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Abstract 

Background: High-grade serous ovarian cancer (HGSOC) remains the most lethal 

gynecologic malignancy despite new therapeutic concepts, including poly-ADP-ribose 

polymerase inhibitors (PARPis) and antiangiogenic therapy. The efficacy of immunotherapies 

is modest, but clinical trials investigating the potential of combination immunotherapy with 

PARPis are underway. Homologous recombination repair deficiency (HRD) or BRCAness and 

the composition of the tumor microenvironment appear to play a critical role in determining the 

therapeutic response. 

Methods: We conducted comprehensive immunogenomic analyses of HGSOC using data 

from several patient cohorts, including a new cohort from the Medical University of Innsbruck 

(MUI). Machine learning methods were used to develop a classification model for BRCAness 

from gene expression data. Integrated analysis of bulk and single-cell RNA sequencing data 

was used to delineate the tumor immune microenvironment and was validated by 

immunohistochemistry. The impact of PARPi and BRCA1 mutations on the activation of 

immune-related pathways was studied in vitro using ovarian cancer cell lines, RNA 

sequencing, and immunofluorescence analysis. 

Results: We identified a predictive 24-gene signature to determine BRCAness. 

Comprehensive analysis of the tumor microenvironment allowed us to identify patient samples 

with BRCAness and high immune infiltration. Further characterization of these samples 

revealed increased infiltration of immunosuppressive cells, including tumor-associated 

macrophages (TAMs) expressing TREM2, C1QA, and LILRB4, as identified by further analysis 

of single-cell RNA sequencing data and gene expression analysis of samples from patients 

receiving combination therapy with PARPi and anti-PD-1. PARPi activated the cGAS-STING 

signaling pathway and the downstream innate immune response in a similar manner to 

HGSOC patients with BRCAness status. We have developed a web application 

(https://ovrseq.icbi.at) and an associated R package OvRSeq, which allow for comprehensive 

characterization of ovarian cancer patient samples and assessment of a vulnerability score 

that enables stratification of patients to predict response to the mentioned combination 

immunotherapy. 

Conclusions: Genomic instability in HGSOC affects the tumor immune environment, and 

TAMs play a crucial role in modulating the immune response. Based on various datasets, we 

have developed a diagnostic application that uses RNA sequencing data not only to 

comprehensively characterize HGSOC but also to predict vulnerability and response to 

combination immunotherapy. 

Keywords: High-grade serous ovarian cancer, BRCAness, PARP inhibitor, immunotherapy, 

vulnerability, RNA sequencing, tumor-associated macrophages, tumor immune 

microenvironment 
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Background 

Despite newer therapeutic concepts, ovarian cancer, particularly high-grade serous ovarian 

cancer, is still the deadliest gynecologic malignancy, with 13,270 expected deaths in 2023 in 

the U.S. [1]. While immunotherapy, such as immune checkpoint inhibition monotherapy (e.g., 

antibodies against PD-1 or PD-L1), has dramatically changed the therapeutic concepts of 

different cancer types, especially those with mismatch repair deficiency [2], the benefit for 

ovarian cancer patients with an objective response rate of approximately 10% was found to be 

rather modest [3–6]. However, poly-ADP-ribose polymerase inhibitors (PARPis) and 

antiangiogenic therapy have improved the survival outcomes of ovarian cancer patients 

beyond standard care, namely, debulking surgery and platinum-based therapy [7]. 

Furthermore, a number of clinical trials of combination therapies, including immune checkpoint 

blockade, are underway [8–12]. Whereas the recent primary analysis of the double-blind 

placebo-controlled ENGOT-Ov41/GEICO 69-O/ANITA phase III trial showed that the addition 

of the anti-PD-L1 antibody (atezolizumab) did not significantly improve the clinical outcome 

[12], early analysis of the MEDIOLA phase II study adding the PD-L1 inhibitor (durvalumab) 

and the angiogenesis inhibitor (bevacizumab) to a PARPi (olaparib) was promising, with an 

objective response rate >90% for a specific patient group with platinum-sensitive relapsed 

ovarian cancer harboring germline BRCA mutations [11]. 

PARP is involved in DNA damage and repair, binds to single-strand DNA breaks, and performs 

posttranslational modifications of histones and DNA-associated proteins by poly-ADP-

ribosylation, also known as parylation. PARP inhibitors trap PARP and stall the replication fork, 

which can subsequently cause DSBs. PARP inhibition is synthetic lethal with deleterious 

BRCA1 and BRCA2 mutations because homologous recombination repair (HRR) cannot 

restore these double-strand breaks, introducing genome instability by nonhomologous end 

joining or leading to tumor cell death [13]. In high-grade serous ovarian cancer, approximately 

14% harbor a germline and 6% a somatic mutation in the BRCA1 or BRCA2 gene, and 

approximately 50% are HRR deficient, indicating favorable PARPi therapy [14,15]. Sequencing 

approaches such as targeted sequencing, whole exome sequencing, or whole-genome 

sequencing enable researchers to detect mutations in other genes involved in homologous 

recombination repair (HRR). However, the concept of HRR deficiency (HRD) or BRCAness 

goes beyond, as it encompasses instabilities and genomic scars, including large-scale 

transitions, loss of heterozygosity, telomeric allelic imbalance and specific mutational 

processes with uneven base substitution patterns (mutational signature 3). Several diagnostic 

assays from commercial providers for the detection of HRD have already been approved [16]. 

However, further efforts are undertaken to identify various biomarkers based on different 

modalities, such as gene expression or methylation, in the context of different cancer types 

[17–21]. Deleterious BRCA1 mutations and/or PARP inhibition can trigger an immune 
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response at least in part through the cGAS-STING pathway [20-24], suggesting advantages 

for combined immunotherapies. However, biomarkers or phenotypes to predict the response 

to therapies, including PARPis and immune checkpoint blockers, are lacking. 

In this study, we conducted comprehensive immunogenomic analyses of HGSOC using data 

from several patient cohorts, including a cohort from The Cancer Genome Atlas (TCGA-OV) 

(n=226), a new cohort from the Medical University of Innsbruck (MUI) (n=60), and data from 

the TOPACIO clinical trial in ovarian cancer patients treated with niraparib and pembrolizumab 

(n=22) (Fig. S1, Table S1, S2). Integrated gene expression analysis and machine learning on 

bulk and single-cell RNA sequencing data enabled the 1) development of a 24-gene 

expression classification model for BRCAness, 2) stratification of patient samples with 

BRCAness and high immune infiltration, whereby tumor-associated macrophages proved to 

be an important suppressive component, 3) identification of the activation of immune-related 

pathways such as the cGAS-STING or JAK-STAT pathway and downstream signaling by 

PARPi and BRCA1 mutation (BRCAness), and 4) development of a diagnostic application from 

RNA sequencing data to comprehensively characterize HGSOC samples and predict 

vulnerability and response to combination immunotherapy. 

Methods 

Patient cohorts and datasets 

The analysis workflow and used datasets from various cohorts are summarized in Fig. S1. 

Patient characteristics for the TCGA-OV cohort (n=226) and the new HGSOC cohort from the 

Medical University in Innsbruck (MUI) (n=60) are listed in Tables S1 and S2. RNA sequencing 

data and clinical data for the validation cohort (Medical University of Innsbruck; MUI) were 

deposited at https://doi.org/10.5281/zenodo.10251467. Controlled access data for whole 

exome sequencing and RNA sequencing data for the TCGA-OV cohort were obtained through 

dbGaP access permission (phs000178). Processed data (including methylation beta values) 

and clinical data were downloaded from Firebrowse (firebrowse.org, BROAD Institute). 

Additional clinical data were retrieved from the supplementary data of another resource [22]. 

Reads in bam format were converted into fastq files using samtools fastq [23]. Raw RNA 

sequencing data and clinical annotations for the ICON7 cohort were downloaded from the EGA 

archive (EGAS00001003487). Single-cell RNAseq data were downloaded from the Gene 

Expression Omnibus (GEO) (GSE180661) as an annotated count matrix (anndata-object) in 

h5ad-format. Data files from the TOPACIO clinical trial were retrieved from Synapse 

(https://doi.org/10.7303/syn21569629). RNA sequencing data for ovarian cancer cell lines 

were downloaded from the gene expression omnibus (GSE120792). Data from RNA 

sequencing analysis of OVCAR 3 and UWB1.289 cancer cell lines performed in this study were 

deposited in GEO (GSE237361). 
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Cell line experiments 

Two epithelial ovarian carcinoma cell lines, UWB1.289 harboring a deleterious BRCA1 and 

OVCAR3 with intact BRCA1, were obtained from ATCC. OVCAR3 cells were grown in RPMI 

1640 with 0.01 mg/ml bovine insulin and 20% FBS, whereas UWB1.289 cells were grown in a 

mixture of 48.5% MEGM Bullet Kit medium (Lonza) and 48.5% RPMI 1640 with 3% FBS. 

Viability assays were used to determine the IC50 for olaparib. Both cell lines were treated with 

olaparib or DMSO for 96 hours in four replicates. Treated and untreated UWB1.289 and 

OVCAR3 cells were stained with indirect immunofluorescent antibodies to detect γH2AX as an 

indicator of double-strand breaks. To determine activated STING signaling, double-stranded 

DNA and its presence in the cytosol, cGAS, STING, and phosphorylated STING were detected. 

The antibodies used are listed in Table S3. 

Immunohistochemistry analyses 

Slices of 10 selected tumor blocks were subjected to immunohistochemistry analyses 

performed on the BenchMark ULTRA automated staining device (Ventana, Oro Valley, 

AZ/Roche, Vienna, Austria). The examined markers were CD163 for macrophages and CD8, 

PD-1, CD4, and FOXP3 for T cells. Furthermore, the markers γH2AX and STING were 

analyzed. All antibodies used are listed in Table S4. 

RNA sequencing analyses 

RNA from cancer cell line samples was isolated from 2x106 cells each using the RNeasy Mini 

Kit (Qiagen) according to the manufacturer’s protocols. RNA quantity and quality were 

assessed using NanoDrop™ 2000c and Bioanalyzer 2100 with Agilent 6000 Nano Kit, RNA 

integrity numbers (RIN) were between 9.3 and 9.8, and cDNA libraries were generated using 

the QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen) according to the manufacturer’s 

instructions. Paired-end sequencing (150 bp) was performed on a NovaSeq 6000 sequencing 

device at GENEWIZ/Azenta. RNA isolation from 60 fresh frozen tumor samples from the 

HGSOC validation cohort from the Medical University of Innsbruck was conducted in a similar 

manner at the Department of Obstetrics and Gynecology, resulting in sufficient quality (RIN 

factors from 6.4 to 9.9), and sequencing was performed at Novogene (Cambridge, UK) for 

paired end sequencing (PE150) on an Illumina NovaSeq 6000 sequencing device using 

TrueSeq (Illumina) strand-specific total RNA libraries. 

