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Abstract 22 

Objectives: Prevention of fetal growth restriction/small for gestational age is adequate 23 
if screening is accurate. Ultrasound and biomarkers can achieve this goal; however, both 24 
are often inaccessible. This study aimed to develop, validate, and deploy a prognostic 25 
prediction model for screening fetal growth restriction/small for gestational age using 26 
only medical history. Methods: From a nationwide health insurance database 27 
(n=1,697,452), we retrospectively selected visits of 12-to-55-year-old females to 22,024 28 
healthcare providers of primary, secondary, and tertiary care. This study used machine 29 
learning (including deep learning) to develop prediction models using 54 medical-30 
history predictors. After evaluating model calibration, clinical utility, and explainability, 31 
we selected the best by discrimination ability. We also externally validated and 32 
compared the models with those from previous studies, which were rigorously selected 33 
by a systematic review of Pubmed, Scopus, and Web of Science. Results: We selected 34 
169,746 subjects with 507,319 visits for predictive modeling. The best prediction model 35 
was a deep-insight visible neural network. It had an area under the receiver operating 36 
characteristics curve of 0.742 (95% confidence interval 0.734 to 0.750) and a sensitivity 37 
of 49.09% (95% confidence interval 47.60% to 50.58% using a threshold with 95% 38 
specificity). The model was competitive against the previous models in a systematic 39 
review of 30 eligible studies of 381 records, including those using either ultrasound or 40 
biomarker measurements. We deployed a web application to apply the model. 41 
Conclusions: Our model used only medical history to improve accessibility for fetal 42 
growth restriction/small for gestational age screening. However, future studies are 43 
warranted to evaluate if this model's usage impacts patient outcomes. 44 

Key words: fetal growth restriction, small for gestational age, machine learning, deep 45 
learning, electronic health records, risk prediction.  46 
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Introduction 47 

Fetal growth restriction (FGR) and small for gestational age (SGA) are two terms of a 48 

single condition with the same diagnostic criterion in principle but different measures in 49 

practice.1 This condition is the second leading cause of preventable perinatal deaths.2 50 

The prevention method depends on FGR/SGA predictions with a clinically acceptable 51 

predictive performance.3 However, most settings lack accessibility to predictors in 52 

existing prediction models.4 53 

A pregnancy with FGR likely results in delivering low-birth-weight infants,5 an 54 

indirect cause of neonatal deaths.6-8 Neonatal mortality rates varied from 20 to 30 deaths 55 

per 1000 live births worldwide in 2013.9 Low-birth-weight infants also need to spend 56 

time in a neonatal intensive care unit.10 But, this requires high costs and is a limited 57 

resource in many countries.11,12 Prevention of FGR/SGA may reduce neonatal mortality 58 

and associated costs.13 Several preventive strategies were found to be effective for 59 

FGR/SGA;14 yet, this intervention needs a screening method with a good predictive 60 

performance.3 61 

Since a low-cost method such as symphysis fundal height was not recommended 62 

by a Cochrane review, mainly due to low sensitivity (~17%), there is a trend to employ 63 

either ultrasound or biomarker measurements for FGR/SGA screening.15 Nonetheless, 64 

these methods are inaccessible in resource-limited settings.15,16 Meanwhile, there was an 65 

association detected of  FGR/SGA with a woman’s medical history.17 Because a health 66 

insurance claim database abundantly records medical histories, this allows proactive 67 

screening for FGR/SGA, particularly in countries with universal health coverage.18 68 

Screening by medical history is also independent of the number of pregnancy 69 

consultations on which FGR detection depends (hazard ratio 1.15, 95% confidence 70 
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interval [CI] 1.05 to 1.26).19 However, studies have yet to develop a screening method 71 

for FGR/SGA using only medical history. 72 

Prognostic predictions of FGR/SGA using medical histories can be either a 73 

prediction model for use in resource-limited settings or a preliminary prediction model 74 

before ordering ultrasound and biomarker measurements. Both statistical and 75 

computational machine learning can predict pregnancy outcomes in advance,20 76 

including deep learning and those using only medical history.20,21 We aimed to develop, 77 

validate, and deploy a prognostic prediction model for screening FGR/SGA using only 78 

medical history in nationwide insured women. 79 

Materials and Methods 80 

Report completeness of this study was according to the transparent reporting of a 81 

multivariable prediction model for individual prognosis or diagnosis (TRIPOD) 82 

checklist (Appendix A).22 We followed a protocol with the same software and hardware 83 

