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 2 

Abstract 32 
 33 

Introduction 34 
 35 
Postoperative complications affect up to 15% of surgical patients constituting a major part of 36 
the overall disease burden in a modern healthcare system. While several surgical risk 37 
calculators have been developed, none have so far been shown to decrease the associated 38 
mortality and morbidity. Combining deep neural networks and genomics with the already 39 
established clinical predictors may hold promise for improvement. 40 
 41 
Methods 42 
 43 
The UK Biobank was utilized to build linear and deep learning models for the prediction of 44 
surgery relevant outcomes. An initial GWAS for the relevant outcomes was initially 45 
conducted to select the Single Nucleotide Polymorphisms for inclusion in the models. Model 46 
performance was assessed with Receiver Operator Characteristics of the Area Under the 47 
Curve and optimum precision and recall. Feature importance was assessed with SHapley 48 
Additive exPlanations.  49 
 50 
Results 51 
 52 
Models were generated for atrial fibrillation, venous thromboembolism and pneumonia as 53 
genetics only, clinical features only and a combined model. For venous thromboembolism, 54 
the ROC-AUCs were 59.6% [59.0%-59.7%], 63.4% [63.2%-63.4%] and 66.1% [65.7%-55 
66.1%] for the linear models and 60.0% [57.8%-61.8%], 63.2% [61.2%-65.0%] and 65.4% 56 
[63.6%-67.2%] for the deep learning SNP, clinical and combined models, respectively. For 57 
atrial fibrillation, the ROC-AUCs were 60.9% [60.6%-61.0%], 78.7% [78.7%-78.7%] and 58 
80.1% [80.0%-80.1%] for the linear models and 59.9% [.6%-61.3%], 78.8% [77.8%-79.8%] 59 
and 79.4% [78.8%-80.5%] for the deep learning SNP, clinical and combined models, 60 
respectively. For pneumonia, the ROC-AUCs were 57.3% [56.5%-57.4%], 69.2% [69.1%-61 
69.2%] and 70.5% [70.2%-70.6%] for the linear models and 55.5% [54.1%-56.9%], 69.7% 62 
[.5%-70.8%] and 69.9% [68.7%-71.0%] for the deep learning SNP, clinical and combined 63 
models, respectively. 64 
 65 
Conclusion 66 
 67 
In this report we presented linear and deep learning predictive models for surgery relevant 68 
outcomes. Overall, predictability was similar between linear and deep learning models and 69 
inclusion of genetics seemed to improve accuracy.  70 

 71 

 72 

 73 

 74 

 75 

 76 
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INTRODUCTION 77 

Worldwide, more than 310 million surgeries are performed each year, addressing an 78 

estimated 11% of the global burden of disease.(1, 2) While most surgical patients proceed to 79 

an uneventful recovery, current estimates indicate that roughly 4% die as a direct or indirect 80 

result of surgery, while up to 15% experience a postoperative complication (PC), prolonging 81 

hospital length-of-stay with consequential morbidity.(2)  82 

While treatment advances following the implementation of approaches such as Enhanced 83 

Recovery after Surgery (ERAS) protocols have been well documented, the incidences of PCs 84 

have remained remarkably stable over the last decade.(3) As such, a stable subset of patients 85 

still experiences PCs, suggesting that this patient group could potentially benefit from a 86 

deviation from the current one-size-fits all approach deployed by most ERAS protocols and a 87 

move towards a precision medicine approach in the surgical setting.  88 

To achieve this goal, risk predictions models are, however, needed for the identification of 89 

patients who will fail standard ERAS protocols.  90 

To this end, many risk assessment tools have been fielded to identify at-risk patients 91 

including the regression-based American College of Surgeons National Surgical Quality 92 

Improvement Program (ACS-NSQIP) risk calculator as well as newer machine learning 93 

approaches investigating the value of random forests or deep neural networks (DNNs).(4, 5) 94 

These models are, however, limited by the fact that they only perform predictions on 95 

available clinical data, which may provide insights into parts of the driving factors of the 96 

patients risks only. 97 

As such, recent data has suggested that genetic susceptibility could, in part, be a modifier of 98 

individual PCs risk, thus opening the potential for adding genetic data points to risk 99 

prediction models in order to improve model performance.(6, 7) 100 
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Genetic variations are increasingly being recognized as an important modality for various 101 

surgical adverse events including venous thromboembolisms, renal complications and cardiac 102 

arrythmias.(6, 8, 9) However, it is currently not clear to what degree genetic susceptibility 103 

contribute to the overall risk compared with other well-known clinical risk factors. 104 

Furthermore, as genetic susceptibility may include complex non-linear effects such as 105 

previously non-identified complex interactions between genes that possibly lie far from each 106 

other in the human genome, optimal modelling strategies remain unknown. As such, whether 107 

legacy risk prediction approaches such as the linear Polygenic Risk Scores (PGS), 108 

traditionally utilized to assess an overall genetic risk composition and weighted sum for the 109 

phenotype in question, could be inferior to a DNN approach, is currently unknown.(10)  110 

Using the clinical question of assessing whether DNNs can outperform a classic PGS 111 

approach for assessing genotype-associated risk of PCs, we target three high impact PCs with 112 

proven genetic susceptibility.(11) These include postoperative pneumonias, postoperative 113 

venous thromboembolisms (pVTEs) and postoperative atrial fibrillation (pAFLI). 114 