RNA sequencing data analyses 

Raw reads were quality checked using FastQC [24], and the results were summarized with 

MultiQC [25]. Reads were mapped to the human reference genome version hg38 (GRch38) 

using STAR (version 2.7.1) in 2pass mode [26]. Gene level expression quantification was 

performed with featureCounts (version 2.0.0) [27] using GENCODE annotations (v36). Raw 
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counts were normalized using TPM (transcripts per million). RNA sequencing raw data from 

the HGSOC cohort from the Medical University of Innsbruck and the ICON7 cohort were 

analyzed in the same way. For raw sequencing data of the cell lines, single-end reads were 

processed by trimming adapter and low-quality sequences using BBDuk with the parameters 

specified by Lexogen. The trimmed reads were mapped to the human reference genome 

version hg38 (GRch38) using STAR (version 2.7.9a) in 2-pass mode. Gene level expression 

quantification was performed with featureCounts (version 2.0.0) and GENCODE annotations 

(v38). 

Whole exome sequencing analyses and variant calling 

Raw exome sequencing reads in fastq format were quality checked using FastQC, and the 

results were summarized with MultiQC. Reads of paired tumor and normal samples were 

mapped against the human reference genome version hg38 (GRch38) using BWA [28]. After 

mapping the aligned bam files were sorted with samtools sort, mate coordinates and insert 

sizes were added with samtools fixmate, and duplicates were removed with samtools markdup. 

Finally, index files were generated using the SAMtools index. From exome sequencing data, 

small nucleotide variants (SNVs) consisting of single nucleotide variants and small indels were 

assessed. For germline variants, HaplotypeCaller was used to call variants with allele 

frequencies of 0.5 or 1.0 in the tumor samples as well as in the normal samples, respectively. 

To assess somatic variants in the tumor samples, four different variant callers, Mutect2 [29], 

SomaticSniper [30], Varscan2 [31], and Strelka2 [32], were used. If a variant was called by two 

of four variant callers and the variant allele frequency was ≥ 0.05 in the tumor sample and 

<0.05 in the normal sample, the variant passed filtering. Variants were annotated using VEP 

[33] with the ClinVar extension. Only pathogenic (class V) and likely pathogenic (class IV) 

variants were considered to affect the function of homologous recombination repair genes such 

as BRCA1 or BRCA2. Tumor mutational burden was calculated based on the number of 

nonsynonymous single nucleotide variants per megabase for each tumor sample. Neoantigen 

prediction is based on previous efforts using analyses of a combination of exome and RNA 

sequencing data. HLA alleles (HLA type) were estimated using OptiType [34]. Variant calls, 

tumor and paired normal alignments, and aligned RNA sequencing reads were used together 

to compute mutational haplotypes using phasing. Based on the mutational haplotypes, 

peptides with lengths between 8-11 amino acids were generated and tested for the respective 

HLA alleles with NetMHCpan-4.0 [35], whereby %rank<2 was considered a weak binder and 

%rank<0.5 was considered a strong binder. Dissimilarity to the normal human proteome (hg38) 

was identified by the antigen.garnish package [36]. Neoantigen load was calculated for each 

tumor based on predicted weak and strong binding neoantigens – irrespective of their peptide 

length and taking all HLA alleles (type) into account – per megabase. 
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Functional analysis of gene expression and the tumor immune environment 

Differential gene expression analysis was conducted using the R package DESeq2 [37]. P 

values were adjusted for multiple testing based on the false discovery rate (FDR) according to 

the Benjamini‒Hochberg method. Genes with more than a twofold change at an FDR<0.1 and 

average expression across all samples (baseMean>10) were considered significantly 

differentially expressed. To identify functional annotation and affected biological processes, 

log2-fold change preranked gene set enrichment analyses (GSEA) [38] using hallmark and 

selected immune-related gene sets from MSigDB were performed. Overrepresentation 

analyses for biological processes (GO) and pathways (Reactome) were performed using the 

R package ClusterProfiler separately for significantly up- and downregulated genes [39]. 

ClueGO was used to build a network and group significantly overrepresented pathways, which 

are shared genes [40]. The STRING database [41] was used to identify an interaction network 

within the differentially expressed genes, and subnetworks were found by MCL clustering with 

inflation parameter=3. Footprint analyses of response genes of perturbed cancer signaling 

pathways were performed using PROGENy [42]. To assess tumor infiltration of immune cells, 

deconvolution methods, i.e., quanTIseq [43] using the immunedeconv R package [44] was 

applied to bulk RNA sequencing data from tumor samples. To characterize the immune-related 

processes, well-described immune signatures, such as T-cell inflammation, IFN gamma 

signature, cytolytic activity, cytotoxic T lymphocyte function, and T-cell exhaustion (Table S5), 

were analyzed. Based on log2(TPM+1) normalized expression data, single sample gene set 

enrichment using GSVA [45] was performed for signatures with more than 10 genes. For short 

signatures, including fewer than 10 genes, the average expression of the signature was 

calculated. The tumor-immune phenotype (infiltrated, excluded, desert) was determined based 

on a previously developed classification model based on 157 genes using digital pathology 

describing the presence and position of CD8+ T cells relative to the center or margin of the 

tumor [46]. A random forest model based on the expression data (TPM) of these 157 genes 

was used to characterize samples from the TCGA and the MUI cohorts. To classify ovarian 

cancer samples into immune reactive (IMR), proliferative (PRO), differentiated (DIF) and 

mesenchymal (MES) molecular subtypes, the consensusOV R package [47] was used. The 

immunophenoscore (IPS) and immunophenogram for all samples were determined as 

described previously [48]. 

Determination of BRCAness 

BRCAness was determined based on HRD scores [49], mutational signature 3 [50], mutations 

in homologous recombination repair pathway genes and methylation of promoter regions of 

BRCA1 and BRCA2. All high-grade serous ovarian cancer (HGSOC) samples of the TCGA 

cohort for which paired tumor and normal exome sequencing and matched RNA sequencing 

data were available (n=226) were used. Samples were classified with a BRCAness phenotype 
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when they had either a deleterious mutation in the homologous recombination pathway, an 

ovarian cancer-specific HRD score of ≥ 63 [51], a mutational signature 3 ratio > 0.25 or a 

methylation level beta value >0.7 of the BRCA1 or BRCA2 promoter. HRD scores were 

calculated as the unweighted sum of the three genomic scar values, loss of heterozygosity 

(LOH) [52], telomeric allelic imbalance (TAI) [53], and large-scale state transitions (LST) [54]. 

To compute the genomic scar values, scarHRD [55] was used on genome segmentation files 

generated with sequenza-utils [56]. The mutational signature 3 score was computed using 

MutationalPatterns [57]. The mutational signature 3 ratio was calculated as the ratio between 

mutational signature 3 supporting mutations and all detected mutations. 

BRCAness classification 

First, genes expressed in ovarian cancer cells were identified using single-cell RNAseq data. 

Genes that are expressed in at least one ovarian cancer cell were considered expressed in 

cancer cells. Log2(TPM+1) normalized gene expression values of these genes in the TCGA 

dataset were then subjected to recursive feature elimination with three different machine 

learning models (random forest, AdaBoost and gradient boosting) to identify the 50 most 

important features for each model. Genes that were among the top 50 in at least two of the 

three models (24 genes) were then used subsequently to train a random forest classification 

model to discriminate between BRCAness and noBRCAness samples based on gene 

expression data. The performance of the classifier was evaluated by analysis of the receiver 

operating characteristic (ROC) curve with 10-fold cross-validation. The area under curve 

(AUC) was used as a performance measure. A cutoff for BRCAness (P>0.5266) was selected 

using the Youden index. Furthermore, the classifier was tested in the independent validation 

cohort (MUI) for 29 patients with HRD information based on SNP arrays and further validation 

using Myriad MyChoice CDx. Samplewise BRCA classification in single-cell RNA sequencing 

data from 29 patients was performed with an optimized cutoff (P>0.45) and based on the 

majority of classified tumor cells. The BRCAness classifier was further validated using 

additional somatic mutation and RNA sequencing data from the Clinical Proteomic Tumor 

Analysis Consortium ovarian cancer (CPTAC-OV) cohort [58]. SigMA scores representing 

mutational signature 3 were calculated using SigMA [59] as a surrogate for BRCAness. 

Single-cell RNA sequencing analysis 

All analyses of single-cell data were performed in Python using scanpy [54] and scvi-tools [60]. 

Since the samples were sequenced separately for sorted CD45+ and CD45- cells, the raw 

read counts were integrated using scvi-tools with a batch effect correction. Counts were 

normalized to counts per million (CPM) and log2 transformed, adding a pseudocount of 1. 

Quality metrics were determined using scanpy and filtered for genes that are expressed in at 

least one cell. The dataset was filtered for samples from the primary tumor (adnexal tumor 
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tissue). Principal component analysis and nearest neighbor analyses were calculated with 

default settings, and clustering was performed with the Leiden algorithm. Super cell types were 

annotated as previously defined. Subtypes of T-cell and myeloid cell clusters were assigned 

based on the expression of marker genes using published marker genes for different cell types 

and the PanglaoDB [61]. Differentially expressed genes between clusters were calculated 

using the Wilcoxon ranked sum test. For visualization, we used uniform manifold 

approximation and projection (UMAP) dimensional reduction. Gene expression between cell 

types was compared by heatmaps, violin plots, and bubble plots. To assess ligand‒receptor 

interactions between cancer cells and cells from the TME, CellPhoneDB [62] analysis was 

used. 

Gene expression analysis 

Gene expression analysis in the TOPACIO cohort was performed on the NanoString platform. 

We used the nSolver software from NanoString (Seattle, US) to obtain normalized data. 

Differential expression analysis was performed using the R package limma [63], and genes 

with p<0.05 were considered differentially expressed. 

Vulnerability score and maps 

Vulnerability maps consist of three variables: the vulnerability score, the BRCAness score and 

the cytolytic activity (CYT) to C1QA ratio. For the BRCAness score, the prediction probability 

from the random forest classifier was used. The CYT to C1QA ratio was calculated from the 

log2 (TPM+1) values of GZMB, PRF1, and C1QA (1). 

CYT to C1QA ratio = 0.5 x (GZMB + PRF1)/C1QA (1) 

The CYT to C1QA ratio was transformed to values between 0 and 1 using a sigmoid function 

with softmax transformation and parameters derived from the TCGA cohort and termed C2C 

(2). 

C2C = 1/(1 + exp(- (CYT to C1QA ratio - 0.301)/0.0433))  (2) 

The vulnerability score was defined as the weighted sum of BRCAness probability and C2C 

(3), whereby the weights were identified using a logistic regression model on the CYT to C1QA 

ratio using log2 intensity expression values and SigMA status (mutational signature 3) data 

from the TOPACIO cohort and the treatment response as a binary dependent variable. 