(Tables B1-B3, C1),23 except those stated otherwise. This study was under a single 84 

project that compared a deep-insight visible neural network (DI-VNN) to other machine 85 

learning algorithms to predict several outcomes in medicine. The Taipei Medical 86 

University Joint Institutional Review Board exempted this project from the ethical 87 

review (TMU-JIRB no.: N202106025). 88 

Study design and data source 89 

We applied a retrospective design to select subjects from a public dataset version 2 90 

(August 2019;24 access approval no.: 510/PPID/1223) of a nationwide health insurance 91 

database in Indonesia. The dataset was a cross-sectional, random sampling of ~1% of 92 
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insurance holders within 2 years up to 2016. This sampling included all affiliated 93 

healthcare providers (n=22,024) at all levels (i.e., primary, secondary, and tertiary care). 94 

The inclusion criteria were females aged 12 to 55 years who had visited primary, 95 

secondary, or tertiary care facilities. All visits afterward were exprotocolcluded if a 96 

woman was pregnant and had a delivery. If a woman became pregnant twice within the 97 

dataset period, then different identifiers were assigned to differentiate the pregnancy 98 

periods of that woman. To determine a delivery, we used several codes of diagnoses and 99 

procedures (Table C2). 100 

This study developed a prediction model for detecting in advance a visit by a 101 

subject who would be diagnosed with either FGR or SGA. We pursued to achieve an 102 

acceptable sensitivity at 95% specificity but using more-accessible predictors. 103 

Nevertheless, we compared our prediction models with those from previous studies 104 

selected by systematic review methods to evaluate if our predictive modeling was 105 

successful. Since there were different policies in choosing a prediction threshold (e.g., 106 

that at 90% vs. 95% specificity), the comparison was conducted using receiver 107 

operating characteristics (ROC) curves and the area under the ROC curve (AUROC). 108 

The event outcome definition in this study utilized the International 109 

Classification of Disease version 10 (ICD-10) codes. These were codes preceded by 110 

either O365 (maternal care for known or suspected fetal growth) or P05 (disorders of 111 

newborns related to slow fetal growth and fetal malnutrition). Both codes indicating 112 

FGR and SGA were assigned with those respectively for mothers and fetuses/newborns. 113 

A nonevent outcome was assigned if the end of pregnancy was identified within the 114 

dataset period by the codes for determining delivery. Otherwise, we assigned an 115 

outcome to a censored one. 116 
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Candidate predictors were only medical histories of diagnoses and procedures. 117 

These were either single or multiple ICD-10 codes. As extensively described in the 118 

protocol,22 the preprocessing of candidate predictors consisted of (1) preventing zero 119 

variance, perfect separation and leakage of the outcome, and redundant predictors; (2) 120 

simulating real-world data; and (3) systematically determining the multiple ICD-10 121 

codes for defining latent candidate predictors based on prior knowledge. After this 122 

preprocessing (Tables C3-C7), we identified 54 candidate predictors, including four 123 

latent candidate predictors of multiple pregnancies, varicella, urinary tract infections, 124 

and placenta previa. 125 

Statistical analysis 126 

We developed five models using different algorithms and hyperparameter tuning, as 127 

described in the protocol.22 The first applied ridge regression (RR). The second to fourth 128 

models used 54 candidate predictors transformed into principal components (PCs). We 129 

applied three algorithms using these PCs: (1) elastic net regression (PC-ENR); (2) 130 

random forest (PC-RF); and (3) gradient boosting machine (PC-GBM). The fifth model 131 

was a deep-insight visible neural network (DI-VNN). However, unlike the protocol,22 132 

we did not limit this model to only 22 of 54 candidate predictors, which had a false 133 

discovery rate of ≤5% based on differential analyses with Benjamini-Hochberg multiple 134 

testing corrections. Instead, we used all 54 candidate predictors considering the 135 

feasibility of constructing the data-driven network architecture. In addition, all model 136 

recalibration was by either a logistic regression or a general additive model using 137 

locally weighted scatterplot smoothing. The recalibration procedure also differed from 138 

the protocol.22 This is because the models only sometimes resulted in a wide range of 139 

predicted probabilities, as required for recalibration. Unlike the protocol, we chose 100 140 
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repetitions for bootstrapping, considering the sample size of this study compared to that 141 

of the protocol. Details on model development and validation are described in Table B2. 142 