Furthermore, we investigate whether single nucleotide polymorphisms (SNPs) highlighted as 115 

driving the phenotype, differ between DNN and PGS approaches, thus potentially indicating 116 

that non-linear genotype-phenotype associations can be identified by the DNN approach.  117 

We hypothesize that DNNs will achieve superior predictive performance in predicting the 118 

genotype-associated risk of these PCs compared with a linear PGS, and that the DNN models 119 

will highlight a different subset of important SNPs compared with a linear PGS.   120 
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METHODS 121 

This study utilized genotype data from the United Kingdom biobank (UKB) consortium.(12)  122 

Access to the UKB data was approved by the consortium (Study ID #60861). Under Danish 123 

law, the study was exempt from ethical board approval due to the anonymized nature of the 124 

dataset. 125 

We conducted a comparative study of different methodologies for genotyping risk prediction 126 

and Single Nucleotide Polymorphism (SNP)-identification in a general as well as a surgical, 127 

national cohort.  128 

For the initial approach, we conducted standard GWAS-analyses without covariates on the 129 

chosen phenotypes with a high prevalence following surgery. Details for the GWAS are 130 

described below. These phenotypes included venous thromboembolisms (VTE), atrial 131 

fibrillation (AF) and bacterial pneumonia.  132 

UKB has more than 500,000 individuals enrolled and consented across the United Kingdom 133 

of the age from 40 to 69. Patients were invited for participation through National Health 134 

service (NHS) registries and asked to fill surveys on basic demographic data, general lifestyle 135 

measures as well as medical history. Inclusion of all participants took place from 2006 to 136 

2010.  137 

 138 

Identification of cohort 139 

All patients with available genomic data in the UKB were initially included for 140 

analysis. Cases were identified depending on the phenotype in question. For AF, VTE and 141 

pneumonia, cases were defined using relevant International Statistical Classification of 142 

Disease, 9th revision (ICD-9) and ICD-10 codes.  143 

The phenotypes in question were identified with the ICD-9 and ICD-10 codes listed in 144 

supplementary table 1. The cohorts were split into training/validation and test sets. The 145 
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training/validation set consisted of all non-surgical patients and a random sample of 80% of 146 

the surgical cohort. The test set consisted of the remaining 20% of the surgical cohort. 147 

Surgery was defined with the OPCS-4 codes listed in supplementary table 2. The post-148 

surgical phenotypes were defined with the same ICD-codes as above registered up to 30 days 149 

after the given procedure. For AF, only first-time diagnoses were counted as post-surgery 150 

cases. For VTE and pneumonia, any diagnoses within 30 days were counted as cases, 151 

regardless of previous history.  152 

For each outcome of interest (pAFLI, pVTE and pneumonia, both deep learning and linear 153 

models were created using three distinct input strategies (see below for model descriptions): 154 

1. A genotype only model: using only the identified SNPs (see below) as input (SNP 155 

model) 156 

2. A clinical data only model: using only clinical data as input (Clinical model) 157 

3. A combined model: using both SNPs and clinical data as input (Combined model) 158 

Input SNPs were the top 100 SNPs from the discovery GWAS for each phenotype of interest, 159 

with clinical data including demographics and comorbidities (supplementary table 3) and 160 

combined models including both genetic and clinical data.   161 

Quality control 162 

 The first 50,000 individuals included in UKB were genotyped using the Applied 163 

Biosystems UK BiLEVE Axiom Array. The remaining were genotyped using the Applied 164 

Biosystems UK Biobank Axiom Array. The two array types are equal, and the differences are 165 

not of significance. The arrays interrogated 850,000 SNPs in total. To account for potential 166 

biases, patients with outlying heterozygosity rates, cryptic relatedness (PIHAT cut-off 0.2) 167 

and sex discrepancies in data were excluded. To ensure that only participants with high-168 

quality genomic information were included for analysis, everyone with a genotyping rate of 169 

98% or less were excluded. To ensure that only high-quality genetic variants were left for 170 
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analyses, a missingness rate of 2% were used as a cut-off point. Lastly, a Minor Allele 171 

Frequency (MAF) of > 5% was used, and variants found not to be in Hardy-Weinberg 172 

equilibrium were excluded (threshold: 1 x 10-6 for both cases and controls).  173 

 174 

Linear Polygenic risk score (PGS) modelling approach 175 

 The initial GWAS-analyses were analyzed using a mixed linear model (MLM) 176 

approach. GCTA version 1.93 beta for Windows was used to conduct the analyses. The 177 

MLM-model was created using fastGWA with a sparse genetic relationship matrix (GRM) 178 

with non-imputed data from the UKB. For all the phenotypes analyzed in the respective 179 

GWAS, the 100 most significant SNPs were included in the genetic and mixed models. The 180 

choice to utilize only the top 100 SNPs was made to optimize the balance between predictive 181 

power and keeping the model computational pragmatic. SNPs are referenced using the 182 

dbSNP (rs) reference number. The cohorts were split into training/validation and test sets. 183 

Relevant GWAS plots, including Manhattan and Quantile-Quantile (QQ) plots were 184 

generated using qqman (R version 4.0.2).(13) Performance plots including ROC-AUCs and 185 

heatmaps were created using Scikit-learn 1.2.1 (Python 3).(14) 186 

A linear PGS was generated using the logistic regression module as implemented in scikit-187 

learn 1.2.1 for Python 3. Models were created with both L1 (lasso) and L2 (ridge) 188 

regularization. Feature importance was determined by coefficients of the SNPs.  189 