Vulnerability score = 2.597 x BRCAness probability + 1.166 x C2C (3) 

For visualization of the vulnerability map, a two-dimensional map was created with C2C as one 

coordinate, BRCA probability as the other coordinate, and the color-coded vulnerability score. 

Statistical analysis 

Survival analyses were performed for both HGSOC cohorts (TCGA, MUI) for selected genes 

or immune parameters by dichotomization of patients based on the median or maximum log-
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rank statistics using the R package survival. For the TCGA cohort, overall survival and survival 

status were derived from a clinical data resource for TCGA [22] and for the cohort from Medical 

University Innsbruck from the clinical data as provided by the Department of Obstetrics and 

Gynecology. Univariate Cox regression was performed, and for parameters significantly 

associated with overall survival, multivariable Cox regression taking clinical parameters into 

account (age, FIGO stage, grade, residual tumor) was performed. To determine the 

association between continuous or binary variables, point biserial correlation analysis was 

used. For the correlation between binary variables, the Phi coefficient and chi-square test were 

used, and for the correlation between continuous variables, Pearson’s correlation coefficient 

was used. To compare parameters between two groups, the Wilcoxon rank-sum test was used. 

Where indicated, p values were adjusted for multiple testing based on the false discovery rate 

(FDR) according to the Benjamini‒Hochberg method. P<0.05 or FDR<0.1 were considered 

significant. 

Results 

A 24-gene signature predicts BRCAness in HGSOC patients 

Because the response to platinum-based chemotherapies or therapy with PARP inhibitors in 

ovarian cancer is not limited to patients with tumors harboring BRCA1 or BRCA2 mutations, 

we expanded the group of patients by using a genomic characterization termed BRCAness, 

which has very much in common with homologous recombination repair deficiency (HRD) 

status [64]. BRCAness status includes mutations of genes in the homologous recombination 

DNA repair pathway (HRR), genomic scars, loss of heterozygosity, telomeric allelic imbalance, 

or large-scale transitions, mutational signature 3, or promoter methylation of the BRCA1 or 

BRCA2 gene. We assessed these parameters based on whole exome sequencing data and 

methylation data from the TCGA OV cohort (Fig. 1A). Very few patients harboring HRR 

mutations or BRCA1/2 promoter methylation fell below the combination of the HRD cutoff 

(HRD>63) and the MutSig3 ratio cutoff (0.25), indicating a reasonable selection of the cutoff 

values (Fig. 1B). To identify BRCAness solely based on gene expression data, we developed 

a machine learning classifier that can discriminate between BRCAness and non-BRCAness 

samples using bulk and single-cell RNA sequencing data (Fig. 1A). Recursive feature 

elimination based on multiple models resulted in a BRCAness gene expression signature with 

24 genes, which was used to train a random forest model discriminating between BRCAness 

and noBRCAness. The receiver operating characteristics (ROC) with 10-fold cross-validation 

on the training dataset showed an area under the curve (AUC) of 0.91±0.04 (Fig. 1D). 

Furthermore, we demonstrated that in addition to classifying bulk RNAseq samples from the 

validation cohort (MUI) (Fig. 1E) with an accuracy of 0.79, an F1-score of 0.86, and a positive 

prediction value of 0.86, the classifier is also capable of classifying samples from scRNAseq 
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data at the sample level (Fig. 1F) with an accuracy of 0.86, an F1 score of 0.87 and a positive 

prediction value of 0.87. There was also good agreement with a recently defined gene 

expression-based HRDness signature including 173 up- and 76 downregulated genes [65] 

using a single sample gene set enrichment [45,66] derived score in the TCGA cohort as well 

as the MUI validation cohort with Spearman’s rank correlation of ρ=0.72 (P<0.001) and ρ=0.63 

(P<0.001), respectively (Fig. S2, S3). Interestingly, six genes from our 24-gene signature to 

classify BRCAness (CCDC90B, CRABP2, FZD4, GPAA1, PRCP, SNRP1) were also among 

the upregulated and two genes (RAD17, LTA4H) among the downregulated genes. The 24-

gene BRCAness signature was further validated in the CPTAC-OV cohort (n=71) by 

comparison to SigMA (mutational signature 3) with a Spearman’s rank correlation of ρ=0.43 

(P<0.001) (Fig. S4). 

In summary, we developed a 24-gene-based BRCAness model validated in several single-cell 

and bulk RNAseq datasets with reasonable classification performance. 

Genome instability is associated with immune-related processes 

To identify the relationship between genomic instability and the activation of the immune 

system, we performed correlation analyses between the BRCAness status and various 

immune-related signatures. BRCAness could be significantly positively associated with the 

enrichment of immune-related signatures, such as those for IFNG response (rho=0.38, 

p=0.004) and T-cell inflamed tumor microenvironment (rho=0.46, p=0.0014), even to a larger 

extent with high tumor mutational burden (p<0.001) and high neoantigen load (p<0.001) 

(Figure 2A, 2B). However, compared to other cancer types with defective DNA mismatch 

repair, such as melanoma or microsatellite instable colorectal cancer, the TMB or neoantigen 

load in ovarian cancer is rather low. Thus, this is more indicative of deficient homologous 

recombination repair. BRCAness was also associated with longer overall survival in the TCGA 

dataset (HR=0.50, 95%-CI 0.34-0.69; p<0.001 log rank test), indicating that those patients are 

more responsive to platinum-based chemotherapy (Fig. 2C). Although this status could be 

associated with higher CD8+ T-cell infiltration (estimated by deconvolution methods from RNA 

sequencing using quanTIseq) (HR=0.67, 95%-CI 0.47-0.93; p=0.019, log-rank test) (Fig. 2D), 

this could not completely explain the survival advantage. Nevertheless, analyses of signaling 

pathways by downstream target expression using PROGENy indicated for the TCGA cohort 

(n=226) as well as the MUI validation cohort (n=60) that immune-related pathways, including 

TNFa, NFkB, and JAK-STAT, were activated in the BRCAness samples (Fig. 2E, 2F). Using 

STRING analyses, we also identified a highly connected network including various chemokines 

and interleukins and their respective receptors (CCL7, CCL11, CXCL5, CXCL9, CXCL13, 

CCR2, CCR3, CCR4, CCR8, CXCR3, and IL6 (Fig. S11)), which were significantly more highly 

expressed in BRCAness tumors than in non-BRCAness tumors, indicating attraction and 

interaction with various immune cells. 
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We observed a significant association of BRCAness with longer overall survival and a less 

pronounced correlation with immune-related processes in HGSOC patients. 

PARP inhibition activates the cGAS-STING pathway in vitro 

To study the effect of PARPis on immune activation, we performed in vitro analyses. As tumor 

models, an ovarian cancer cell line with a proficient BRCA1 gene (OVCAR3) and a cell line 

with a mutation in the BRCA1 gene (UWB1.289) were utilized. We performed RNA sequencing 

analyses to identify differentially expressed genes between olaparib (PARPi)-treated and 

control (DMSO)-treated cell lines. Significantly upregulated genes (Figure 3A, 3B, S18, S19, 

S20, S21, Data file 1) indicate activation of various processes (Fig. 3C, 3D, S22), including 

pattern recognition receptor activation, response to cytokine signaling, interferon alpha 

response (type I), NFkB pathway, and cGAS-STING signaling. To further validate the results 

at the protein level, we performed immunofluorescence analyses indicating effects on gH2AX 

by mutation in the BRCA1 gene and an even stronger effect by olaparib (PARPi) treatment 

(Fig. 3E). Similarly, we observed a different activation of cGAS and STING in the BRCA1-

deficient versus the BRCA1-proficient cell model (Fig. 3F). Furthermore, using gene set 

enrichment analyses, a significant interferon alpha response was also observed in BRCAness 

samples of both the TCGA cohort and the MUI validation cohort (Fig. 3C). 

In summary, we observed cGAS-STING activation by olaparib treatment in vitro and an 

interferon type I response as well as chemokine expression in HGSOC patient cohorts with 

BRCAness status. 

BRCAness and immune subtype stratifies HGSOC patients 

We next focused on characterizing the presence of cytotoxic T lymphocytes and their spatial 

distribution in the tumor, following a recent approach in which digital pathology could be linked 

to gene expression [46]. With the reported list of 157 genes and using random forest analysis, 

we were able to divide the patients into a group with infiltrated, excluded, or desert tumor-

immune phenotypes. Interestingly, the excluded phenotype was associated with upregulation 

of TGFβ and high expression of markers for cancer-associated fibroblasts, such as FAP or 

PDPN, which could form a physical barrier to prevent T-cell infiltration (Fig. 4A). Although 

various definitions of molecular subtypes based on gene expression or copy number 

aberrations have been described in the last decade, we are convinced that the immunoreactive 

molecular subtype (IMR) is the most meaningful to delineate immunoreactivity because many 

of the immunity genes, including cytotoxic effectors, factors involved in antigen processing and 

presentation, or immune checkpoints, are highly expressed in this condition (Fig. 4A, Table 

S6). The definition of molecular subtype also includes mesenchymal (MES), proliferative 

(PRO), and differentiated (DIF) molecular subtypes [47]. To identify patients most likely to 

benefit from the combination of PARP inhibitor therapy, where the BRCAness phenotype may 
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be beneficial, with immune checkpoint inhibitor therapy, where the immune-related phenotype 

may be beneficial, we selected a group of patients with tumor BRCAness, an infiltrated tumor 

immune phenotype, and an immune-reactive molecular subtype termed BRCAness immune 

type (BRIT). When comparing the estimated immune cell infiltrates in these cancer samples 

with BRCAness cancers without immune type (noBRIT), we found that not only cytotoxic T 

lymphocytes such as CD8+ T cells were significantly more abundant (p<0.001) but also a 

number of suppressive immune cells (M2 macrophages (p<0.001), regulatory T cells 

(p<0.001), myeloid-derived suppressor cells; MDSCs (p<0.001)) (Fig. 4B). Furthermore, we 

did not observe a significant difference in overall survival between the groups (p=0.56, HR 

=0.81, 95% CI 0.42-1.60). 

These observations underscore the importance of the suppressive immune environment and 

suggest that suppressive immune cells may be an important factor, which is why ovarian 

cancer patients have a limited response to immunotherapy. 

Tumor-associated macrophages inform therapy response 

As the power of deconvolution approaches from bulk RNA sequencing analyses shows some 

limitations, we took advantage of single-cell RNA sequencing analysis, allowing a more 

comprehensive characterization of the tumor environment and evaluation of the cell interplay. 

Analyses of more than 300 thousand cells of adnexal ovarian tumor tissue from 29 patients 

allowed a clear separation between major cell type populations by clustering and nonlinear 

projection (UMAP) (Figure 5A). In contrast to cell types from the tumor microenvironment, 

tumor cells showed a clear separation between BRCAness and noBRCness samples (Fig. 5A). 

