterize non-falciparum malaria infections. Molecular approaches are

particularly important for use in asymptomatic community surveillance.[3] Asymptomatic infections may

have significant but underestimated morbidity,[4] and are often followed by symptomatic infection.[5]

Thus, characterizing the epidemiology of asymptomatic malaria is important for malaria control and

prevention.

Molecular identification of non-falciparum malaria infections (P. malariae, P. ovale curtisi, P. ovale

wallikeri, and P. vivax) is critical for addressing morbidity from these parasites and for reaching malaria

elimination in settings with falciparum-based diagnostics and treatments. Accurate diagnosis is

imperative for malaria control, as the clinical features and treatments differ. In contrast with P.

falciparum infection, P. vivax and P. ovale cause relapse through the persistence of hypnozoites (dormant

liver stage parasites).[6,7] As hypnozoites do not respond to blood-stage treatment, namely
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artemisinin-combination therapies (ACTs), the primary treatment for severe malaria in most countries,

relapsing infections require radical cure.[8] Thus, their presence may require national malaria control

programs to alter therapeutic options in the country. To-date, P. ovale spp. and P. malariae malaria have

been more frequently described, due in part to wider implementation of highly sensitive nucleic acid

detection, and also true increases in prevalence as P. falciparum is controlled.[9] P. vivax is also being

reported more frequently due to wider implementation of molecular diagnostics.[10–12]

Rwanda has historically had strong malaria control, leveraging effective antimalarials, insecticide-treated

bed nets, and indoor residual spraying.[13] Malaria cases in Rwanda increased from 48 to 403 per 1,000

between 2012 and 2018, with mortality increasing 41% over the same time.[13] Emerging insecticide

resistance, an increase in irrigated agriculture, and insufficient insecticide-treated bed net coverage,

among other factors, have been attributed to these increases.[13] From 2018 to 2022, malaria

prevalence decreased from an estimated 321 to 76 cases per 1,000, still higher than 2012 estimates,[14]

and with detection of non-falciparum species among clinical malaria patients.[15] There has been one

recent report of P. vivax commonly occurring in Hue.[15] These inconsistent declines in prevalence

suggest the need to characterize the epidemiology of asymptomatic and non-falciparum infections in this

period to inform future control efforts.

We used survey, GPS, and biospecimen data collected in the 2014-15 Rwanda Demographic and Health

Survey (RDHS), a large population-representative study, to characterize asymptomatic and

non-falciparum infections across the country’s adult population.
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Methods

Study design and population

The 2014-2015 Rwanda DHS studied 12,699 households from 492 GPS-located clusters from all 30

recognized districts. In 50% of households, dried blood spot (DBS) specimens were collected for HIV

testing from men aged 15-59 years and women aged 15-49 years, and a subsample of children 0-14

years; in the other 50% of households, rapid malaria diagnostic testing was completed on children aged

6-59 months.[16] Previously, we used these data to estimate clusters that would represent high and low

malaria transmission areas.[17] High prevalence clusters had a RDT or microscopy positivity rate of

>15%. We included 1,434 samples from these 55 high prevalence clusters in 3 regions. In addition to

samples from high prevalence areas, a random subset of 3,161 samples from 402 low prevalence clusters

were selected. A total of 4,595 samples from 457 out of 492 DHS clusters were analyzed for four species

of malaria infection by real time PCR. (Supplemental Figure 1).

Species-specific real time PCR

DNA from each sample was extracted from three 6 mm DBS punches using Chelex and screened for four

species of malaria infection using real-time PCR assays.[18] These assays (Supplemental Table 1)

targeted the 18s genes for P. malariae, P. ovale, and P. vivax, and the varATS repeat in P.

falciparum.[11,19–21] To allow for quantification of P. falciparum, mock DBS were created using whole

blood and cultured 3d7 parasites (MRA-102, BEI Resources, Manasas, VA) and extracted with the same

assay used for samples. Controls for non-falciparum species used serial dilutions of plasmid DNA

(MRA-180, MRA-179, MRA-178; BEI Resources, Manassas VA), with estimates for parasitemia based on

an estimated six 18s rRNA gene copies per parasite.[22] All assays were run for 45 cycles to enable

detection of lower density infections. The high cycle number approach has been previously evaluated for

P. ovale and P. vivax, where assays were tested against 390 negative controls (human DNA) with no false

positives.[23] We had no false positive results in our non-template controls for this study. In addition, we
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ran each assay to 45 cycles against plasmids of the other species to evaluate for cross-reactivity

(Supplemental Table 2). All positive samples were confirmed by manually reviewing the amplification

curves in the machine software. Standard curves had a minimum r-squared value of 0.95 across all runs.