 190 

Deep neural network (DNN) modelling approach 191 

All DNN models were implemented using EIR (version 0.1.25-alpha).(15) EIR is a 192 

framework that incorporates genetic, clinical, image, sequencing, and binary data for 193 

supervised training of deep learning models. A held-out test set was used for all models to 194 

obtain a final performance after training and validation. The Cross Entropy loss was 195 
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employed during training for the classification tasks. All models were trained with a batch 196 

size of 64. During training, plateau learning rate scheduling was used to reduce the learning 197 

rate by a factor of 0.2 if the validation performance had not improved for 10 steps, with a 198 

validation interval of 500 steps. Early stopping was used to terminate training when 199 

performance had not improved with a patience of 16 steps. The early stopping criterion was 200 

activated after a buffer of 2,000 iterations. All models were trained with the Adam optimizer 201 

with a weight decay of 1×10-4 and a base learning rate of 1×10-3.(16) For the neural network 202 

models, we augmented the genotype input by randomly setting 40% of the SNPs as missing 203 

in the one-hot encoded array. All DNN models utilize the genome-localnet (GLN) 204 

architecture for the genotype feature extraction.(15) The same cohort splits were used as in 205 

the linear PGS-approach. Importance of features were determined using SHapley Additive 206 

exPlanations (SHAP) values.(17)  207 

  208 
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RESULTS 209 

Cohort 210 

We identified 488,377 patients in the UKB with available genetic and relevant phenotypic 211 

data, with 446,180 patients available for analyses after genetic quality measures were applied 212 

and were used for both the linear and deep learning modelling approaches.  213 

For the outcomes of interest, 19,704 had a diagnosis of AF, 9,101 had a diagnosis of VTE 214 

and 13,757 had a diagnosis of pneumonia overall in the UKB.  215 

 216 

Linear models  217 

 Atrial fibrillation 218 

Baseline characteristics are listed in table 1. The SNP model reached a ROC-AUC of 60.9% 219 

[95% CI, 60.6%-61.0%]. All individuals were classified as not having AF. The clinical model 220 

reached a ROC-AUC of 78.7% [95% CI, 78.7%-78.7%] with a recall of 9% and a precision 221 

of 53%. The combined model reached a ROC-AUC of 80.1% [95% CI, 80.0%-80.1%] with a 222 

recall of 9% and a precision of 57%. All performances are depicted in figure 3A. The SNPs 223 

and the associated genes with the highest feature importance are listed in table 4B. 224 

 225 

 Venous thromboembolism 226 

Baseline characteristics for VTE are listed in table 2. The SNP model reached a ROC-AUC 227 

of 59.6% [95% CI, 59.0%-59.7%]. All individuals were classified as not having VTE. The 228 

clinical model reached a ROC-AUC of 63.4% [95% CI, 63.2%-63.4%]. All individuals were 229 

classified as not having VTE. The combined model reached a ROC-AUC of 66.1% [95% CI, 230 

65.7%-66.1%]. All individuals were classified as not having VTE. All performances are 231 

depicted in figure 3B. The SNPs and the associated genes with the highest feature importance 232 

are listed in table 4D. 233 
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 234 

 Pneumonia 235 

Baseline characteristics are listed in table 3. The SNP model reached a ROC-AUC of 57.3% 236 

[95% CI, 56.5%-57.4%]. All individuals were classified as not having pneumonia. The 237 

clinical model reached a ROC-AUC of 69.2% [95% CI, 69.1%-69.2%]. All individuals were 238 

classified as not having pneumonia. The combined model reached a ROC-AUC of 70.5% 239 

[95% CI, 70.2%-70.6%] with a recall of 0.01% and a precision of 0.4%. The SNPs and the 240 

associated genes with the highest feature importance are listed in table 4F. All performances 241 

are depicted in figure 3C. 242 

 243 

Deep learning models 244 

 Atrial fibrillation 245 

The SNP model reached a ROC-AUC of 59.9% [95% CI, 58.6%-61.3%] in the test set. 246 

Recall was 36.9% and precision was 9.3%. The clinical model reached a ROC-AUC of 247 

78.8% [95% CI, 77.8%-79.8%] with recall and precision of 72.0% and 13.5%, respectively.  248 

The combined model reached a ROC-AUC of 79.4% [95% CI, 78.8%-80.5%] with a recall 249 

and precision of 74.8% and 13.5%, respectively. The SNPs and the associated genes with the 250 

highest feature importance are listed in table 4A. All performances are depicted in figure 3A. 251 

Hard predictions are depicted in figure 1A. ROC-AUC development is depicted in figure 2A. 252 

 253 

 VTE 254 

The SNP model reached a ROC-AUC of 60.0% [95% CI, 57.8%-61.8%] with a recall of 255 

50.8% and precision of 4%. The clinical model reached a ROC-AUC of 63.2% [95% CI, 256 

61.2%-65.0%] with a recall and precision of 67.5% and 4.0%, respectively. The combined 257 

model reached a ROC-AUC of 65.4% [95% CI, 63.6%-67.2%] with a recall and precision 258 
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68.8% and 4.0%, respectively. The SNPs and the associated genes with the highest feature 259 

importance are listed in table 4C. All performances are depicted in figure 3B. Hard 260 

predictions are depicted in figure 1B. ROC-AUC development is depicted in figure 2B. 261 