Because cells from the suppressive environment have a major impact, we focused on the 

myeloid cell compartment and demonstrated that the majority of these cells were 

macrophages, and we identified subpopulations based on most dominant marker genes, 

including CD169 (SIGLEC1) macrophages, CX3CR1 macrophages, and MARCO 

macrophages (Fig. 5B). One described hallmark marker of tumor-associated macrophages 

(TAMs) is TREM2, which has been identified as an attractive target for cell depletion therapy 

and is being tested in an ongoing clinical trial [67]. Notably, the expression patterns of TREM2 

and BRCAness are very similar, showing high expression in all macrophage subtypes and, to 

a lesser extent, in monocytes (Fig. 5B). To search for further genes with similar expression 

patterns in myeloid subpopulations, we analyzed known tumor-associated macrophage and 

monocyte marker genes [68]. As indicated by this analysis, C1QA showed a similar but even 

more pronounced expression pattern than TREM2 (Fig. 5B, 5C). C1QA was also recently 

described as a surrogate marker for the CD68+CD163+ macrophage subset [69]. 

To determine whether tumor-associated macrophages might also play a role in the response 

to combined cancer immunotherapy, we used expression data from a clinical trial (TOPACIO). 

We analyzed in which cell types genes with different expression in responders versus 
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nonresponders were dominantly expressed. In fact, a number of downregulated genes in 

responders, such as LYZ, LILRB4, and ITGB2, were most highly expressed in myeloid cells 

(macrophages), LILRB4 in dendritic cells, and integrin subunit beta 2 (ITGB2) in other cell 

types, such as T/NK cells (Fig. 5D, 5E). Interestingly, we identified various ligand‒receptor 

interactions with expressed ligands in tumor cells and respective receptors expressed in tumor-

associated macrophage subsets using CellPhoneDB [62] (Fig. 5F). 

The growth arrest-specific protein 6 (GAS6) – AXL tyrosine kinase (AXL) interaction, for 

example, which are both associated with poor outcome, have already been evaluated in clinical 

trials in ovarian cancer by inhibiting their interaction [70]. LILRB1 and LILRB2 expressed in 

macrophage subsets were found to interact with the nonclassical human leukocyte antigen 

HLA-F expressed in cancer cells. VEGFA and VEGFB expressed in tumor cells potentially 

interact with NRP1, and FLT1 is particularly expressed in endothelial cells. Blocking 

macrophage colony-stimulating factor CSF1 and its receptor CSF1R axis and several drugs 

that target these factors have been under investigation [71]. 

These observations summarized together suggest that tumor-associated macrophages may 

not only play a role in immunotherapy alone but are also essential in informing about therapy 

response when combined with PARP inhibitors. 

Analyses of an independent cohort indicate vulnerability to combination 

immunotherapy. 

To validate the results, we performed RNA sequencing analyses of an HGSOC cohort of 

patients from Medical University Innsbruck (n=60). Stratification of these patients resulted in 

very similar expression patterns evident from a number of immune marker genes, which were 

highly expressed in the BRCAness immune type patient group (BRIT) (Fig. 6A). To further 

characterize immune infiltrates in different patient groups, we performed 

immunohistochemistry analyses on ten selected samples for various markers. BRIT tumor 

samples showed high γH2AX activity, STING activation, CD8+ T-cell infiltration, CD4+ T-cell 

infiltration, and strong CD163+ tumor-associated macrophage populations (Fig. 6B). These 

effects were even more pronounced in one sample with no detected BRCA1 or BRCA2 

mutation, underscoring the importance and validity of predicted BRCAness. Another tumor 

sample with no BRCAness, a desert tumor-immune phenotype, and a differentiated molecular 

subtype was used as a negative control, and in fact, no activity for any of the tested markers 

was observed. To better address the potential for combination immunotherapy response, we 

again took advantage of data from the TOPACIO trial and, based on the clinical response, 

trained a logistic regression model and learned weights for three surrogate variables: MutSig3 

as an indicator for BRCAness, average expression of PRF1 and GZMB as indicators for 

cytolytic activity, and expression of C1QA as an indicator for tumor-associated suppressive 
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macrophages. Based on the HGSOC samples from TCGA, we developed a two-dimensional 

vulnerability map, with the ratio of cytolytic activity and C1QA expression as one variable (C2C) 

and the BRCAness prediction probability as the other variable. The vulnerability score is 

indicated by color (Fig. 6C). When applied to the selected examples from the validation cohort 

of the Medical University of Innsbruck, these differed significantly for areas with high 

vulnerability scores (indicating response to combination immunotherapy) compared to the 

negative control with low vulnerability scores (Fig. 6C). Furthermore, we observed a significant 

difference in overall survival between patients with high and low vulnerability scores (p<0.001, 

HR = 0.47, 95% CI 0.33-0.66) in the TCGA HGSOC cohort, indicating a positive association 

of a high vulnerability score with longer overall survival. For patients in the validation cohort 

(MUI HGSOC), no significant difference in overall survival (p=0.368, HR = 0.78, 95% CI 0.45-

1.34) could be revealed. To enable the characterization of newly diagnosed HGSOC samples 

based on RNA sequencing data, we developed an easy-to-use R package (OvRSeq), which 

allows us to not only estimate the parameters to determine the vulnerability score (and 

generate the vulnerability maps) but also comprehensively annotate the sample for 

BRCAness, tumor-immune phenotype, molecular subtype, estimate immune infiltrates, 

enrichment of immune-related signatures, and individual marker genes. This also includes 

other clinically relevant parameters, such as the angiogenesis score we previously defined, 

which might be useful for the prediction of anti-VEGF therapy [72]. The web application 

(https://ovarseq.icbi.at) allows the generation of summary information as a report of individual 

samples (Fig. S23). 

The developed application should ultimately be useful to identify vulnerabilities and support 

clinical therapy decisions for high-grade serous ovarian cancer patients. 

Discussion 

Here, we described how genomic instability in high-grade serous ovarian cancer affects the 

tumor immune environment and the consequences and vulnerabilities of combination 

immunotherapy combining PARP inhibitors with immune checkpoint inhibitors such as anti-

PD1 antibodies. A particular status in which patients respond well to PARP inhibitors and 

platinum-based chemotherapy is given when genes of the homologous recombination repair 

pathway such as BRCA1 or BRCA2 are mutated. Genomic scars are consequences of a 

homologous recombination repair deficiency and are used to define an HRD score, often 

measured by established commercial assays, which allows the assignment of a responsive 

status beyond BRCA1 and BRCA2 mutations. The applicability and associated cutoff values 

for different assays and cancer types are under discussion, as the HRD algorithm has been 

used in clinical studies including different cancer types, such as breast cancer and ovarian 

cancer [49,73,74]. Genomic scars are predictive but do not allow direct functional 

https://ovarseq.icbi.at/
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interpretation, whereas gene expression signatures could be an alternative in this regard. Very 

few approaches have associated gene expression with HRD status [18,19,65]. Whereas a 

sixty-gene signature [18] and a two-gene signature (CXCL1, LY9) [19] have focused on 

microarray data, a recent approach using RNA sequencing data identified a 249-gene 

signature to predict HRD [65]. We observed a number of overlaps with our 24-gene BRCA 

signature and a high concordance of signature scores in our training (TCGA) and validation 

(MUI) cohorts, indicating the reliability of our approach. This was underscored by comparison 

with mutational signature 3 (SigMA) in an independent cohort (Fig S3). The performance of 

the BRCAness classifier is reasonable, with AUC=0.91 (10-fold cross-validation) and positive 

predictive value for validation on both bulk RNA sequencing in the validation cohort (MUI) 

(PPV=0.86) and samplewise single-cell RNA sequencing data (PPV=0.87). 

BRCAness is associated with a longer overall survival since all patients usually receive 

platinum-based chemotherapy such as carboplatin-paclitaxel combination. Although this 

association was previously reported and therefore expected, it highlights the performance of 

the classifier to BRCA status. There is evidence that BRCA1/2-mutated tumors exhibit 

significantly increased CD8+ TILs [75], although in breast cancer, differential modulation 

between BRCA1 and BRCA2 mutations in the tumor immune microenvironment has been 

found [76]. The association between BRCAness and several immune-regulated signatures 

was significant but not very pronounced. We found evidence that several signaling pathways 

and processes known to modulate the immune system are activated by BRCA1 mutations or 

a BRCAness-related phenotype, such as JAK-STAT signaling or an interferon type I response, 

which are activated by free double-stranded DNA in the cytoplasm of tumor cells via the cGAS-

STING pathway and affect dendritic cells [77–79]. By expression and immunofluorescence 

analyses of ovarian cancer cell lines and by treatment with PARPi, we demonstrated that this 

axis is actually activated. Notably, the STAT3 pathway, which is activated by PARP inhibition, 

may, however, mediate treatment resistance by promoting the polarization of protumor TAMs, 

which could be overcome by STING agonism [80]. STING, CSF1R, SREBP-1, and VEGFA 

might also be targets to overcome resistance to PARPi-immunotherapy combinations [81]. The 

upregulation of many chemokines and chemokine receptors (Fig. S10, S11) indicates that 

BRCAness tumors are actively involved in immune cell attraction and interaction. For example, 

CCL5 produced by tumor cells or CXCL9 and CXCL10 also expressed by tumor-resident 

myeloid cells determine effector T-cell recruitment to the tumor microenvironment [82,83]. We 

detected significant upregulation of CCL5 and CXCL10 by PARP inhibition, which was also 

identified as a downstream target of STING [77]. Another interesting chemokine that is strongly 

upregulated in cancer cell lines, particularly by olaparib treatment, is CCL20. CCL20 could be 

associated with cancer metastasis and progression by interacting with its cognate receptor 
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CCR6 in an ovarian cancer mouse model. However, the higher expression in the myeloid cell 

compartment, as evident from single-cell analyses (Fig. S16), overlies the intrinsic tumor effect. 

One of our basic hypotheses was that samples with BRCAness respond better to PARPi 

therapy and that hot tumors with an activated immune milieu respond better to immune 

checkpoint inhibition, as has been shown, for example, in melanoma for the activated IFNG 

pathway [84]. However, when we compared the BRCAness immune type (BRIT) with other 

samples, we observed by using deconvolution approaches that suppressive cell types such as 

M2 macrophages, MDSCs, and Tregs were more abundant. In particular, tumor-associated 

macrophages (TAMs) could be a major factor together with low mutational burden, abnormal 

neovascularization, altered metabolism, and failure to reverse T-cell exhaustion for the limited 

immunotherapy response in ovarian cancer [85]. By using single-cell RNA sequencing data 

analyses in adnexal cancer tissue from 29 patients, we demonstrated that myeloid cells are 

the most abundant immune cells, and the majority were characterized as tumor-associated 

macrophages. We could identify various subtypes of these TAMs, and based on known 

macrophage polarization marker genes (Fig. S14), we observed a bias toward alternative (M2-

like) macrophages compared to classical (M1-like) macrophages, although this classification 

is limited and may be better described as a continuum of different stages than isolated cell 

types. Nevertheless, a majority of these TAMs are suppressive, as indicated by TREM2 

expression. TREM2 is a promising therapeutic target for TAM depletion [71]. Inhibition of 

TREM2 has been shown to improve the anti-PD1 response in various mouse models and is 

currently being investigated in a clinical trial [67,86]. Another recent study underscored the role 

of TAMs and demonstrated that specifically, the Siglec-9-positive TAM subset is associated 

with an immune-suppressive phenotype and adverse prognosis in HGSOC patients [87]. 

