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Abstract

Acute Myeloid Leukemia (AML) is a complex disease requiring accurate risk stratification for
effective treatment planning. This study introduces an innovative ensemble machine learning
model integrated with the European LeukemiaNet (ELN) 2022 recommendations to enhance
AML risk stratification. The model demonstrated superior performance by utilizing a compre-
hensive dataset of 1,213 patients from National Taiwan University Hospital (NTUH) and an
external cohort of 2,113 patients from UK-NCRI trials. On the external cohort, it improved a
concordance index (c-index) from 0.61 to 0.64 and effectively distinguished three different risk
levels with median hazard ratios ranging from 18% to 50% improved. Key insights were gained
from the discovered significant features influencing risk prediction, including age, genetic mu-
tations, and hematological parameters. Notably, the model identified specific cytogenetic and
molecular alterations like TP53, IDH2, SRSF2, STAG2, KIT, TET2, and karyotype (-5, -7,
-15, inv(16)), alongside age and platelet counts. Additionally, the study explored variations in
the effectiveness of hematopoietic stem cell transplantation (HSCT) across different risk levels,
offering new perspectives on treatment effects. In summary, this study develops an ensemble
model based on the NTUH cohort to deliver improved performance in AML risk stratification,
showcasing the potential of integrating machine learning techniques with medical guidelines
to enhance patient care and personalized medicine.
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1. Introduction

Acute Myeloid Leukemia (AML) is a rapidly progressing cancer of the blood and bone marrow,
necessitating precise risk stratification for personalized treatment strategies.1 Traditional methods
often relied on single or limited biomarkers for risk assessment. However, the complexity of AML
shifted the focus towards integrating a variety of biomarkers for more nuanced risk evaluation.

The European LeukemiaNet (ELN) recommendations for AML utilize biomarkers like cytogenetics
and gene mutations to categorize patients into different risk groups,2;3 acknowledging the complex
interactions between these biomarkers. For instance, the presence of the t(9;11)(p21.3;q23.3) chro-
mosomal abnormality, which classifies a patient at an intermediate risk level, is prioritized over
other rare, concurrent adverse gene mutations like ASXL1 in risk assessment. Besides, patients
with CEBPA gene mutations are considered favorable in ELN but will result in poor prognosis if
they carry WT1 gene mutations simultaneously.4 Although previous studies have highlighted the
benefits of accounting for the interactions between various biomarkers, they have not fully utilized
the complexity of these relationships. Therefore, developing a more comprehensive model that can
leverage multiple biomarkers simultaneously is necessary.

In medical machine learning (ML) models for risk stratification, clinician-initiated and non-clinician-
initiated data play distinct roles.5 Clinician-initiated data such as medical prescriptions, although
helpful, might lead models to mimic existing clinical decisions and reduce the actual effect of risk
stratification models, which aim to identify patients’ risk levels before clinical diagnosis. For in-
stance, while the risk stratification model significantly outperforms the ELN model, it relies on
data about whether to proceed with a transplant.6 This data generation occurs after a doctor
confirms risk, thus losing the original intent of the model to predict risk. Therefore, using non-
clinician-initiated data is crucial for maintaining the integrity of risk stratification models. These
data types, including patient-reported outcomes, vital signs monitored, and other health indica-
tors, are gathered independently of clinical decisions. They provide a more unbiased basis for
assessing patient risk. By incorporating this data, models can better fulfill their purpose of early
risk identification rather than merely reflecting decisions already made by clinicians.

This study aims to enhance AML risk stratification at diagnosis by developing an ensemble machine
learning model that combines predictions with the European LeukemiaNet (ELN) 2022 recom-
mendations.2;3 The model utilizes multiple non-clinician-initiated biomarkers, such as age, gender,
hematologic data, karyotypes, and gene mutations, to accurately differentiate risk levels.