 262 

 Pneumonia 263 

The SNP model reached a ROC-AUC of 55.5% [95% CI, 54.1%-56.9%] with a recall of 264 

55.0% and precision of 5%. The clinical model reached a ROC-AUC of 69.7% [95% CI, 265 

68.5%-70.8%] with a recall and precision of 67.7% and 7.4%, respectively. The combined 266 

model reached a ROC-AUC of 69.9% [95% CI, 68.7%-71.0%] with a recall and precision of 267 

70.1% and 7.3%, respectively. The SNPs and the associated genes with the highest feature 268 

importance are listed in table 4E. All performances are depicted in figure 3C. Hard 269 

predictions are depicted in figure 1C. ROC-AUC development is depicted in figure 2C.  270 

  271 
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DISCUSSION 272 

 In this study, we assessed the performance of linear and deep learning models 273 

including genotypic information on specific phenotypes relevant for pAFLI, pVTE and 274 

postoperative pneumonia. Overall, we found that adding SNP data to clinical risk prediction 275 

models enhanced the predictive power, and that the GLN approach seemed superior to a 276 

legacy linear risk prediction approach. 277 

 278 

Modelling approaches 279 

All three SNP linear models failed to make any meaningful hard predictions, as they 280 

classified all individuals in the cohorts as not having the disease in question. However, the 281 

separations were roughly similar to the GLN-models, as demonstrated by similarity in ROC-282 

AUC performance, and the lack of positive predictions may be due to imbalanced data and 283 

skewed threshold for hard predictions. The GLN-models performed better on recall and 284 

precision, and it was able to classify positives correctly with just genomic information. Given 285 

that the linear and GLN models utilize distinct tuning parameters for hard predictions, a 286 

direct comparison of recall and precision may not be critically significant. However, as hard 287 

predictions are necessary in a clinical setting, a discussion is still warranted. Precision-recall 288 

curves are depicted in supplementary materials.   289 

It is exemplified for AF, where the genetic linear model had a ROC-AUC of 60.9% [95% CI 290 

69.6%-61.0%] while the GLN had a ROC-AUC of 59.9% [95% CI 5.8.6%-61.3%]. The 291 

recall, however, was 0% and 36.9%, respectively. As the linear model performed very poorly 292 

in terms of recall, the result is likely to be the result of the imbalanced data and failure to 293 

capture feature relevance and possibly non-linearity and would need optimization before any 294 

form of utilization for positive prediction in a clinical setting. On the contrary, the GLN-295 

model had a recall of 36.9% and therefore identifies around one third of cases correctly, 296 
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which heightens the likelihood of clinical meaningful utilization considering only SNPs were 297 

included in the model. However, the precision was calculated low at 4%, which would lead to 298 

overdiagnosis and possibly overtreatment. If used in clinical practice, it is therefore of 299 

paramount importance that any possible intervention would carry little to no risk of harm. It, 300 

however, cannot be ruled out that the differences between the models are not due to an 301 

inherent predictive advantage in the GLN-model, but simply due to different hyperparameter 302 

tuning. 303 

When combining SNP and clinical data for all phenotypes in question, we observed a trend 304 

towards better performance compared with SNP or clinical data only models, although most 305 

confidence intervals were overlapping with clinical model performances. This thus indicates 306 

that limited performance gains could obtained by combining genetic and clinical data and 307 

may suggest that genotype effects may already in part be captured by diagnoses codes. 308 

Alternatively, the lack of performance improvement could be affected by limited study power 309 

due to factors such as lack of correct PC diagnoses codes, a problem often encountered when 310 

administrative codes are used for PC curation.(18) 311 

GLN based models did, however, outperform linear approaches in terms of recall 312 

performance, might indicate that the ability to capture the effects of non-linear genetic traits 313 

on the overall phenotype, may be possible through this modelling approach.   314 

 315 

Identified Single Nucleotide Polymorphisms 316 

In the GLN-model, rs3807989 was the most activated SNP in regards of classifying 317 

individuals with AF. It is an intron variant in CAV1 which codes for a main component in 318 

caveolae plasma membrane and further acts as a tumor suppressor.(19, 20) It has been 319 

associated with a large variety of diseases including AF in numerous populations.(21, 22) 320 

Interestingly, the prevalence of the reference and risk allele is roughly equal which suggests 321 
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the possibility of a relatively new mutation or that the risk variant has a different functional 322 

advantage which balances the selection. The most highly activated SNP in the GLN-model 323 

with importance for classifying patients for not having AF was rs17042081, a variant near 324 

4q25, which has been extensively associated with AF in a variety of populations and in close 325 

proximity to PITX2.(23, 24), The variants most highly associated with AF in the linear model 326 

was rs17042171, also a variant near 4q25. The alternative allele has worldwide prevalence of 327 

up to 16% and 13% in the European population, which makes the risk variant very common, 328 

although not equal to the reference allele suggesting a negative selection pressure of the risk 329 

allele.(25) As the testing set consists of purely surgical patients, it is not unexpected that 330 

variants near 4q25 are important for the models, as the same region was the only one 331 

associated with postoperative AF in a recent GWAS-analysis from our group.(7)  332 