Interestingly, a previous work using cyclic immunofluorescence highlighted the role of 

exhausted T cells in the response to niraparib/pembrolizumab. In responders, particularly in 

extreme responders, frequent proximity between exhausted T cells and PD-L1+ (CD163+, 

IBA1+, CD11b+) TAMs was observed [9]. Noticeably, based on the selected marker 

expression, we observed an overlap with the CD169/SIGLEC-1 TAM cluster from single-cell 

RNA sequencing data analyses (Fig. S9). In addition, in patients who responded to this 

combination therapy, we identified a number of downregulated genes that were also highly 

expressed in TAMs, such as LYZ, LILRB4, and ITGB2. Whereas lysozyme (LYZ) is an 

antimicrobial ligand and is involved in central macrophage function and is therefore 

nonspecifically and highly expressed, LILRB4 is an immune checkpoint on myeloid cells, 

indicating a more regulatory role. High expression of the integrin ITGB2 was previously shown 

to be associated with poor survival outcome [88], underscoring that high expression in TAMs 

is crucial. In contrast, ITGB2 is also associated with CD8+ T cells, as it encodes the beta chain 

of the LFA-1 protein, which has been shown to be essential in the assembly of the immune 
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synapse or to influence lymphocyte extravasation and T-cell recruitment to the tumor and is 

regulated by GDF-15 [89]. This association is also underlined by a positive significant 

correlation of ITGB2 expression with M2 macrophages and, to a lesser extent, with estimated 

CD8+ T-cell infiltration in the TCGA cohort (Fig. S11). 

Because stratification of patients based on gene expression in our validation cohort was very 

similar to the analysis on the TCGA cohort, we set out to adapt our hypothesis andalso include 

elements of the suppressive environment. Already, it was shown that regulatory T cells (Tregs) 

are an important component of the suppressive milieu and are associated with unfavorable 

survival outcomes in ovarian cancer [90,91]. We performed immunohistochemistry analyses 

using FOXP3 and CD163 antibodies in the validation cohort and found very pronounced 

macrophage infiltration (CD163) but hardly Treg infiltration (FOXP3) into the tumor site in some 

samples. The results of the single-cell RNA sequencing analyses and the fact that various 

TAM marker genes were associated with poorer overall survival (Fig. S13) also suggest that 

TAMs play a more dominant role in ovarian cancer. 

While infiltration of various cell types from the adaptive immune system [92] and other markers, 

such as tumor mutational burden (TMB) [93] or IFNG signature [84], have been associated 

with good prognosis and immunotherapy response in various cancer types, the suppressive 

immune environment with tumor-supportive CD68+CD163+ macrophages is becoming more 

important [69]. Accordingly, a signature of the immune activation ratio of CD8A/C1QA has 

been found to be prognostic and predictive for immunotherapy response [69]. Based on 

previous analyses [44,69], we considered the mean PRF1 and GZMB expression as a proxy 

for cytolytic activity as predominantly exerted by cytotoxic T lymphocytes. The specific 

expression pattern of C1QA on TAMs was comparable to that of TREM2 but at a much higher 

level. Therefore, we also used the member of the complement system C1QA as a surrogate 

for TAMs and the suppressive tumor immune environment and finally built a ratio of cytolytic 

activity (CYT) to the expression of C1QA (C2C), indicating the pro- and antitumoral balance of 

the immune environment. Finally, to build a predictive algorithm for combination therapy 

response, we included both C2C on the one hand and BRCAness on the other hand into one 

model. Since HRD measured with companion diagnostic tests is not able to predict all PARPi 

responders, as shown in several clinical trials, and since PARPi treatment can activate a 

number of immune-related pathways even in situations with proficient HRR, which is also 

underlined by our in vitro analyses, this model is considered to be relevant for combination 

immunotherapy. 

Our studies have some limitations in that the training and validation patient cohorts were 

retrospective studies, and RNA sequencing was performed at a later time point. Additionally, 

only a limited number of patients who received combination therapy could be included; 

therefore, the conclusion about the predictive power for the treatment is limited and requires 
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further validation in larger cohorts. One component that was not considered in this study is 

malignant ascites, which has been shown to contain various cell types, such as macrophages, 

many soluble factors and cytokines, that influence the protumorigenic phenotype and promote 

metastatic spread of HGSOC through transcoelomic dissemination [94]. Although the 

application is not a clinically approved software for the purpose of therapy and diagnosis, the 

very easy-to-use application (https://ovrseq.icbi.at) and the respective R package OvRSeq 

allow based on RNA sequencing to gain comprehensive information about the phenotype of a 

tumor sample, support clinical decisions, and stimulate further research. 

Conclusions 

Our approach using RNA sequencing data to comprehensively characterize both genome 

instability and the tumor immune environment enabled us to stratify HGSOC patients. 

However, further analyses indicate that suppressive tumor-associated macrophages in the 

tumor immune microenvironment may play an essential role in understanding why 

immunotherapy shows only a modest response in ovarian cancer, and in a similar fashion, this 

applies to combination immunotherapy, including PARP inhibitors and immune checkpoint 

blockers. Based on various datasets, we have developed a methodology and corresponding 

diagnostic application that uses RNA sequencing data not only to comprehensively 

characterize newly diagnosed HGSOC patients but also to provide information on vulnerability 

to combination immunotherapy that may inform whether the patient will respond or not. 

Abbreviations 

AUC  Area under curve 

BRCA  Breast cancer DNA repair-associated genes 

BRIT  BRCAness immune type 

CTL  Cytotoxic T lymphocytes 

CYT  Cytolytic activity 

C1QA  Complement C1q A chain 

C2C  Transformed CYT to C1QA ratio 

DIF  Differentiated molecular subtype 

EOC   Epithelial ovarian cancer 

FDR   False discovery rate 

GSEA  Gene set enrichment analysis 

GSVA  Gene set variation analysis 

HGSOC High-grade serous ovarian cancer 

HR   Hazard ratio 

HRD  Homologous recombination repair deficiency 

https://ovrseq.icbi.at/


20 
 

HRR  Homologous recombination repair 

IMR  Immune reactive molecular subtype 

IPS  Immunophenoscore 

LOH  Loss of Heterogeneity 

LST  Large-scale transitions 

MDSC  Myeolid-derived suppressor cell 

MES  Mesenchymal molecular subtype 

MutSig3 Mutational signature 3 

NES  Normalized enrichment score 

PARP  Poly (ADP-Ribose) Polymerase 

PARPi  PARP inhibitor (olaparib, niraparib) 

PCA  Principal component analysis 

PD-1  Programmed cell death 1 (PDCD1) 

PRO  Proliferative molecular subtype 

PROGENy Pathway RespOnsive GENes for activity inference 

ROC  Receiver operating characteristics 

TAI  Telomeric allelic imbalance 

TAM  Tumor-associated macrophages 

TCGA  The Cancer Genome Atlas 

TPM   Transcript per millions 

Tregs  Regulatory CD4+ T cells 

UMAP  Uniform manifold approximation and projection 

Conflict of interest statement 

AGZ reports consulting fees from Amgen, Astra Zeneca, GSK, MSD, Novartis, PharmaMar, 

Roche-Diagnostic, Seagen; honoraria from Amgen, Astra Zeneca, GSK, MSD, Novartis, 

PharmaMar, Roche, Seagen; travel expenses from Astra Zeneca, Gilead, Roche; participation 

on advisory boards from Amgen, Astra Zeneca, GSK, MSD, Novartis, Pfizer, PharmaMar, 

Roche, Seagen. CM reports consulting fees and honoraria from Roche, Novartis, Amgen, 

MSD, PharmaMar, Astra Zeneca, GSK, Seagen; travel expenses from Roche, Astra Zeneca; 

participation on advisory boards from Roche, Novartis, Amgen, MSD, Astra Zeneca, Pfizer, 

PharmaMar, GSK, Seagen. HH has received research funding via Catalym and Secarna. The 

authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

Funding 

This research was funded in whole, or in part, by the Anniversary Fund of the National Bank 

of Austria (OeNB) (grant number 18279 to HH). 



21 
 

Author contributions 

RG conducted all computational analyses, and LM performed all in vitro analyses. PML 

developed the R package and application. GF performed antigen prediction and deconvolution 

analyses. SS performed immunohistochemistry analyses. AGZ served as a clinical consultant. 

CM headed the pilot study from the Medical University in Innsbruck and supervised all clinical 

aspects. HF coordinated tumor samples from the biobank and their molecular analysis. HH 

conceived the study, supervised all analyses, and together with RG wrote the paper. All the 

authors have read and approved the final manuscript. 

Ethics approval and consent to participate 

For the pilot study (validation cohort from the Medical University of Innsbruck), written informed 

consent was needed for all patients before enrollment. The study was reviewed and approved 

by the Ethics Committee of the Medical University of Innsbruck (reference number: 1189/2019) 

and conducted in accordance with the Declaration of Helsinki. 

Availability of data and materials 

RNA sequencing data from in vitro experiments are available via the Gene Expression 

Omnibus (GEO) (GSE237361). RNA sequencing data and patient information of the validation 

cohort (MUI) are available at Zenodo https://doi.org/10.5281/zenodo.10251467. The R 

package OvRSeq is available from GitHub (https://github.com/icbi-lab/OvRSeq) under MIT 

license and the corresponding web application (https://ovrseq.icbi.at). The analysis scripts 

used in this manuscript are available at GitHub (https://github.com/icbi-lab/hgsoc). 

References 

1.  Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023. 

73:17–48. doi: 10.3322/caac.21763 

2.  Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt 

C, Luber BS, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 

blockade. Science 2017. 357:409–413. doi: 10.1126/science.aan6733 

3.  Disis ML, Taylor MH, Kelly K, Beck JT, Gordon M, Moore KM, Patel MR, Chaves J, Park 

H, Mita AC, et al. Efficacy and Safety of Avelumab for Patients With Recurrent or 

Refractory Ovarian Cancer: Phase 1b Results From the JAVELIN Solid Tumor Trial. 