2. Methods

This study employed datasets from 1,213 patients from the National Taiwan University Hospital
(NTUH) AML cohort and another from 2,113 patients from three UK-NCRI trials as an external
cohort.7;8;9;10 The NTUH cohort was filtered based on specific criteria and divided into training
and validation sets to establish the proposed models. The models involved many well-known
classification techniques. In addition, HyperOpt,11 a Bayesian hyperparameter optimization, was
used to select the optimal hyperparameters of each model. Finally, an ensemble (ML) model
considers all classification techniques to predict risk. After integrating the classification techniques,
we jointly consider the results by Ensemble (ML) and the results predicted by ELN 2022. Based
on this, the study proposed clinical risk stratification recommendations (Ensemble (ML+ELN)).

2.1. Preprocessing the dataset for establishing models

The dataset for establishing models came from an acute myeloid leukemia cohort with 1,213 sam-
ples in NTUH, including age, gender, hematologic data, karyotypes, and gene mutations. After
excluding those who did not get standard therapy and those who survived with follow-up time that
did not surpass 36 months, the remaining 801 samples were separated into an 80% train set and
20% validation set for prediction and evaluation (Fig. 1). The exclusion is necessary as we can
not confirm whether the short follow-up period leads to patients being labeled a poor risk. The
labeling method of samples was defined by overall survival as follows (Table 1):

• Less than 12 months was labeled as an adverse risk.
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• Between 12 to 60 months was labeled as an intermediate risk.

• More than 60 months was labeled as a favorable risk.

The 13 types of karyotypes on the ELN recommendations for initial diagnosis were selected as fea-
tures.2;3 In addition, age, gender, four types of hematological data, and 31 types of gene mutations
were also included. A previous study showed that the preprocessing techniques employed have no
significant effect when none of the features have more than 10% missing values.12 The standard
normalization was applied to age and hematological data.13 The data preprocessing and feature
selection are shown in Fig. 1.

Table 1. The distribution of overall survival label for 801 samples

Overall survival label Number (n=801) Percentage (%)

Adverse (< 12 months) 254 31.71

Intermediate 282 35.21

Favorable (> 60 months) 265 33.08

Figure 1. Feature selection and data preprocessing on the NTUH cohort. *Standard scaler is a normal-
ization method in scikit-learn.13
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2.2. Models

The study employed various machine learning models with unique strengths and learning the
relationships between features and labels.13 Logistic Regression estimates the logistic model’s pa-
rameters to predict the likelihood of an event by making its log odds a linear combination of
independent variables.14 It allows feature selection and adjustment of coefficients for unnecessary
features using penalties like L1, L2, or Elastic-Net.

K-nearest Neighbors (KNN) is a simple,15 instance-based learning model that computes the dis-
tance between a new observation and existing instances, using the ’K’ closest instances for predic-
tion. It’s adaptable to input changes and works well with multi-class cases and irregular decision
boundaries.

Support Vector Machine (SVM) is effective in high-dimensional spaces,16 seeking a hyperplane with
the maximum margin for classification. It uses the kernel trick for non-linear decision boundaries
and is robust against overfitting but can be computationally intensive.

Random Forests,17 an ensemble model, constructs many decision trees and outputs the mode or
mean prediction of these trees. It introduces randomness in training and considers a random subset
of features for splitting, making it effective against overfitting and capable of handling many input
variables.

XGBoost,18 based on gradient boosting, uses decision tree ensembles and systematically corrects
errors, offering fast computation and a regularization parameter to minimize overfitting. It’s
adaptable to various prediction tasks with custom optimization objectives.

LightGBM grows trees leaf-wise and employs Gradient-based One-Side Sampling (GOSS) and
Exclusive Feature Bundling (EFB) for efficiency and scalability.19 It’s more accurate but can
overfit on smaller datasets.

Lastly, 1D-CNN, adapted from Convolutional Neural Networks for sequential data like time series
and natural language.20 It captures local patterns in sequences, handles long sequences efficiently,
and extracts local features effectively.

2.3. Hyperparameter Optimization

Hyperparameter optimization is a crucial step that impacts the success of a model in machine
learning. Hyperparameters are set before the training process and significantly influence a model’s
learning effectiveness. The optimization process involves searching for the best hyperparameter
configurations, which can be computationally intensive and time-consuming.