The difference in which variants show importance for the GLN and linear model, 333 

respectively, and that the GLN-models in general performed significantly better in recall 334 

compared with the matching linear, shows that non-linear interactions between genes which 335 

are potentially of great importance in the risk of a particular trait. Other explanations include 336 

non-linear effects in non-genetic features, such as age and sex, or dominant/recessive effects 337 

of the SNPs in question. 338 

When exploring pathways and interactions for the most highly activated genes in online 339 

repositories such as the Reactome Pathway Database and BioGRID, it appears that none of 340 

the genes have previously been described to be in a direct pathway or in any kind of 341 

interaction. Interestingly, Gao et al. showed that the level of caveolin-1 determines the level 342 

of product of KCNN1 which previously has been highly associated with AF in several 343 

GWAS-studies.(21, 26-28)  344 

The SNPs with highest importance for classifying VTE in the GLN-model was rs505922, an 345 

intron variant in ABO.(29) The variant has previously been associated with VTE.(6) The 346 
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ABO blood group antigen genes are amongst the most heavily associated with VTE, and it 347 

has a biological plausible explanation, thus it is expected that specific variants within these 348 

genes would play a significant role in predictive models for VTE risk.  349 

The SNP that had the highest feature importance in the GLN-model for classifying bacterial 350 

pneumonia was rs11080143. However, as the model performed poorly in terms of the overall 351 

accuracy, there is a high likelihood that the highest activated variants are not due to genuine, 352 

biological phenomena and interactions, but rather due to chance alone. This sentiment is 353 

further supported by the fact that rs11080143 has no reported clinical significance in the 354 

literature and does not lie close to any biological meaningful genes. One downstream gene, 355 

KSR1, has been associated with different malignancies including breast adenocarcinoma and 356 

thyroid cancer.(30, 31) To our knowledge, KSR1 has not been associated directly with lung 357 

cancer, but considering the protein product has a positive downstream signaling function of 358 

the RAS/MAPK pathway, and the association with other cancers, a connection seems likely. 359 

Although a history of cancer was included as a covariate in the initial GWAS and in both 360 

models, it cannot be ruled out that the phenotype and models are confounded by occult lung 361 

malignancy. 362 

In the linear model, rs10519203 was the most associated with classifying pneumonia. It is an 363 

intron variant in HYKK and has previously been associated with lung cancer and smoking 364 

behavior, which may indicate the basis for its ability to classify pneumonia, and not an 365 

inherent increased risk to infection.(32, 33)  366 

We again observed a discrepancy between the variants with highest feature importance 367 

between the models, which suggests that complex non-linear effects may exist between the 368 

genes in question activated by the GLN-model. It should be noted that while all the 369 

phenotypes of interest in this study are complex diseases, we find it likely that the 370 

susceptibility to bacterial pneumonia is less driven by genetics compared with AF and VTE. 371 
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Although certain genetic variants have been associated pneumonia susceptibility, the genetic 372 

landscape has not been explored to the same extent as with AF and especially VTE. 373 

Consequently, the ratio of importance of the input variants compared with the clinical factors 374 

included is likely lower compared with AF and VTE, and we anticipate that future research 375 

will highlight the importance of genetics compared with clinical factors in predictive 376 

modelling.  377 

 378 

Potentials for clinical use 379 

As these analyses were specifically made on phenotypes relevant for the postoperative course 380 

of surgical patients, it is of utmost importance that the models in question can be validated 381 

and potentially optimized in a specific surgical cohort. Above all, this will ascertain the 382 

utilization on this specific population, and it will further establish a foundation for the 383 

investigation into if the models are able to improve the outcomes for the phenotypes in 384 

question or be of prophylactic benefit. Further, as multiple surgical risk predictors built on 385 

clinical data already exist, investigate whether the addition of genetic data will enhance the 386 

predictability of such models could offer a promising pathway for increasing the model 387 

performances further. It is key to establish methods to improve prediction, as the current 388 

standard of models fail to demonstrate any clear clinical benefit compared with standard 389 

practice.(34) Although multiple factors account for the current limited applicability, including 390 

lacking external validity and variance in the retro- and prospective data, a lack of important 391 

factors such as genetics may also be of significance. Further, as we present a model where a 392 

deep learning framework specifically made to incorporate genetics with clinical variables that 393 

performs better compared with a linear PGS in terms of recall and precision, it is important to 394 

consider the quality of the used software as well as the pragmatic applicability of the models 395 
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in question in a real-life scenario. At this time, neither model have applicability if 396 

incorporating only the top 100 SNPs, as determined by the poor accuracy performance.  397 

 398 

 399 

Limitations 400 

This study has limitations. First, all phenotypes were established using only ICD-codes which 401 

may have a low accuracy for the phenotypes in question. We suspect especially bacterial 402 

pneumonia to have an overall low accuracy due to the high hospital incidence and difference 403 

in presentation as well differences in the microbiological organism and treatments. This 404 

generates a heterogenous group which lowers the predictability and clinical utility.  405 

Further, we assumed that the one hundred most significant SNPs from an initial GWAS for 406 

the phenotype in question would be of interest, although this was an arbitrary choosing due to 407 

the need to find an optimum between predictive power and computational efficacy. Other 408 

SNPs may also be of importance, and using a different set or potentially the entire genome 409 

has the potential to achieve similar or even better genetic predictability, although the latter 410 

would be too computational costly and of less clinical utility. A significant challenge in our 411 

study is the imbalanced data, which especially proved problematic in the linear models which 412 

all had a recall of 0. Larger cohorts, or a more balanced dataset may improve this.  413 