JAMA Oncol 2019. 5:393. doi: 10.1001/jamaoncol.2018.6258 

4.  Varga A, Piha-Paul S, Ott PA, Mehnert JM, Berton-Rigaud D, Morosky A, Yang P, Ruman 

J, Matei D. Pembrolizumab in patients with programmed death ligand 1–positive 

advanced ovarian cancer: Analysis of KEYNOTE-028. Gynecol Oncol 2019. 152:243–

250. doi: 10.1016/j.ygyno.2018.11.017 



22 
 

5.  Konstantinopoulos PA, Cannistra SA. Immune Checkpoint Inhibitors in Ovarian Cancer: 

Can We Bridge the Gap Between IMagynation and Reality? JCO 2021. 39:1833–1838. 

doi: 10.1200/JCO.21.00571 

6.  Matulonis UA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S, Vergote I, 

Raspagliesi F, Sonke GS, Birrer M, Provencher DM, et al. Antitumor activity and safety 

of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the 

phase II KEYNOTE-100 study. Ann Oncol 2019. 30:1080–1087. doi: 

10.1093/annonc/mdz135 

7.  Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Berger R, Fujiwara K, 

Vergote I, Colombo N, Mäenpää J, et al. Olaparib plus Bevacizumab as First-Line 

Maintenance in Ovarian Cancer. N Engl J Med 2019. 381:2416–2428. doi: 

10.1056/NEJMoa1911361 

8.  Musacchio L, Cicala CM, Camarda F, Ghizzoni V, Giudice E, Carbone MV, Ricci C, Perri 

MT, Tronconi F, Gentile M, et al. Combining PARP inhibition and immune checkpoint 

blockade in ovarian cancer patients: a new perspective on the horizon? ESMO Open 

2022. 7:100536. doi: 10.1016/j.esmoop.2022.100536 

9.  Färkkilä A, Gulhan DC, Casado J, Jacobson CA, Nguyen H, Kochupurakkal B, Maliga Z, 

Yapp C, Chen Y-A, Schapiro D, et al. Immunogenomic profiling determines responses to 

combined PARP and PD-1 inhibition in ovarian cancer. Nat Commun 2020. 11:1459. doi: 

10.1038/s41467-020-15315-8 

10.  Lampert EJ, Zimmer A, Padget M, Cimino-Mathews A, Nair JR, Liu Y, Swisher EM, Hodge 

JW, Nixon AB, Nichols E, et al. Combination of PARP Inhibitor Olaparib, and PD-L1 

Inhibitor Durvalumab, in Recurrent Ovarian Cancer: a Proof-of-Concept Phase II Study. 

Clin Cancer Res 2020. 26:4268–4279. doi: 10.1158/1078-0432.CCR-20-0056 

11.  Drew Y, Kim J-W, Penson RT, O’Malley DM, Parkinson C, Roxburgh P, Plummer R, Im 

S-A, Imbimbo M, Ferguson M, et al. Olaparib plus Durvalumab, with or without 

Bevacizumab, as Treatment in PARP Inhibitor-Naïve Platinum-Sensitive Relapsed 

Ovarian Cancer: A Phase II Multi-Cohort Study. Clin Cancer Res 2023. doi: 

10.1158/1078-0432.CCR-23-2249 

12.  Gonzalez Martin A, Rubio Perez MJ, Heitz F, Christensen RD, Colombo N, Van Gorp T, 

Oaknin A, Leary A, Gaba Garcia L, Lebreton C, et al. LBA37 Atezolizumab (atezo) 

combined with platinum-based chemotherapy (CT) and maintenance niraparib for 

recurrent ovarian cancer (rOC) with a platinum-free interval (TFIp) >6 months: Primary 

analysis of the double-blind placebo (pbo)-controlled ENGOT-Ov41/GEICO 69-O/ANITA 

phase III trial. Ann Oncol 2023. 34:S1278–S1279. doi: 10.1016/j.annonc.2023.10.031 

13.  Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science 2017. 

355:1152–1158. doi: 10.1126/science.aam7344 



23 
 

14.  Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D’Andrea AD. Homologous 

Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. 

Cancer Discov 2015. 5:1137–1154. doi: 10.1158/2159-8290.CD-15-0714 

15.  Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian 

carcinoma. Nature 2011. 474:609–615. doi: 10.1038/nature10166 

16.  Stewart MD, Merino Vega D, Arend RC, Baden JF, Barbash O, Beaubier N, Collins G, 

French T, Ghahramani N, Hinson P, et al. Homologous Recombination Deficiency: 

Concepts, Definitions, and Assays. The Oncologist 2022. 27:167–174. doi: 

10.1093/oncolo/oyab053 

17.  Takamatsu S, Brown JB, Yamaguchi K, Hamanishi J, Yamanoi K, Takaya H, Kaneyasu 

T, Mori S, Mandai M, Matsumura N. Utility of Homologous Recombination Deficiency 

Biomarkers Across Cancer Types. JCO Precis Oncol 2021. 1270–1280. doi: 

10.1200/PO.21.00141 

18.  Konstantinopoulos PA, Spentzos D, Karlan BY, Taniguchi T, Fountzilas E, Francoeur N, 

Levine DA, Cannistra SA. Gene Expression Profile of BRCA ness That Correlates With 

Responsiveness to Chemotherapy and With Outcome in Patients With Epithelial Ovarian 

Cancer. JCO 2010. 28:3555–3561. doi: 10.1200/JCO.2009.27.5719 

19.  Chen T, Yu T, Zhuang S, Geng Y, Xue J, Wang J, Ai L, Chen B, Zhao Z, Li Y, et al. 

Upregulation of CXCL1 and LY9 contributes to BRCAness in ovarian cancer and 

mediates response to PARPi and immune checkpoint blockade. Br J Cancer 2022. doi: 

10.1038/s41416-022-01836-0 

20.  Kraya AA, Maxwell KN, Wubbenhorst B, Wenz BM, Pluta J, Rech AJ, Dorfman LM, 

Lunceford N, Barrett A, Mitra N, et al. Genomic Signatures Predict the Immunogenicity of 

BRCA-Deficient Breast Cancer. Clin Cancer Res 2019. 25:4363–4374. doi: 

10.1158/1078-0432.CCR-18-0468 

21.  Hoppe MM, Sundar R, Tan DSP, Jeyasekharan AD. Biomarkers for Homologous 

Recombination Deficiency in Cancer. J Natl Cancer Inst 2018. 110:704–713. doi: 

10.1093/jnci/djy085 

22.  Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, 

Benz CC, Levine DA, Lee AV, et al. An Integrated TCGA Pan-Cancer Clinical Data 

Resource to Drive High-Quality Survival Outcome Analytics. Cell 2018. 173:400-416.e11. 

doi: 10.1016/j.cell.2018.02.052 

23.  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin 

R, 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map 

format and SAMtools. Bioinformatics 2009. 25:2078–2079. doi: 

10.1093/bioinformatics/btp352 



24 
 

24.  Andrews, S. A S. FastQC:  A Quality Control Tool for High Throughput Sequence Data. 

2010.  

25.  Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for 

multiple tools and samples in a single report. Bioinformatics 2016. 32:3047–3048. doi: 

10.1093/bioinformatics/btw354 

26.  Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, 

Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013. 29:15–21. 

doi: 10.1093/bioinformatics/bts635 

27.  Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for 

assigning sequence reads to genomic features. Bioinformatics 2014. 30:923–930. doi: 

10.1093/bioinformatics/btt656 

28.  Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. 

Bioinformatics 2009. 25:1754–1760. doi: 10.1093/bioinformatics/btp324 

29.  Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, 

Jordan T, Shakir K, Roazen D, Thibault J, et al. From FastQ data to high confidence 

variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc 

Bioinformatics 2013. 43:11.10.1-11.10.33. doi: 10.1002/0471250953.bi1110s43 

30.  Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, Ley TJ, Mardis ER, 

Wilson RK, Ding L. SomaticSniper: identification of somatic point mutations in whole 

genome sequencing data. Bioinformatics 2012. 28:311–317. doi: 

10.1093/bioinformatics/btr665 

31.  Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, 

Ding L, Wilson RK. VarScan 2: somatic mutation and copy number alteration discovery 

in cancer by exome sequencing. Genome Res 2012. 22:568–576. doi: 

10.1101/gr.129684.111 

32.  Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Källberg M, Chen X, Kim Y, Beyter 

D, Krusche P, Saunders CT. Strelka2: fast and accurate calling of germline and somatic 

variants. Nat Methods 2018. 15:591–594. doi: 10.1038/s41592-018-0051-x 

33.  McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, Cunningham 

F. The Ensembl Variant Effect Predictor. Genome Biol 2016. 17:122. doi: 

10.1186/s13059-016-0974-4 

34.  Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: precision 

HLA typing from next-generation sequencing data. Bioinformatics 2014. 30:3310–3316. 

doi: 10.1093/bioinformatics/btu548 

35.  Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: Improved 

Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide 

Binding Affinity Data. J Immunol 2017. 199:3360–3368. doi: 10.4049/jimmunol.1700893 



25 
 

36.  Richman LP, Vonderheide RH, Rech AJ. Neoantigen Dissimilarity to the Self-Proteome 

Predicts Immunogenicity and Response to Immune Checkpoint Blockade. Cell Syst 2019. 

9:375-382.e4. doi: 10.1016/j.cels.2019.08.009 

37.  Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for 

RNA-seq data with DESeq2. Genome Biol 2014. 15:550. doi: 10.1186/s13059-014-0550-

8 

38.  Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich 

A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a 

knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl 

Acad Sci U S A 2005. 102:15545–15550. doi: 10.1073/pnas.0506580102 

39.  Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological 

themes among gene clusters. OMICS 2012. 16:284–287. doi: 10.1089/omi.2011.0118 

40.  Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W-H, 

Pagès F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally 

grouped gene ontology and pathway annotation networks. Bioinformatics 2009. 25:1091–

1093. doi: 10.1093/bioinformatics/btp101 

41.  Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay 

M, Fang T, Bork P, et al. The STRING database in 2021: customizable protein-protein 

networks, and functional characterization of user-uploaded gene/measurement sets. 