This study used Hyperopt as an efficient tool for streamlining hyperparameter optimization.11
Hyperopt uses the Tree-structured Parzen Estimator (TPE) method, which constructs a proba-
bilistic model of the objective function to guide the search, leading to a more efficient process
and often superior results. Hyperopt can be easily integrated into machine learning workflows,
significantly reducing the resources and time required for optimization and improving the model’s
overall effectiveness. Table A in the Appendix shows the hyperparameter searching spaces of each
model.

2.4. Machine Learning-based Ensemble Model (Ensemble (ML))

This study employed the loss function-based approach as the machine learning-based ensemble
model (Ensemble (ML)). This technique optimized the combination of models by leveraging a loss
function, which measured the bias of predicted values from actual values.

In the approach, each base model in the ensemble was assigned a weight based on its performance
as measured by the cross-entropy loss function.21 The ensemble then combined these models’
predictions according to their weights to make the final prediction, enhancing prediction accuracy.
The formulas Eq. 1 and Eq. 2 are shown below:

weighti =
exp(−lossi)∑

k∈M exp(−lossk)
(1)
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predictionensemble = argmax
j

(∑
i∈M

weighti · probabilityi,j

)
(2)

where M represents the set of models used in the ensemble, i denotes an individual model within
this ensemble, weighti is the weight assigned to model i, probabilityi,j is the probability assigned
to class j by model i, and j represents the class. The function argmaxj selects the class j for
which the sum of weighted probabilities across all models is maximized.

In essence, ensemble models utilize a mechanism to fine-tune the combination of multiple models.
This provided an optimized way of ensemble learning, thus improving prediction performance.

2.5. Clinical Risk Stratification Recommendations by the Combination of Ensemble
Model and ELN 2022 (Ensemble (ML+ELN))

After predicting by the Ensemble (ML) model, the study proposed clinical risk stratification rec-
ommendations by considering the Ensemble (ML) model and ELN 2022 risk prediction (Ensemble
(ML+ELN)). The proposed clinical risk stratification recommendations pipeline is shown in Fig.
2.

Figure 2. The proposed clinical risk stratification used in the Ensemble (ML+ELN) model.

The Ensemble (ML+ELN) model considered patients’ risk levels by the following step.

1. The ELN 2022 and Ensemble (ML) models predict patient risk levels, and the Ensemble
(ML+ELN) model then confidently predicts those patients with the same risk level.

2. For samples contrary to the prediction, the Ensemble (ML+ELN) model considered them
intermediate. That is to say; for samples predicted as adverse by ELN 2022 and favorable
by the Ensemble (ML) model or those predicted by ELN 2022 as adverse and favorable by
the Ensemble (ML) model, the Ensemble (ML+ELN) model treated them as intermediate.

3. The rest treated the Ensemble (ML) prediction as the final result.

3. Results

The study focused on enhancing risk stratification in AML patients using the proposed model,
Ensemble (ML+ELN). The model was created using a dataset of 1,213 AML patients from the
National Taiwan University Hospital (NTUH) and subsequently tested on the NCRI cohort to
assess its generalizability.7;8;9;10 In addition, to ensure the robustness of the model, it was developed
by conducting 50 experiments on the NTUH dataset with different partitions of training and
validation sets, and then tested on the external NCRI cohort.