 414 

Conclusion 415 

 In conclusion, we present predictive models on surgery relevant phenotypes 416 

incorporating a small sample of genetic variants. Overall, GLN-based models performed 417 

equally when compared with linear models based on the AUC metric. However, recall and 418 

precision were better in the GLN-based model, making them more useful in a potential 419 

clinical setting. Further, different SNPs were important for the same phenotypes between 420 
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models suggesting importance off non-linear interactions. Lastly, in a comparison between 421 

clinical models with and without inclusion of SNPs, the inclusion of genetic data seemed to 422 

increase the accuracy, albeit with overlapping confidence intervals. This is a preliminary 423 

report assessing the utility of using a small sample of SNPs for clinical risk prediction. Future 424 

research needs to validate models in surgical cohorts and assess the utility of incorporating 425 

genetics and clinical variables in predictive models to improve surgical outcomes.  426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 
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FIGURES 446 

Figure 1A: Heatmap of the genetic deep learning-model of atrial fibrillation. 1 = controls, 2 447 

= cases 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

Figure 1B: Heatmap of the genetic deep learning-model of venous thromboembolism. 1 = 459 

control, 2 = cases. VTE: venous thromboembolism 460 

 461 
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 469 

 470 
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Figure 1C: Heatmap of the genetic deep learning model of bacterial pneumonia. 1 = control, 471 

2 = cases. 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

Figure 2A: ROC-AUC development of the genetic GLN-model of atrial fibrillation 484 

 485 
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Figure 2B: ROC-AUC development of the genetic GLN-model of venous thromboembolism 496 

 497 

 498 

 499 
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 508 

 509 

Figure 2C: ROC-AUC development of the genetic GLN-model of bacterial pneumonia 510 

 511 
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Figure 3A: Bar plot of ROC-AUCs of all atrial fibrillation models  521 

 522 
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 531 

 532 

Figure 3B: Bar plot of ROC-AUCs of all venous thromboembolism models 533 
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Figure 3C: Bar plot of ROC-AUCs of all pneumonia models 546 
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Table 1: Baseline characteristics for atrial fibrillation cohort 571 

 572 

Characteristic AF 

N = 19,900 

No AF 

N = 426,280 

Age, mean, SD 62.2 ± 5.9 56.4 ± 8.0 

Female, N, % 6,623 (33.2) 233,351 (54.7) 

BMI, mean, SD 27.4 ± 5.4 29.1 ± 1 

Previous or current smoker, 

N, % 

9,633 (48.4) 159,702 (37.5) 

Previous or current cancer, 

N, % 

2,307 (11.6) 35,338 (8.3) 

Heart failure, N, % 2,922 (14.7) 3,252 (0.7) 

Hypertension, N, % 12,385 (62.2) 86,999 (20.4) 

 573 

Table 2: Baseline characteristics for venous thromboembolism cohort 574 

 575 

Characteristic VTE 

N = 9,193 

No VTE 

N = 436,987 

Age, mean, SD 59.7 ± 7.1 56.6 ± 8.0 

Female, N, % 4,156 (45.2) 235,818 (54.0) 

BMI, mean, SD 29.4 ± 5.5 27.4 ± 4.8 

Previous or current smoker, 

N, % 

3,842 (41.8) 165,493 (37.9) 
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Previous or current cancer, 

N, % 

1,403 (15.3) 36,242 (8.3) 

Heart failure, N, % 482 (5.2) 5.692 (1.3) 

Hypertension, N, % 3,906 (42.5) 95,478 (21.8) 

 576 

 577 

Table 3: Baseline characteristics for pneumonia  578 

 579 

Characteristic Pneumonia 

N = 14,101 

No pneumonia 

N = 432,079 

Age, mean, SD 60.3 ± 7.2 56.5 ± 8.0 

Female, N, % 6,101 (43.3) 233,873 (54.1) 

BMI, mean, SD 28.4 ± 5.6 27.5 ± 4.8 

Previous or current smoker, 

N, % 

6,464 (45.8) 162,871 (37.7) 

Previous or current cancer, 

N, % 

2,144 (15.2) 35,501(8.2) 

Heart failure, N, % 1,506 (10.7) 4,668 (1.11) 

Hypertension, N, % 7,120 (50.5) 92,264 (21.4) 

 580 

 581 

 582 

 583 

 584 
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Table 4A: Table of the SNPs with the highest feature importance for the single nucleotide 585 

polymorphism (SNP), and combined atrial fibrillation GLN-models  586 

 587 

Top SNP in SNP model Gene Top SNP in combined 

model 

Gene 

rs3807989 CAV1 rs3807989 CAV1 

rs56250774 PRRX1 rs13124249 Intergenic 

rs11047543 LOC105369698 rs13125644 Intergenic 

rs1570220 SH3PXD2A rs4835669 NME5 

rs3825214 TBX5 rs6658392 KCNN3 

 588 

Table 4B: Table of the SNPs with the highest feature importance for the genetic, and mixed 589 

atrial fibrillation linear models 590 

 591 

Genetic, SNP Gene Mixed, SNP Gene 

rs17042171 Intergenic rs17042171 Intergenic 

rs10033464 Intergenic rs10033464 Intergenic 

rs3807988 CAV1 rs3731748 TTN/TTN-AS1 

rs3731748 TTN/TTN-AS1 rs3807988 CAV1 

rs2723065 LINC02576 rs3829747 TTN/TTN-AS1 

 592 

 593 

 594 

 595 

 596 
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Table 4C: Table of the SNPs with the highest feature importance for the single nucleotide 597 

polymorphism (SNP), and combined venous thromboembolism GLN-models  598 

 599 

Top SNP in SNP model Gene Top SNP in combined 

model 

Gene 

rs505922 ABO Rs6993770 ZFPM2 

rs657152 ABO Rs687621 ABO 

rs8176740 ABO Rs75112989 ATP1B1 

rs7868232 Intergenic Rs3746438 MYH7B 

rs581107 ABO Rs56103207 TSPAN15 

 600 

Table 4D: Table of the SNPs with the highest feature importance for the genetic, and mixed 601 