A positive result for each species was determined using a 45-cycle cutoff, unless otherwise stated. In

addition, the assays retain a high specificity at high cycle number.[24]

Spatial & ecological variables

Deidentified survey and geospatial data from the 2014-2015 Rwanda DHS were matched to PCR data

using DBS sample barcodes. Clusters with individuals positive for any species of malaria infection were

mapped using DHS geospatial coordinates. Individual level covariates assessed for association included

sex, age group, wealth quintile, education level, livestock ownership, source of drinking water, bed net

ownership, whether the household bed net has been treated with long-lasting insecticide (LLIN =

long-lasting insecticide-treated net) and sleeping under a LLIN the night prior to the survey. Cluster level

covariates included region, urban/rural status of place of residence, elevation, month of data collection,

proportion of a given cluster living in a household with a bed net, proportion of the cluster that slept

under an LLIN, land cover, average daily maximum temperature for the current month and precipitation

for the prior month. Land cover estimates were taken from the Regional Center for Mapping Resources

for Development and SERVIR-Eastern and Southern Africa and cluster-level temperature and

precipitation values were obtained from the 2015 Rwanda DHS geospatial covariates. Survey clusters

were assigned GPS coordinate values within buffers as described previously in accordance with DHS

specifications.[23,25]

Statistical analysis
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We estimated species-specific prevalence, non-falciparum prevalence, and overall Plasmodium sp.

prevalence, applying HIV sampling weights, inverse propensity for selection weights, and weights to

account for selection by cluster transmission intensity and the skewed selection of samples from low and

high transmission clusters. [26,27] We estimated bivariate associations between each Plasmodium

species and a variety of covariates available in the DHS and investigated in other contexts,[23,28] using

the same combination of weights. We report prevalence differences and 95% confidence intervals to

assess precision. We analyzed data using the survey (4.2.1), srvyr (v1.2.0), and sf (v1.0-8) packages using

R 4.2.1 (R Foundation for Statistical Computing). Shapefiles of Rwanda district boundaries taken from the

OCHA Regional Office for Southern and Eastern Africa database.[29]
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Results

Study population characteristics

The study population was 40% female, 14% aged 15-24 years, 76% lived in rural areas, and 80% had a

primary school education or no education (60% reported primary education, 20% reported

preschool/none). Only 3% of the study population was aged 0-15 years, so the results of this survey are

only representative of Rwandan adults. Overall, most (83%) individuals reported a household bed net

and 68% reported sleeping under a long-lasting insecticide treated net the night before the survey.

However, 41% of the study population lived in a household that did not meet the World Health

organization’s criteria of at least 1 net per 1.8 household members. At each of our covariates of interest,

the study population was comparable to and representative of the overall DHS population

(Supplemental Table 3).

Prevalence of P. falciparum and non-falciparum infection by real time PCR

A total of 1,231 P. falciparum, 246 P. ovale, 168 P. malariae and 7 P. vivax infections were identified. The

overall weighted prevalence of any non-falciparum malaria infection was 8.3% (95% CI: [7.0%, 10.0%])

compared to 17.6% [15.9%, 19.0%] for P. falciparum and 23.6% [21.7%, 26.0%] overall malaria

prevalence with HIV sampling, inverse propensity of selection, and transmission intensity correction

weights applied. Species specific weighted prevalences were 3.3% [2.7%, 4.0%] and 5.1% [4.0%, 7.0%] for