3.1. Performance on the validation set

To ensure the model’s robustness, this study conducted 50 independent experiments, each estab-
lishing a model with a distinct partition of the training and validation sets on the NTUH cohort.
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In one experiment, its validation set is used to compare the proposed Ensemble (ML+ELN) model
with the ELN 2022, the Ensemble (ML), and seven machine learning models, including logistic
regression, k-nearest neighbor (KNN), support vector machine (SVM), random forest, XGBoost,
LightGBM, and 1D-CNN. It is shown in Table 2 that Ensemble (ML+ELN) outperformed the other
models on the weighted F1 score and the concordance index (c-index).22 The ML+ELN model is
also superior in distinguishing the adverse risk level from the intermediate (p-value for logrank test)
(Fig. 3).22;23 In Table 3, we further examined a subset of patients with identical predicted risk
levels from ELN and the Ensemble (ML) models. All the metrics are largely improved when com-
pared to Table 2. Finally, the model with the best c-index among the 50 experiments is released for
future prediction (Data Sharing Statement). Different presentations of the released model on the
validation set, including survival curves, confusion matrices, and distribution flows of samples, are
shown in Fig. 4. The p-value for logrank test of the adverse curve against the intermediate curve
is much smaller in Ensemble (ML+ELN). The confusion matrices, as well as the distribution flows
of samples, also demonstrated that the ML+ELN model infrequently misclassified the favorable or
intermediate samples as adverse.

Table 2. The performance of the 50 models on the corresponding validation set (n=161)
with a mean and standard deviation in 50 times experiments.

Model Accuracy Weighted c-index22

F1 score1

ELN 2022 0.49 ± 0.03 0.49 ± 0.03 0.63 ± 0.02

Logistic 0.48 ± 0.03 0.47 ± 0.03 0.64 ± 0.02
Regression

KNN 0.45 ± 0.03 0.45 ± 0.03 0.62 ± 0.02

SVM 0.48 ± 0.03 0.48 ± 0.03 0.64 ± 0.02

Random 0.49 ± 0.03 0.48 ± 0.03 0.63 ± 0.02
Forest

XGBoost 0.47 ± 0.03 0.47 ± 0.03 0.62 ± 0.02

LightGBM 0.48 ± 0.03 0.48 ± 0.03 0.63 ± 0.02

1D-CNN 0.46 ± 0.04 0.45 ± 0.04 0.62 ± 0.02

Ensemble 0.50 ± 0.03 0.49 ± 0.03 0.64 ± 0.02
(ML)

Ensemble 0.49 ± 0.03 0.50 ± 0.03 0.65 ± 0.02
(ML + ELN)

1 The weighted F1 score calculates the F1 score for each class independently and uses a weight
that depends on the number of true instances for each class to average the prediction.
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Figure 3. Distribution of p-values for logrank test between different survival curves for 50 experi-
ments in different models on the validation set. The red dashed line has a p-value of 0.05.

Table 3. The performance of the Ensemble (ML+ELN) model for the samples where the
Ensemble (ML) model and ELN 2022 predict identical risk levels. The values are mean and
standard deviation in 50 times of experiments.

Model Ratio of Accuracy Weighted c-index
identical predictions F1 score1

Ensemble
(ML + ELN)

0.47 ± 0.03 0.63 ± 0.04 0.62 ± 0.05 0.73 ± 0.03

1 The weighted F1 score calculates the F1 score for each class independently and uses a weight that
depends on the number of true instances for each class to average the prediction.
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Figure 4. Different presentations of the released model on the validation set. (a) Survival curves. (b)
Confusion matrices. (c) Distribution flows of samples.
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3.2. Performance on the external cohort

Next, we tested the 50 models built from NTUH on the NCRI cohort for performance evaluation.
The Ensemble (ML+ELN) model performed the best on all evaluation metrics on the external
cohort, as described as follows. The proposed model showcased its effectiveness in improving an
average concordance index (c-index) from 0.61 (ELN) to 0.64 (ML+ELN) (Table 4),22 and the
median hazard ratios:24 1.85 (ELN) to 2.2 (ML+ELN) for adverse versus intermediate groups
(18% improved), 1.53 (ELN) to 1.97 (ML+ELN) for intermediate versus favorable groups (29%
improved), and 2.83 (ELN) to 4.24 (ML+ELN) for adverse versus favorable groups (50% improved)
(Fig. 5a). Furthermore, it demonstrated the capability to differentiate between pairs of risk levels.
The distribution of 50 p-values are plotted in Fig. 5b. The median improves from 1.37e-22
(ELN) to 3.01e-41 (ML+ELN) for adverse versus intermediate groups and 8.31e-8 to 2.35e-19 for
intermediate versus favorable groups. Besides, different presentations of the released model on the
external cohort are shown in Fig. 6. Compared to the performance of released model in validation
set, the ability to differentiate intermediate and favorable