Venous thromboembolism linear models 602 

 603 

Genetic, SNP Gene Mixed, SNP Gene 

rs4524 F5 rs4524 F5 

rs6030 F5 rs6120849 EDEM2 

rs6120849 EDEM2 rs6030 F5 

rs75112989 ATP1B1 rs75112989 ATP1B1 

rs6050 FGA rs507666 ABO 

 604 

 605 

 606 

 607 

 608 
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Table 4E: Table of the SNPs with the highest feature importance for the single nucleotide 609 

polymorphism (SNP), and combined pneumonia GLN-models  610 

 611 

Top SNP in SNP model Gene Top SNP in combined 

model 

Gene 

rs11080143 Intergenic rs17143419 GALNT17 

rs72976957 PIAS4 rs2476601 PTPN22/AP4B1-

AS1 

rs2381116 FAM219A rs72793809 LOC124903672 

rs76002435 MED27 rs361594 PEX26 

rs75766461 LOC124902060 rs219258 Intergenic 

 612 

 613 

Table 4F: Table of the SNPs with the highest feature importance for the genetic, and mixed 614 

pneumonia linear models 615 

 616 

Genetic, SNP Gene Mixed, SNP Gene 

rs10519203 HYKK rs10519203 HYKK 

rs7498665 SH2B1 rs61921073 Intergenic 

rs8062405 ATXN2l rs8062405 ATXN2l 

rs77139199 GASK1B-AS1 rs77139199 GASK1B-AS1 

rs61921073 Intergenic rs62531875 Intergenic 

 617 

 618 

 619 
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Figure 4: Selection and quality control steps of individuals and SNPs in the UKB 620 
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Supplementary table 1: List of ICD-9 and ICD-10 codes used for the phenotypes in 631 

question. 632 

ICD-9 codes for atrial fibrillation 
 

4273 

ICD-10 codes for atrial fibrillation I48, I480, I481, I483, I484, I489 
ICD-9 codes for venous thromboembolism 
 

4151, 4511, 4512, 4519, 4531, 4532, 4534, 
4538, 4539, 4534, 4531, 4532, 4539 

ICD-10 codes for venous thromboembolism I260, I269, I801, I802, I803, I808, I809, 
I820, I821, I822, I823, I828, I829, O082, 
O223, O871, O882, I81 

ICD-9 codes for pneumonia 4810, 4820, 4821, 4823, 4824, 4828, 4829, 
4830, 4831, 4838, 4840, 4841, 4843, 4835, 
4836, 4847, 4848, 4850, 4860 

ICD-10 codes for pneumonia J13, J14, J150, J151, J152, J153, J154, J155, 
J156, J157, J158, J159, J16, J160, J168, 
J170, J172, J173, J178, J180, J181, J182, 
J188, J189, J851 

 633 

 634 

 635 

 636 

Supplementary table 2: List of OPCS-4 codes used to define surgery. 637 

['W401', 'W371', 'W381', 'W822', 'Q074', 'M021', 'K453', 'J183', 'M611', 'G693', 'W201', 

'W205', 'M025' , 'T202', 'T413', 'W852', 'W192', 'W411', 'H335', 'J692', 'W164', 'W191', 

'T252', 'K262', 'W421', 'G753', 'W283', 'Q221', 'A054', 'S065', 'W373', 'W391', 'B282', 

'W593', 'M022', 'W153', 'A401', 'H114', 'H333', 'H114', 'J021', 'V255', 'T309', 'H053', 

'W199', 'W581', 'L841' , 'L931' , 'L948' , 'W242', 'A411', 'S472' , 'A651' , 'W461 ', 'L851' , 

'S069' , 'C751' , 'W192' , 'W941' , 'W403' , 'L622' , 'W241' , 'E543' , 'T676', 'S571' , 'B274' , 

'Q075' , 'H071' , 'H336' , 'R182' , 'G743' , 'A025' , 'W879' , 'T962' , 'G011' , 'H012' , 'W742' 

, 'G331' , 'W858' , 'J011' , 'T791' , 'H041' , 'H511' , 'W833' , 'M341' , 'L185' , 'W931' , 

'A021' , 'H334' , 'T439' , 'B285' , 'A022' , 'W083' , 'W246' , 'H338' , 'W791' , 'B279' , 'G031' 

, 'W521' , 'W621' , 'W243' , 'T838' , 'L191' , 'J699' , 'T969', 'A013', 'W654', 'W085', 'A611', 
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'K403', 'O291', 'P232', 'H331', 'A671', 'Q013', 'K263', 'W042', 'H073', 'T391', 'L843', 'H011', 