P. malariae and P. ovale spp. Unweighted prevalence for P. vivax was 0.15%, with a manually calculated

95% CI [0.04%, 0.27%]. Unweighted prevalence estimates were calculated for each species based on

false-positive rates of high cycle number PCR (Supplemental Table 4). Using a more restrictive cut off of

40 cycles (requiring a higher parasitemia to be positive at approximately 1 parasite per microliter of

template DNA), resulted in weighted overall prevalences of 4.3% [3.6%, 5.0%] for any non-falciparum

infection, compared to 14.3% [12.7%, 16.0%] for P. falciparum and 17.4% for [15.8%, 19.0%] overall
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malaria. Species specific weighted prevalences at this cut off were 2.7% [2.2%, 3.0%) and 1.7% [1.2%,

2.0%], and for P. malariae, and P. ovale spp. Unweighted prevalence for P. vivax was 0.09% [0.002%,

0.17%]. The largest difference in estimated prevalence was for P. ovale spp. This is not surprising given

the distribution of estimated parasitemia values (Figure 1), showing a lower median parasitemia in the

non-falciparum species compared to P. falciparum. District level weighted prevalences and their

differences by PCR cut off are shown in Supplemental Table 5 and 6. P. falciparum, P. ovale and P.

malariae infections were distributed across the country, while P. vivax infections were more localized

(Supplemental Figure 2). District level overall malaria prevalence is shown in Figure 2, while district level

prevalences for each species are illustrated in Figure 3. Among P. ovale spp. P. malariae, and P. vivax

infections, 45%, 45% and 57% (unweighted counts) were infected with at least one other species of

malaria (Supplemental Table 7).

Bivariate associations for infection

Bivariate regression models using weighted (as previously described) survey data found multiple

associations for infection with P. falciparum malaria, but few for non-falciparum malaria (Figure 4).

Covariates with more than two categories were dichotomized to reflect interpretable comparisons across

the study population. For example, Anopheles mosquito vectors generally do not thrive at elevations

over 1,500 m, although this is not a fixed limit. [30] Land cover classifications were dichotomized to

compare less vegetation/more human activity to more vegetation/less human activity. No adjusted

analyses were conducted as we are only exploring the strength of individual associations based on

prevalence measures. Similar to previous work, a higher prevalence of P. falciparum malaria in our

dataset was significantly (at a 0.05 confidence level for all associations) associated with multiple study

covariates related to socioeconomic status (e.g. lower wealth quintile, lower education status, and

unpiped drinking water). Secondary or higher education, residence in a household with at least 1 bed net
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per 1.8 household members, piped drinking water, continuous increase in prior month’s average rainfall,

and higher altitude (>1,500m) were all associated with significantly lower prevalence of P. falciparum

malaria. Rural clusters compared to urban, lower wealth index (first and second quintiles compared to

the upper three), continuous increase in the cluster’s average monthly temperature, and female

participants were associated with higher P. falciparum prevalence. Fewer associations were found for

non-falciparum malaria. Lower prevalence of P. malariae infection was significantly associated with piped

drinking water and secondary or higher education, and both a 1-year increase in age and participants

over 24 (compared to those 15-24 years old) were associated with higher P. malariae prevalence. P. ovale

infection was significantly associated with continuous average monthly temperature increase, while

lower prevalence of infection was associated with continuous increase in the prior month’s average

rainfall. Both significant associations with rainfall increase were smaller than the associations with

temperature for the same species, by several orders of magnitude. Associations for P. vivax infection

were not attempted due to the limited number of infections in the survey (n=7).
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Discussion

In Rwanda, a setting with robust malaria control efforts but inconsistently declining prevalence, we

conducted the largest assessment of asymptomatic and non-falciparum malaria to-date, primarily among

adults. We found an asymptomatic malaria prevalence of 23.6% using PCR, substantially higher than

estimates using RDT and microscopy. Additionally, we observed 8.3% of the population was infected with

a non-falciparum species.