Table 4. The performance on the NCRI cohort

Model c-index with mean c-index for
and standard deviation the released models 2

in 50 experiments1

ELN 2022 0.61 ± 0.00 0.612

Ensemble (ML) 0.64 ± 0.01 0.642

Ensemble (ML+ELN) 0.64 ± 0.00 0.645

1 Each model was trained in 50 experiments on the NTUH cohort, using different training and validation parti-
tions. The whole NCRI cohort was used to test the performance in each experiment.

2 Released models were selected through the best c-index on the validation set in 50 experiments.

3.3. Insights for patients predicted as adverse by ELN 2022

Here, we partitioned the patients predicted as adverse by ELN into two groups. One group included
samples classified as adverse by both the ELN 2022 and ensemble (ML+ELN) model, while the
other consisted of samples identified as adverse by ELN 2022 but not by the ensemble (ML+ELN)
model. The survival curves for these groups are illustrated in Fig. 7a. It is observed that the
survival curves of these two groups are far apart. Distribution of p-values for logrank test between
the survival curves of the two groups suggested that the Ensemble (ML+ELN) model can further
identify patients with higher risk (Fig. 7b).22;23

We further identified significantly differential features (p-value < 0.05) in between two groups us-
ing different statistical tests: T-tests for numerical features and chi-square tests for categorical
ones.25;26 For the external cohort, eight biomarkers consistently appeared in all 50 experiments
as the significant features (Fig. 7c). An odds ratio was used to demonstrate the impact of these
significant features on risk prediction (Fig. 7d).27 The feature ’age’ was categorized with a thresh-
old of 60 years (Age_60). Features like Age_60, TP53, and specific karyotypes (-5, -7, -17) led
the Ensemble (ML+ELN) model to categorize patients as adverse. In contrast, features such as
IDH2, SRSF2, and STAG2 led to a non-adverse prediction. In other words, for patients identified
as adverse in ELN 2022, determining if they are older than 60, carrying TP53, or possessing the
aforementioned karyotypes can help further identify patients with a higher adverse risk. On the
other hand, checking for IDH2, SRSF2, or STAG2 can help identify patients with a less adverse
risk.

3.4. Insights for patients predicted as favorable by ELN 2022

Similarly, we partitioned the patients predicted as favorable by ELN into two groups. One group
included samples classified as favorable by both the ELN 2022 and ensemble (ML+ELN) model,
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Figure 5. Effect sizes in different models on the external cohort. (a) Distribution of hazard ratios for
different risk levels for 50 experiments in different models. The red dashed line has a hazard ratio of 1. (b)
Distribution of p-values for logrank test between different survival curves for 50 experiments in different models on
the external cohort. The red dashed line has a p-value of 0.05.
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Figure 6. Different presentations of the released model on the NCRI cohort. (a) Survival curves. (b)
Distribution flows of samples.
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Figure 7. Biomarkers for further distinguishing more favorable patients from the NCRI patients
identified as adverse according to the ELN 2022 guidelines. (a) Survival curves for the released models
where patients were classified as adverse by ELN 2022. The p-value results from the logrank test between the red
and green survival curves. (b) Distribution of p-values for logrank test between the survival curves of two patient
groups in 50 experiments, where one group is classified as adverse by both ELN 2022 and an Ensemble (ELN+ML)
model, and the other is classified as adverse by ELN 2022 but non-adverse by the Ensemble (ELN+ML) model.
The red dashed line has a p-value of 0.05. (c) The Significant biomarkers (p-value<0.05) were observed over 40 of
50 experiments. (d) Analyzing the effect of consistently occurred significant biomarkers by an odds ratio.27 The
red dashed line has an odds ratio of 1.
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while the other consisted of samples identified as favorable by ELN 2022 but not by the ensemble
(ML+ELN) model. The survival curves of one particular experiment for these groups are illustrated
in Fig. 8a. It is observed that the survival curves of these two groups are far apart. Distribution
of the p-values for logrank test between the survival curves of the two groups in 50 experiments
suggested that the Ensemble (ML+ELN) model can further identify patients with low risk (Fig.
8b).22;23