Nucleic Acids Res 2021. 49:D605–D612. doi: 10.1093/nar/gkaa1074 

42.  Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, Garnett MJ, Blüthgen 

N, Saez-Rodriguez J. Perturbation-response genes reveal signaling footprints in cancer 

gene expression. Nat Commun 2018. 9:20. doi: 10.1038/s41467-017-02391-6 

43.  Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, Krogsdam A, Loncova 

Z, Posch W, Wilflingseder D, et al. Molecular and pharmacological modulators of the 

tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 

2019. 11:34. doi: 10.1186/s13073-019-0638-6 

44.  Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, List M, Aneichyk 

T. Comprehensive evaluation of transcriptome-based cell-type quantification methods for 

immuno-oncology. Bioinformatics 2019. 35:i436–i445. doi: 

10.1093/bioinformatics/btz363 

45.  Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray 

and RNA-Seq data. BMC Bioinformatics 2013. 14:7. doi: 10.1186/1471-2105-14-7 

46.  Desbois M, Udyavar AR, Ryner L, Kozlowski C, Guan Y, Dürrbaum M, Lu S, Fortin J-P, 

Koeppen H, Ziai J, et al. Integrated digital pathology and transcriptome analysis identifies 

molecular mediators of T-cell exclusion in ovarian cancer. Nat Commun 2020. 11:5583. 

doi: 10.1038/s41467-020-19408-2 



26 
 

47.  Chen GM, Kannan L, Geistlinger L, Kofia V, Safikhani Z, Gendoo DMA, Parmigiani G, 

Birrer M, Haibe-Kains B, Waldron L. Consensus on Molecular Subtypes of High-Grade 

Serous Ovarian Carcinoma. Clin Cancer Res 2018. 24:5037–5047. doi: 10.1158/1078-

0432.CCR-18-0784 

48.  Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, 

Trajanoski Z. Pan-cancer Immunogenomic Analyses Reveal Genotype-

Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. 

Cell Rep 2017. 18:248–262. doi: 10.1016/j.celrep.2016.12.019 

49.  Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, Szallasi Z, Barry WT, 

Winer EP, Tung NM, et al. Homologous Recombination Deficiency (HRD) Score Predicts 

Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-

Negative Breast Cancer. Clin Cancer Res 2016. 22:3764–3773. doi: 10.1158/1078-

0432.CCR-15-2477 

50.  Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, Boot A, Covington 

KR, Gordenin DA, Bergstrom EN, et al. The repertoire of mutational signatures in human 

cancer. Nature 2020. 578:94–101. doi: 10.1038/s41586-020-1943-3 

51.  Takaya H, Nakai H, Takamatsu S, Mandai M, Matsumura N. Homologous recombination 

deficiency status-based classification of high-grade serous ovarian carcinoma. Sci Rep 

2020. 10:2757. doi: 10.1038/s41598-020-59671-3 

52.  Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA, Smith-McCune K, 

Broaddus R, Lu KH, Chen J, et al. Patterns of genomic loss of heterozygosity predict 

homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer 2012. 

107:1776–1782. doi: 10.1038/bjc.2012.451 

53.  Birkbak NJ, Wang ZC, Kim J-Y, Eklund AC, Li Q, Tian R, Bowman-Colin C, Li Y, Greene-

Colozzi A, Iglehart JD, et al. Telomeric Allelic Imbalance Indicates Defective DNA Repair 

and Sensitivity to DNA-Damaging Agents. Cancer Discov 2012. 2:366–375. doi: 

10.1158/2159-8290.CD-11-0206 

54.  Popova T, Manié E, Rieunier G, Caux-Moncoutier V, Tirapo C, Dubois T, Delattre O, 

Sigal-Zafrani B, Bollet M, Longy M, et al. Ploidy and large-scale genomic instability 

consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res 

2012. 72:5454–5462. doi: 10.1158/0008-5472.CAN-12-1470 

55.  Sztupinszki Z, Diossy M, Krzystanek M, Reiniger L, Csabai I, Favero F, Birkbak NJ, 

Eklund AC, Syed A, Szallasi Z. Migrating the SNP array-based homologous 

recombination deficiency measures to next generation sequencing data of breast cancer. 

npj Breast Cancer 2018. 4:1–4. doi: 10.1038/s41523-018-0066-6 



27 
 

56.  Favero F, Joshi T, Marquard AM, Birkbak NJ, Krzystanek M, Li Q, Szallasi Z, Eklund AC. 

Sequenza: allele-specific copy number and mutation profiles from tumor sequencing 

data. Ann Oncol 2015. 26:64–70. doi: 10.1093/annonc/mdu479 

57.  Manders F, Brandsma AM, de Kanter J, Verheul M, Oka R, van Roosmalen MJ, van der 

Roest B, van Hoeck A, Cuppen E, van Boxtel R. MutationalPatterns: the one stop shop 

for the analysis of mutational processes. BMC Genomics 2022. 23:134. doi: 

10.1186/s12864-022-08357-3 

58.  McDermott JE, Arshad OA, Petyuk VA, Fu Y, Gritsenko MA, Clauss TR, Moore RJ, 

Schepmoes AA, Zhao R, Monroe ME, et al. Proteogenomic Characterization of Ovarian 

HGSC Implicates Mitotic Kinases, Replication Stress in Observed Chromosomal 

Instability. Cell Rep Med 2020. 1:100004. doi: 10.1016/j.xcrm.2020.100004 

59.  Gulhan DC, Lee JJ-K, Melloni GEM, Cortés-Ciriano I, Park PJ. Detecting the mutational 

signature of homologous recombination deficiency in clinical samples. Nat Genet 2019. 

51:912–919. doi: 10.1038/s41588-019-0390-2 

60.  Gayoso A, Lopez R, Xing G, Boyeau P, Valiollah Pour Amiri V, Hong J, Wu K, Jayasuriya 

M, Mehlman E, Langevin M, et al. A Python library for probabilistic analysis of single-cell 

omics data. Nat Biotechnol 2022. 40:163–166. doi: 10.1038/s41587-021-01206-w 

61.  Franzén O, Gan L-M, Björkegren JLM. PanglaoDB: a web server for exploration of mouse 

and human single-cell RNA sequencing data. Database 2019. 2019:baz046. doi: 

10.1093/database/baz046 

62.  Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring 

cell-cell communication from combined expression of multi-subunit ligand-receptor 

complexes. Nat Protoc 2020. 15:1484–1506. doi: 10.1038/s41596-020-0292-x 

63.  Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers 

differential expression analyses for RNA-sequencing and microarray studies. Nucleic 

Acids Res 2015. 43:e47. doi: 10.1093/nar/gkv007 

64.  Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer 2016. 16:110–120. doi: 

10.1038/nrc.2015.21 

65.  Takamatsu S, Yoshihara K, Baba T, Shimada M, Yoshida H, Kajiyama H, Oda K, Mandai 

M, Okamoto A, Enomoto T, Matsumura N. Prognostic relevance of HRDness gene 

expression signature in ovarian high-grade serous carcinoma; JGOG3025-TR2 study. Br 

J Cancer 2023. 128:1095–1104. doi: 10.1038/s41416-022-02122-9 

66.  Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, 

Meylan E, Scholl C, et al. Systematic RNA interference reveals that oncogenic KRAS-

driven cancers require TBK1. Nature 2009. 462:108–112. doi: 10.1038/nature08460 



28 
 

67.  Binnewies M, Pollack JL, Rudolph J, Dash S, Abushawish M, Lee T, Jahchan NS, 

Canaday P, Lu E, Norng M, et al. Targeting TREM2 on tumor-associated macrophages 

enhances immunotherapy. Cell Rep 2021. 37:109844. doi: 10.1016/j.celrep.2021.109844 

68.  Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, 

Cotechini T, Anur P, Lin EY, et al. Human Tumor-Associated Macrophage and Monocyte 

Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and 

Therapeutic Targets. Cancer Cell 2019. 35:588-602.e10. doi: 

10.1016/j.ccell.2019.02.009 

69.  Mezheyeuski A, Backman M, Mattsson J, Martín-Bernabé A, Larsson C, Hrynchyk I, 

Hammarström K, Ström S, Ekström J, Mauchanski S, et al. An immune score reflecting 

pro- and anti-tumoural balance of tumour microenvironment has major prognostic impact 

and predicts immunotherapy response in solid cancers. EBioMedicine 2023. 88:104452. 

doi: 10.1016/j.ebiom.2023.104452 

70.  Mullen MM, Lomonosova E, Toboni MD, Oplt A, Cybulla E, Blachut B, Zhao P, Noia H, 

Wilke D, Rankin EB, et al. GAS6/AXL Inhibition Enhances Ovarian Cancer Sensitivity to 

Chemotherapy and PARP Inhibition through Increased DNA Damage and Enhanced 

Replication Stress. Mol Cancer Res 2022. 20:265–279. doi: 10.1158/1541-7786.MCR-

21-0302 

71.  Truxova I, Cibula D, Spisek R, Fucikova J. Targeting tumor-associated macrophages for 

successful immunotherapy of ovarian carcinoma. J Immunother Cancer 2023. 

11:e005968. doi: 10.1136/jitc-2022-005968 

72.  Wieser V, Tsibulak I, Reimer DU, Zeimet AG, Fiegl H, Hackl H, Marth C. An angiogenic 

tumor phenotype predicts poor prognosis in ovarian cancer. Gynecol Oncol 2023. 

170:290–299. doi: 10.1016/j.ygyno.2023.01.034 

73.  Rempel E, Kluck K, Beck S, Ourailidis I, Kazdal D, Neumann O, Volckmar AL, Kirchner 

M, Goldschmid H, Pfarr N, et al. Pan-cancer analysis of genomic scar patterns caused 

by homologous repair deficiency (HRD). NPJ Precis Oncol 2022. 6:36. doi: 

10.1038/s41698-022-00276-6 

74.  Perez-Villatoro F, Oikkonen J, Casado J, Chernenko A, Gulhan DC, Tumiati M, Li Y, 

Lavikka K, Hietanen S, Hynninen J, et al. Optimized detection of homologous 

recombination deficiency improves the prediction of clinical outcomes in cancer. NPJ 

Precis Oncol 2022. 6:96. doi: 10.1038/s41698-022-00339-8 

75.  Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, Garber JE, 

Chowdhury D, Wu CJ, D’Andrea AD, et al. Association and prognostic significance of 

BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes 

and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 2016. 

7:13587–13598. doi: 10.18632/oncotarget.7277 



29 
 

76.  Samstein RM, Krishna C, Ma X, Pei X, Lee K-W, Makarov V, Kuo F, Chung J, Srivastava 

RM, Purohit TA, et al. Mutations in BRCA1 and BRCA2 differentially affect the tumor 

microenvironment and response to checkpoint blockade immunotherapy. Nat Cancer 

2020. 1:1188–1203. doi: 10.1038/s43018-020-00139-8 

77.  Ding L, Kim H-J, Wang Q, Kearns M, Jiang T, Ohlson CE, Li BB, Xie S, Liu JF, Stover 

EH, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-

Deficient Ovarian Cancer. Cell Reports 2018. 25:2972-2980.e5. doi: 

10.1016/j.celrep.2018.11.054 

78.  Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, Fahr N, Desbuisson M, 

Grimm A, Zhang H, et al. Cell-autonomous inflammation of BRCA1-deficient ovarian 

cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. 