While we observed P. falciparum prevalence to be 17.6% in adults, malaria detection by microscopy in

the RDHS reported a 2% malaria prevalence among children age 6-59 months and 0.6% among women

age 15-49.[31] This high prevalence in adults found using molecular detection is consistent with a study

of school-aged individuals in the Huye District in the same year, finding a 22% prevalence of any malaria

(19% P. falciparum prevalence) using a combined microscopy and PCR approach.[32] We used an

ultra-sensitive assay for P. falciparum to detect what we assumed would be primarily asymptomatic,

lower density infections, enhancing the characterization of P. falciparum prevalence. While a higher PCR

cycle cut-off may increase concern about false-positive detection, our assays have been run extensively

at 45 cycles with little to no evidence of false positives[23], and are consistent with estimates using a

lower cut off (40 cycles). The largest change in prevalence occurred with P. ovale spp., where estimated

prevalence dropped from 5.1% to 1.7% at different cycle cut offs, reflecting the high number of low

density infections detected. The relative decrease in prevalence for each species was not always

consistent, with some regions having no decline in P. falciparum prevalence with large declines in P. ovale

malaria (e.g. Karongi near Lake Kivu) or the opposite with no decline in non-falciparum but lower P.

falciparum prevalence estimates (e.g. Rutsiro and Nyamasheke). With asymptomatic P. falciparum

malaria increasing risk of symptomatic disease at one month and contributing to significant morbidity,
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the high observed prevalence of asymptomatic, low-parasitemia infections offers an important direction

for malaria control.[4,5]

Non-falciparum malaria was detected in 8.3% of individuals nationally, a prevalence not previously

appreciated in the country. P. ovale spp. and P. malariae were both common in Rwanda (5.1% and 3.3%

prevalence, respectively) and distributed in regions of both high and low transmission. A recent

household survey estimated that P. falciparum is responsible for 97% of malaria infections in Rwanda,

with P. malariae and P. ovale spp. each responsible for 1%–2% of total infections.[33,34] P. vivax is

present but remains relatively uncommon (0.15% unweighted prevalence) and sporadic, but consistent

with reporting of occasional clinical cases. [33] More recently, a cluster of P. vivax was reported in the

Huye District.[15] Given distinct treatment approaches by species, the higher than expected prevalence

of P. ovale spp. and occasional P. vivax infection underscores the need for molecular monitoring to guide

control efforts towards elimination.

Not surprisingly, mixed species infections were common and widely distributed, but occurred more

commonly in clusters in the south and east where malaria transmission was the highest (Supplemental

Figure 2). Among P. ovale spp. P. malariae, and P. vivax infections, 44%, 45% and 57% (unweighted) were

infected with at least one other species of malaria (Supplemental Table 7). Bivariate associations for

mixed infections were largely found in the same direction as those observed for P. falciparum, with lower

magnitude and wider confidence intervals attributable to the smaller total counts.Mixed infections are

often underappreciated and may lead to severe disease complications. A recent meta-analysis suggested

that patients with mixed infections have a higher proportion of pulmonary complications and multiple

organ failure than patients with P. falciparum infection alone.[35] The impact of mixed species infections
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on clinical malaria outcomes in Rwanda is unknown and requires additional evaluation in symptomatic

infections, which were not included in this study.

The associations we observed between P. falciparum infection and lower household wealth, no bed net

use and lower elevation are consistent with previous studies using these data, with malaria positivity

defined by RDT or microscopy.[36,37] We observed malaria prevalence was highest in the South and East

as expected, but asymptomatic infection remained common in other areas. Like similar studies,

associations of covariates for non-falciparum malaria were few and traditional risk factors for P.

falciparum were less strongly associated with non-falciparum malaria.[11,20,23,28] This raises concern

for how the control program can target non-falciparum infections without better diagnostics in the

community. The reasons for the relative lack of risk factors, especially for P. ovale spp., remains unclear.

Relapsing malaria, caused by P. ovale and P. vivax, may not be associated with typical covariates due to

the inability to discern between incident or relapse infections in the study.

While this data reflects the epidemiology from nearly a decade ago, it remains important for malaria

control. The baseline set here is useful for understanding the interventions that have been used in

Rwanda for malaria control if future similar surveys, such as the 2019/20 DHS, Malaria Indicator Surveys,

or other broad sampling efforts, are genotyped similarly. The longitudinal data across surveys can be

used to understand how malaria interventions impact both asymptomatic malaria and non-falciparum

malaria, both of which are not captured by standard DHIS2 data but remain important for malaria

elimination.