'W198', 'H095', 'L845', 'L192', 'E528', 'L516', 'G218', 'A023', 'T678', 'M012', 'M612', 

'K402', 'L871', 'W571', 'V339', 'H074', 'A384', 'A388', 'W208', 'M538', 'W871', 'M278', 

'W424', 'M421', 'V337', 'H072', 'G698', 'Q231', 'W152', 'V468', 'H042', 'T273', 'G243', 

'B293', 'A295', 'G784', 'J576', 'B311', 'W222', 'T423', 'G699', 'L842', 'W802', 'R172', 'V254', 

'W082', 'T272', 'W451', 'T521', 'L593', 'V253', 'V256', 'V209', 'P242', 'H103', 'W431', 

'W382', 'S551', 'T723', 'V411', 'W471', 'W423', 'A389', 'B083', 'T748', 'M013', 'J023', 

'T242', 'T679', 'V291', 'W301', 'H062', 'H051', 'J561', 'V221', 'S068', 'A383', 'Q089', 'W803', 

'G648', 'G352', 'E032', 'E248', 'V031', 'G521', 'T331', 'J091', 'W122', 'G532', 'H092', 'W821', 

'W402', 'F349', 'M039', 'F442', 'W961', 'H013', 'L591', 'J185', 'T162', 'G748', 'T531', 'B181', 

'V462', 'W399', 'M231', 'B312', 'W384', 'V433', 'G694', 'L181', 'Q092', 'W951', 'A108', 

'H105', 'W194', 'L258', 'V143', 'H079', 'E541', 'T316', 'H091', 'L601', 'J569', 'W712', 'G289', 

'L541', 'W282', 'G303', 'E542', 'W211', 'Q079', 'M051', 'J552', 'K255', 'H332', 'W202', 

'H151', 'S022', 'W752', 'A511', 'G028', 'L131', 'L233', 'S172', 'W158', 'R181', 'W743', 

'A473', 'M014', 'V336', 'W288', 'H029', 'W212', 'T278', 'W891', 'V403', 'F222', 'H412', 

'K334', 'A445', 'T551', 'G234', 'W859', 'V037', 'J582', 'J042', 'J571', 'K301', 'J024', 'J571', 

'K301', 'J024', 'W195', 'L581', 'H131', 'G633', 'M373', 'N288', 'W834', 'V294', 'V039', 

'V152', 'H052', 'M191', 'W393', 'L198', 'S251', 'K412', 'A412', 'T792', 'S552', 'H142', 'H064', 

'V241', 'J012', 'G283', 'L343', 'F231', 'F451', 'W193', 'L844', 'H085', 'W308', 'W332', 'T972', 

'L582', 'O182', 'T229', 'G492', 'T458', 'E294', 'K335', 'T262', 'Q518', 'J578', 'V392', 'E148', 

'H113', 'L583', 'G242', 'L682', 'L621', 'T412', 'T342', 'L798', 'V104', 'J025', 'A652', 'T622', 

'W214', 'W629', 'H104', 'G281', 'K454', 'T671', 'W395', 'T243', 'H101', 'E036', 'A028', 

'H112', 'L201', 'T525', 'L624', 'W422', 'H118', 'V383', 'B223', 'L628', 'B012', 'W232', 'T251', 

'J028', 'K451', 'G312', 'L124', 'H061', 'L818', 'T203', 'O181', 'K023', 'L602', 'G278', 'W144', 

'V313', 'P251', 'N113', 'E192', 'V242', 'W033', 'C134', 'L193', 'G734', 'M348', 'F443', 'E042', 
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'B284', 'G601', 'W523', 'G789', 'G013', 

'W832', 'J182', 'J219', 'L592', 'W196', 'T212', 'W068', 'M619', 'W433', 'T675', 'G362', 

'W238', 'V402', 'G584', 'W131', 'T798', 'V259', 'T724', 'K253', 'H152', 'K021', 'W038', 

'W231', 'V223', 'M359', 'T259', 'E532', 'T318', 'H019', 'T222', 'G232', 'W091', 'A386', 

'H358', 'L194', 'J189', 'K272', 'W758', 'G251', 'T209', 'W372', 'L598', 'L587'] 

 638 

Supplementary table 3: Demographics and comorbidities with ICD-codes 639 

Demographics Age (UKB code field: 21022-0.0) 

Sex (UKB code field: 31-0.0) 

Comorbidities Previous or current smoker (UKB code 

field: 1249-0.0, 1249-1.0, 1249-2.0, 1249-

3.0) 

Hypertension (ICD-10: I10, I100, I101, 

I102, I103, I104, I105, I106, I107, I108, 

I109, I13, I130, I131, I132, I133, I134, 

I135, I136, I137, I138, I139, I15, I150, 

I151, I152, I153, I154, I155, I156, I157, 

I158, I159) 

Cancer (UKB code field: 2453-0.0, 2453-

1.0, 2453-2.0, 2453-3.0 ), heart failure 

(ICD-10: I50, I501, I502, I5020, I5021, 

I5022, I5023, I503, I5030, I5031, I5032, 

I5033, I504, I5041, I5042, I5043, I508, 

I5081, I50810, I50810, I50811, I50812, 
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I50813, I50814, I5082, I5083, I5084, I5089, 

I509) 

BMI (UKB code field: 21001-0.0, 21001-

1.0, 21001-2.0, 21001-3.0. 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 
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