Afterward, we assessed significantly differential features (p-value < 0.05) in two groups using the
same statistical tests described in section 4.3. For the external cohort, six biomarkers consistently
appeared in the 50 experiments as the significant features (Fig. 8c). In the odds ratio metric (Fig.
8d),27 the feature ’age’ was categorized with a threshold of 60 years (Age_60), and ’Plt’ (Platelets)
was categorized with a threshold of 55 thousand per microliter (Plt_55). Features like Plt_55,
KIT, and inv(16) led the Ensemble (ML+ELN) model to categorize patients as favorable. In
contrast, features such as Age_60, TET2, and SRSF2 led to a non-favorable prediction. Therefore,
for patients identified as favorable in ELN 2022, determining if they are younger than 60, the
concentration of platelets is more than 55 thousand per microliter, or patients carry KIT or
inv(16) can help further identify patients with a more favorable risk. On the other hand, checking
for TET2 or SRSF2 can help identify a less favorable group.

Figure 8. Biomarkers for further distinguishing more favorable patients from the NCRI patients
identified as favorable according to the ELN 2022 guidelines. (a) Survival curves for the released models
where patients were classified as favorable by ELN 2022. The p-value is the logrank test between the red and green
survival curves. (b) Distribution of p-values for logrank test between the survival curves of two patient groups in
50 experiments, where one group is classified as favorable by both ELN 2022 and an Ensemble (ELN+ML) model,
and the other is classified as favorable by ELN 2022 but non-favorable by the Ensemble (ELN+ML) model. The
red dashed line has a p-value of 0.05. (c) Six significant biomarkers (p-value<0.05) were observed over 30 of 50
experiments. (d) Analyzing the effect of consistently occurred significant biomarkers by an odds ratio.27 The red
dashed line has an odds ratio of 1.
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3.5. Variations in Hematopoietic Stem Cell Transplantation Effectiveness Across Dif-
ferent Risk Levels

The study assessed the impact of hematopoietic stem cell transplantation (HSCT) on patients clas-
sified into different risk levels as part of the NCRI cohort. Of the 2,113 patients in the cohort, 527
underwent HSCT. The study utilized hazard ratios to analyze outcomes based on risk assessments
made by two different models: the ELN 2022 criteria and the Ensemble (ML) model (Fig. 9a).
Patients described in Fig. 9c and Fig. 9d are recommended for the HSCT treatment.

The findings revealed notable variations in the effectiveness of HSCT depending on the risk level
predictions made by these two models. Specifically:

1. For patients categorized as adverse according to ELN 2022 but favorable by the Ensemble
(ML) model, HSCT showed a reduced benefit. This HSCT effectiveness was comparable to,
or even less than, that observed in patients deemed favorable by ELN 2022. The survival
curve from the released models for these patients is shown in Fig. 9b.

2. Patients rated as intermediate-risk by ELN 2022 and adverse by the Ensemble (ML) model
showed a level of HSCT effectiveness similar to those patients categorized as adverse by ELN
2022. The survival curve from the released models for these patients is shown in Fig. 9c.

3. Patients identified as favorable by ELN 2022 but adverse by the Ensemble (ML) model
experienced a significantly enhanced benefit from HSCT. This effectiveness was similar to
or greater than that seen in patients classified as adverse by ELN 2022. The survival curve
from the released models for these patients is shown in Fig. 9d.

Our study expands on prior research in HSCT outcomes by further dividing risk level groups,
incorporating both ELN 2022 criteria and Ensemble (ML) model predictions. This approach offers
a more detailed risk assessment, particularly identifying a subset that responds variably to HSCT.