While this national molecular evaluation offers important perspectives, we are limited by a few key

points. As noted above, the cross-sectional nature of a single DHS limits inference regarding transmission
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and time trends, but use of subsequent (2019-20 DHS) and future DHSs, would allow for ongoing

surveillance of these parasites, as has been done in the DRC.[38] We also could not determine if P. ovale

spp. and P. vivax infections were newly acquired or the result of relapse from hypnozoites. Detection of

these parasites is still important for malaria control programming. Additionally, the relative lack of data

for children under 15 makes this survey not representative of the true asymptomatic reservoir and

non-falciparum prevalence. We are limited by the sampling framework of the DHS. School aged children

are a particularly vulnerable group and often have the highest rate of malaria infection in Africa,

including for P. vivax.[39] Without this group, a true population prevalence of asymptomatic infection is

difficult to determine. However, we likely underestimate overall population prevalence given the 2017

MIS had an overall prevalence of 14% for children aged 6 months to 14 years of age using a rapid

diagnostic test which typically detects 41% of infections compared to PCR.[3,40] In addition, males

were overrepresented in the sample. We used an assay that targets 18S ribosomal RNA genes for

non-falciparum species, thus could underreport infections by P. vivax that could have been detected with

assays that target genes with higher copy numbers in the parasite such as the assay used for falciparum

in this study. [41–43] Despite these limitations, the use of existing samples and individual level data from

a DHS is a highly informative method to gain insights into national malaria prevalence.

This study represents the first national investigation of asymptomatic P. falciparum malaria and

non-falciparum malaria infection nationally in Rwanda using molecular methods. The prevalence of

asymptomatic P. falciparum malaria in adults was significantly higher than estimates with RDT and

microscopy in children.[31] P. ovale spp. and P. malariae were found across the country; however, few

covariates were found to be significantly associated with non-falciparum infection. P. vivax was found,

but infrequently. Most non-falciparum infections had low-density parasitemias and coinfection with P.

falciparum was common, especially for P. ovale spp. and P. vivax. The prevalence of P. ovale and P.
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malariae infection was higher than expected, with few or no discernable risk factors, indicating the need

to develop diagnostic plans for these species in communities where their prevalence is increasing. The

data from this study is critical for national malaria control goals, given asymptomatic individuals

comprise a large reservoir of P. falciparum infections and a high rate of relapsing malaria infection that

requires radical cure. Ongoing molecular monitoring, including from the 2019-20 DHS, is imperative to

characterize malaria prevalence over time, to guide efforts toward elimination.
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Figure 1. Calculated Parasitemia Estimates for Falciparum and Non-falciparum Infections. Overall,

falciparum had a higher parasite density with a median of 10.90 (IQR 0.96-101.41). The median

parasitemia level for P. malariae, P. ovale spp., and P. vivax malaria were 0.35 (IQR: 0.07-1.83), 0.48 (IQR:

0.16-3.25) and 0.94 (IQR: 0.20-3.44), respectively.

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.01.09.24301054doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.09.24301054
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. District Level Weighted Overall Malaria Prevalence. Weighted prevalence of any malaria

infection, using HIV sampling, inverse propensity for selection and transmission intensity weights

(described above).

20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.01.09.24301054doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.09.24301054
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. District Level Weighted Prevalence Estimates for Malaria Species. The weighted prevalence

estimate for each species is shown. Panel A, B, C and D represent P. falciparum, P. malariae, P. ovale spp.

and P. vivax malaria, respectively.
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Figure 4. Bivariate associations and between demographic and environmental risk factors and Plasmodium spp. prevalence using weighted

survey data. Models incorporate 2014-15 Rwanda Demographic and Health Survey weights, inverse probability of selection weights, and cluster

transmission intensity weights (described in Table 1). Point estimates of prevalence difference are surrounded by confidence intervals. The

reference is the second variable listed. Panel A, B and C represent P. falciparum, P. malariae, and P. ovale sp., respectively. Note that each panel

has a different scale.
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