Cell Reports 2021. 36:109412. doi: 10.1016/j.celrep.2021.109412 

79.  Zheng J, Mo J, Zhu T, Zhuo W, Yi Y, Hu S, Yin J, Zhang W, Zhou H, Liu Z. Comprehensive 

elaboration of the cGAS-STING signaling axis in cancer development and 

immunotherapy. Mol Cancer 2020. 19:133. doi: 10.1186/s12943-020-01250-1 

80.  Ding L, Wang Q, Martincuks A, Kearns MJ, Jiang T, Lin Z, Cheng X, Qian C, Xie S, Kim 

H-J, et al. STING agonism overcomes STAT3-mediated immunosuppression and 

adaptive resistance to PARP inhibition in ovarian cancer. J Immunother Cancer 2023. 

11:e005627. doi: 10.1136/jitc-2022-005627 

81.  Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian 

cancer therapy. Nat Cancer 2023. 4:1239–1257. doi: 10.1038/s43018-023-00617-9 

82.  Dangaj D, Bruand M, Grimm AJ, Ronet C, Barras D, Duttagupta PA, Lanitis E, 

Duraiswamy J, Tanyi JL, Benencia F, et al. Cooperation between Constitutive and 

Inducible Chemokines Enables T Cell Engraftment and Immune Attack in Solid Tumors. 

Cancer Cell 2019. 35:885-900.e10. doi: 10.1016/j.ccell.2019.05.004 

83.  Kandalaft LE, Dangaj Laniti D, Coukos G. Immunobiology of high-grade serous ovarian 

cancer: lessons for clinical translation. Nat Rev Cancer 2022. 22:640–656. doi: 

10.1038/s41568-022-00503-z 

84.  Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, 

Cheng JD, Kang SP, Shankaran V, et al. IFN-γ-related mRNA profile predicts clinical 

response to PD-1 blockade. J Clin Invest 2017. 127:2930–2940. doi: 10.1172/JCI91190 

85.  Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers 

to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in 

the Tumour Microenvironment. Cancers (Basel) 2021. 13:6231. doi: 

10.3390/cancers13246231 

86.  Molgora M, Esaulova E, Vermi W, Hou J, Chen Y, Luo J, Brioschi S, Bugatti M, Omodei 

AS, Ricci B, et al. TREM2 Modulation Remodels the Tumor Myeloid Landscape 



30 
 

Enhancing Anti-PD-1 Immunotherapy. Cell 2020. 182:886-900.e17. doi: 

10.1016/j.cell.2020.07.013 

87.  Wang Y, He M, Zhang C, Cao K, Zhang G, Yang M, Huang Y, Jiang W, Liu H. Siglec-9+ 

tumor-associated macrophages delineate an immunosuppressive subset with therapeutic 

vulnerability in patients with high-grade serous ovarian cancer. J Immunother Cancer 

2023. 11:e007099. doi: 10.1136/jitc-2023-007099 

88.  Li C, Deng T, Cao J, Zhou Y, Luo X, Feng Y, Huang H, Liu J. Identifying ITGB2 as a 

Potential Prognostic Biomarker in Ovarian Cancer. Diagnostics 2023. 13:1169. doi: 

10.3390/diagnostics13061169 

89.  Haake M, Haack B, Schäfer T, Harter PN, Mattavelli G, Eiring P, Vashist N, Wedekink F, 

Genssler S, Fischer B, et al. Tumor-derived GDF-15 blocks LFA-1 dependent T cell 

recruitment and suppresses responses to anti-PD-1 treatment. Nat Commun 2023. 

14:4253. doi: 10.1038/s41467-023-39817-3 

90.  Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-

Garcia JR, Zhang L, Burow M, et al. Specific recruitment of regulatory T cells in ovarian 

carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004. 

10:942–949. doi: 10.1038/nm1093 

91.  Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, Muller-Holzner E, Deibl M, Gastl G, 

Gunsilius E, Marth C. The expression of the regulatory T cell-specific forkhead box 

transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin 

Cancer Res 2005. 11:8326–8331. doi: 10.1158/1078-0432.CCR-05-1244 

92.  Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini 

M, Camus M, Berger A, Wind P, et al. Type, density, and location of immune cells within 

human colorectal tumors predict clinical outcome. Science 2006. 313:1960–1964. doi: 

10.1126/science.1129139 

93.  Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, Peters S. 

Development of tumor mutation burden as an immunotherapy biomarker: utility for the 

oncology clinic. Annals of Oncology 2019. 30:44–56. doi: 10.1093/annonc/mdy495 

94.  Almeida-Nunes DL, Mendes-Frias A, Silvestre R, Dinis-Oliveira RJ, Ricardo S. Immune 

Tumor Microenvironment in Ovarian Cancer Ascites. Int J Mol Sci 2022. 23:10692. doi: 

10.3390/ijms231810692 

 

  



31 
 

Figure legends 

Fig. 1 BRCAness classification based on the expression of 24 genes. A Decision tree of 

BRCAness determination in the TCGA-OV cohort and the development of a gene expression-

based BRCAness classifier. B Different BRCAness parameters in the TCGA cohort compared 

between the HRD score and the mutation signature 3 ratio. Samples with mutated homologous 

recombination repair pathway genes are marked in red, BRCA1/2 promoter methylation in blue 

and samples with an HRD score > 63 and/or a signature 3 ratio > 0.25 but no mutation or 

BRCA1/2 promoter methylation are marked in yellow. Samples without BRCAness are marked 

in white. C Z scores of log2(TPM+1) normalized expression of the 24 genes of the BRCAness 

signature in the TCGA cohort as a heatmap clustered by BRCAness and non-BRCAness 

samples. D Mean ROC curve with 10-fold cross-validation of the classifier tested on the TCGA 

dataset. E Confusion matrices with correctly and incorrectly classified instances when the 

classifier was tested in independent test cohorts of single-cell RNA sequencing and bulk RNA 

sequencing data. 

Fig 2 Association between BRCAness and immune parameters. A Results of correlation 

analysis of selected immune signatures and BRCAness parameters in the TCGA-HGSOC 

cohort (CYT, cytolytic activity; CTL, cytotoxic T lymphocytes; IFNG, interferon gamma 

signature; HRR mutations, mutations in the homologous recombination repair pathway; 

NeoAG load, neoantigen load; TMB, tumor mutational burden); white dots indicate significance 

(FDR<0.1). B Direct comparison of selected immune parameters between BRCAness and 

noBRCAness samples with significant differences, Wilcoxon rank-sum test (FDR<0.1). C, D 

Kaplan‒Meier curve for BRCAness and CD8 T-cell infiltration in the TCGA cohort. E, F 

Waterfall plot of normalized enrichment scores (NES) for the footprint analysis of immune-

related pathways with PROGENy between BRCAness and non-BRCAness samples in the MUI 

(Medical University of Innsbruck) and TCGA cohorts. 

Fig 3 Results from cell line experiments with olaparib treatment A Top up- and downregulated 

genes for the cell lines OVCAR3 and UWB1.289 under olaparib treatment when compared to 

DMSO control. B General distribution of up- and downregulated genes after olaparib treatment 

compared to the DMSO control in both cell lines as volcano plots. Red indicates significantly 

upregulated genes (FDR<0.1, log2-fold change>1), and blue indicates significantly 

downregulated genes (FDR<0.1, log2-fold change<-1). C Normalized enrichment score of 

pathways associated with activation of the cGAS STING pathway in BRCA1 mutated (cell 

lines) and BRCAness samples (cohorts) as well as olaparib-treated cell lines. D ClueGO 

network indicating overrepresented biological processes in the olaparib-treated UWB1.289 cell 

line. E Immunofluorescence staining of the DNA damage marker γH2AX in OVCAR3 and 
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UWB1.289 cell lines with and without olaparib treatment. Comparing the different response to 

PARPi treatment between BRCA1 mutation and wild type BRCA1 F Immunofluorescence 

staining of cGAS, double stranded DNA (dsDNA) and STING in the OVCAR3 and UWB1.289 

cell line comparing the difference between BRCA1 mutation and wild type BRCA1. 

Fig 4 Profiles of immune parameters in the TCGA HGSOC cohort A Heatmap of z scores of 

log2(TPM+1) expression of immune-related genes and fraction of tumor infiltrating immune 

cells assessed with quanTIseq in all samples (n=226) from the TCGA-HGSOC cohort 

categorized by BRCAness, tumor-immune phenotype, molecular subtype and BRCA1/2 

mutation. Furthermore, BRCAness samples are stratified into BRCAness immune type 

samples (BRIT), which show an immunoreactive molecular subtype and an infiltrated tumor-

immune phenotype, and noBRIT samples, which only have BRCAness but do not fulfill the 

other two requirements. B Comparison of BRIT and noBRIT samples showing infiltration of 

CD8+ T cells, tumor-associated M2 macrophages (TAMs), regulatory T cells (Tregs) assessed 

with quanTIseq and myeloid-derived suppressor cells (MDSCs) assessed as the z score for 

MDSCs form the immunophenoscore (IPS). 

Fig 5 Single cell analysis of 29 ovarian cancer samples A UMAP showing the different cell 

types in of the ovarian cancer samples and which cells and cell types are associated with 

BRCAness samples. B UMAP plots of the myeloid cell compartment showing the association 

of macrophages with BRCAness cells and the expression of the macrophage marker gene 

C1QA and the TAM marker gene TREM2 especially in cell clusters associated with BRCAness. 

C Heatmap of expression of macrophage associated marker genes in the different cell types 

in the myeloid cell compartment. D Association of genes identified as differentially expressed 

between responder and non-responder to PARPi-immune checkpoint inhibition combination 

therapy (niraparib and pembrolizumab) with different cell types and BRCAness. Genes 

depicted in blue are downregulated in responders while genes depicted in red are upregulated 

in responders. E UMAP visualization of LYZ and LILRB4 genes highly expressed in the myeloid 

compartment, which are associated with BRCAness and non-responders. F Distribution of the 

expression of ITGB2 in the different cell types, which is more highly expressed in non-

responders and BRCAness. 

Fig 6 Expression profiles in the MUI cohort, immunohistochemistry validation, and vulnerability 

map A Heatmap of z-scores log2(TPM+1) expression of immune related genes and fraction of 

tumor infiltrating immune cells assessed with quanTIseq in all samples (n=60) from the MUI 

cohort categorized by BRCAness, tumor-immune phenotype, molecular subtype and BRCA1/2 

mutation. B Immunohistochemistry images stained for CD8, CD4, CD163, FOXP3, γH2AX, 

and STING for three selected patients from the MUI cohort. Two BRIT samples one with a 
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BRCA1 mutation and one without and one other sample without BRCAness, a deserted tumor-

immune phenotype and a differentiated molecular subtype. C Vulnerability map showing the 

ratio between cytolytic activity CYT and C1QA (C2C) on the x-axis and the BRCAness score 

on the y-axis coloured by the vulnerability score. The three selected samples  were mapped 

to the vulnerability map based on their CYT to C1QA ratio (C2C) and BRCAness score.
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