4. Discussion

This study presents a significant advancement in the risk stratification of Acute Myeloid Leukemia
(AML) patients through an ensemble machine learning model. This model, integrated with the
European LeukemiaNet (ELN) 2022 recommendations, has shown remarkable effect in accurately
categorizing AML patients into distinct risk groups.

The study revealed key genetic and clinical features influencing AML prognosis through statistical
analysis. Integrating the findings from the previous literature with the study offers a comprehensive
understanding of risk stratification in Acute Myeloid Leukemia (AML) patients. From our insights
for patients predicted as adverse by ELN, we discovered significant biomarkers, including age more
than 60, TP53 mutation, and karyotypes (-5, -7, -17) linked with higher risk and mutations such
as IDH2, SRSF2, and STAG2 indicated a lower risk. Previous studies have shown that older AML
patients exhibit distinct genetic alterations compared to younger patients, with mutations like
TP53 being poor prognostic factors.28;29 In addition, the TP53 mutation, known for its stability
during AML evolution, is associated with poor prognosis, especially in patients with complex
karyotypes.29 Contrarily, mutations in the cohesin complex gene STAG2 have contributed to the
disease’s complexity and showed a trend toward improved long-term outcomes.30 Moreover, the
earlier research highlighted the prognostic significance of various genetic alterations and cytogenetic
profiles, such as the favorable impact of IDH2 mutations and the negative implications of an
unfavorable karyotype (-5, -7, -17) on treatment outcomes and survival rates in AML.31

Similarly, from our insights for patients predicted as favorable by ELN, biomarkers like a platelet
count above 55,000 per microliter, KIT mutations, and inv(16) karyotype were associated with fa-
vorable outcomes, whereas age more than 60 and mutations such as TET2 and SRSF2 suggested
a less favorable prognosis. A previous study has shown that older AML patients exhibit dis-
tinct genetic profiles with mutations like DNMT3A and TP53 being poor prognostic indicators.28
Platelet count at diagnosis is also a critical factor influencing treatment outcomes.32 The findings
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Figure 9. Comparative analysis of the effectiveness of HSCT according to ELN 2022 and the Ensemble
(ML) model in predicting different risk levels on the external cohort. (a) Overall HSCT effectiveness on
the NCRI cohort. The red dashed line has a hazard ratio of 1. (b) Survival curves for patients predicted as adverse
by ELN 2022 but favorable by the released Ensemble (ML) model. The p-value is the logrank test between the red
and green survival curves. (c) Survival curves for patients predicted as intermediate by ELN 2022 and adverse by
the released Ensemble (ML) model. The p-value is the logrank test between the red and green survival curves. (d)
Survival curves for patients predicted as favorable by ELN 2022 but adverse by the released Ensemble (ML) model.
The p-value is the logrank test between the red and green survival curves.
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regarding TET2 mutation in acute myeloid leukemia (AML) patients, particularly those with
intermediate-risk cytogenetics, underscore its role as an unfavorable prognostic factor.33 More-
over, myelodysplasia-related mutations like SRSF2 indicate poor outcomes across all age groups,
underscoring the need for intensive treatment.34 Another earlier research highlighted the prognostic
importance of favorable karyotypes inv(16) in AML.31

The analysis of HSCT effectiveness across different risk levels offers novel perspectives on treat-
ment effects. The study’s findings highlight the model’s potential to identify subsets of patients
who might benefit more or less from HSCT, thus offering treatment recommendations and improv-
ing outcomes. While these findings are significant, they should be interpreted cautiously due to
potential selection biases in retrospective studies. Prospective studies are needed to validate and
further explore these insights.

In conclusion, the application of this model promises to enhance existing prognostic assessments
and aid in personalized treatment planning. Integrating advanced machine learning techniques
with established medical guidelines opens new avenues for enhancing patient care in AML and
potentially other complex diseases.
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Table A. The hyperparameters searching space of each model

Model Hyperparameter Searching Space

Logistic ’C’: hp.loguniform(’C’, -5, 0),
Regression ’penalty’: hp.choice(’penalty’, [’l1’, ’l2’]),

’solver’: hp.choice(’solver’, [’liblinear’]),
’tol’: hp.loguniform(’tol’, -4, -2),
’max_iter’: hp.choice(’max_iter’, [1000]),
’random_state’: hp.choice(’random_state’, [0])

KNN ’n_neighbors’: hp.choice(’n_neighbors’, [5, 10, 15, 20, 25, 30]),
’weights’: hp.choice(’weights’, [’uniform’, ’distance’]),
’algorithm’: hp.choice(’algorithm’, [’auto’, ’ball_tree’]),
’leaf_size’: hp.choice(’leaf_size’, [20, 30, 40]),
’p’: hp.choice(’p’, [1, 2])

Support ’C’: hp.loguniform(’C’, -5, 2),
Vector ’kernel’: hp.choice(’kernel’, [’poly’, ’rbf’, ’sigmoid’]),
Machine ’gamma’: hp.choice(’gamma’, [’scale’, ’auto’]),

’coef0’: hp.uniform(’coef0’, 0, 1),
’tol’: hp.loguniform(’tol’, -4, -2),
’cache_size’: hp.choice(’cache_size’, [2000]),
’shrinking’: hp.choice(’shrinking’, [True, False]),
’break_ties’: hp.choice(’break_ties’, [False, True]),
’class_weight’: hp.choice(’class_weight’, [None, ’balanced’]),
’probability’: hp.choice(’probability’, [True])

Random ’n_estimators’: hp.choice(’n_estimators’, np.arange(100, 1001, 100, dtype=int)),
Forest ’criterion’: hp.choice(’criterion’, [’gini’]),

’max_depth’: hp.choice(’max_depth’, np.arange(5, 20, dtype=int)),
’min_samples_split’: hp.choice(’min_samples_split’, np.arange(2, 11, dtype=int)),
’min_samples_leaf’: hp.choice(’min_samples_leaf’, np.arange(1, 11, dtype=int)),
’min_weight_fraction_leaf’: hp.uniform(’min_weight_fraction_leaf’, 0, 0.5),
’min_impurity_decrease’: hp.uniform(’min_impurity_decrease’, 0, 0.5),
’class_weight’: hp.choice(’class_weight’, [None, ’balanced’]),
’n_jobs’: hp.choice(’n_jobs’, [32]),
’max_features’: hp.choice(’max_features’, [’sqrt’])

XGBoost ’eta’: hp.loguniform(’eta’, -7, 0),
’max_depth’: hp.choice(’max_depth’, np.arange(1, 11, dtype=int)),
’subsample’: hp.uniform(’subsample’, 0.2, 1),
’colsample_bytree’: hp.uniform(’colsample_bytree’, 0.2, 1),
’colsample_bylevel’: hp.uniform(’colsample_bylevel’, 0.2, 1),
’min_child_weight’: hp.loguniform(’min_child_weight’, -16, 2),
’alpha’: hp.uniform(’alpha’, 0, 1),
’lambda’: hp.uniform(’lambda’, 0, 1),
’gamma’: hp.uniform(’gamma’, 0, 1)

LightGBM ’learning_rate’: hp.loguniform(’learning_rate’, -5, -2),
’max_depth’: hp.choice(’max_depth’, np.arange(3, 11, dtype=int)),
’num_leaves’: hp.choice(’num_leaves’, np.arange(8, 51, dtype=int)),
’min_data_in_leaf’: hp.choice(’min_data_in_leaf’, np.arange(10, 20, dtype=int)),
’verbose’: hp.choice(’verbose’, [-1])

1D-CNN ’hidden_size’: hp.choice(’hidden_size’, [32, 64, 128]),
’optimizer’: hp.choice(’optimizer’, [torch.optim.Adam, torch.optim.AdamW]),
’learning_rate’: hp.loguniform(’learning_rate’, -5, -2),
’batch_size’: hp.choice(’batch_size’, [32, 64, 128, 256, 512])
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