For deployment, this model will predict the outcome each time an insured 143 

woman visits a healthcare provider. We provided the best model in this study as a web 144 

application. A user is only required to upload a comma-separated value (.csv) file 145 

consisting a two-column table. It includes column headers of “admission_date” (yyyy-146 

mm-dd) and “code” (ICD-10 code at discharge) from previous to current visits. 147 

We computed an uncertainty interval (i.e., 95% confidence interval, CI) for each 148 

evaluation metric. This interval inference used subsets of an evaluated set, resampled by 149 

bootstrapping and cross-validation. All analytical codes were publicly shared (see “Data 150 

sharing statement”). 151 

The selection of latent candidate predictors in the first model applied inverse 152 

probability weighting for the multivariate analyses, according to the protocol.22 Results 153 

were also compared to those by outcome regression. We selected a latent candidate 154 

predictor if its association with the outcome had an interval of odds ratio (OR) 155 

excluding a value of 1. 156 

The evaluation metrics were those for assessing the models' calibration, utility, 157 

explainability, and discrimination. To evaluate the model calibration, we assessed (1) a 158 

calibration plot with a regression line and histograms of either event or nonevent 159 

distribution of the predicted probabilities; (2) the intercept and slope of the linear 160 

regression; and (3) the Brier score. We measured the clinical utility using a decision 161 

curve analysis by comparing the net benefits of a model with those if we treated all 162 

predictions as either positive (i.e., treat all) or negative (i.e., treat none). Clinicians (i.e., 163 

FZA and AZZAH) assessed the explainability. They were given counterfactual 164 
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quantities for each predictor in a model.25 These consisted of the probability of 165 

necessity (PN; Equation 1) and the probability of sufficiency (PS; Equation 2). 166 

Eventually, we evaluated the discrimination ability of well-calibrated models by the 167 

ROC curve and sensitivity at 95% specificity. 168 
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Furthermore, we compared our models with previous ones identified by a 171 

systematic review and meta-analysis (see “Comparison to previous models”). We 172 

compared the best model with those from previous studies. These were identified by 173 

following 11 of 14 items in section methods of the preferred reporting items for 174 

systematic reviews and meta-analyses (PRISMA)-extended checklist statements.26 175 

Those items are described in Table B4. 176 

Results 177 

Subject characteristics 178 

From the database (n=1,697,452), we selected 12-to-55-year-old females (n=169,746) 179 

that had visited (n=507,319) primary, secondary, or tertiary care (Figure 1). After 180 

removing subjects with no pregnancy and their visits, we split the selected data for 181 

internal and external validation. There were no overlapped visits between the internal 182 

and external validation sets. We only used the former to develop the prediction models 183 

in this study, including association tests to select candidate predictors. 184 

Figure 1 185 
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To characterize subjects in the internal validation set (Table 1), we also included 186 

subjects with uncensored outcomes (n=26,576). There were differences between 187 

subjects without and those with FGR/SGA based on multiple univariate analyses. These 188 

were in terms of subject characteristics, i.e.: (1) maternal age; (2) third vs. first 189 

categories of the insurance class; (3) single vs. married categories of the marital status; 190 

and (4) private company vs. central-government employee categories of the occupation 191 

segment of the householder. We also identified differences in terms of latent candidate 192 

predictors. Two of these variables were the risk of adverse pregnancy by maternal age 193 

and a low socioeconomic status. The former represented maternal age of either <20 194 

or >25 years, while the latter represented either the third insurance class or unemployed 195 

householder (Table C7). Differences in the latent candidate predictors implied their 196 

associations with the outcome. 197 

Table 1 198 

Association tests 199 

To select latent candidate predictors in the prediction models, their associations with the 200 

outcome were verified by multivariate analyses using inverse probability weighting (see 201 

Table C8 for comparison to those verified by logistic regression). We adjusted 202 

associations using confounders (Table 2; Figures B1-B9). Significant associations 203 

persisted after adjustment, in which the effect sizes only slightly changed. However, 204 

since the effect sizes were small, the selected latent candidate predictors might be weak 205 

predictors for the prediction models. 206 

Table 2 207 
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The best prediction model 208 

Only three of the five models were approximately well-calibrated (Figure 2a): the PC-209 

ENR, PC-GBM, and DI-VNN. Among these models, the PC-GBM was considerably 210 

the best-calibrated (intercept -0.00098, 95% CI -0.13098 to 0.12902; slope 0.95, 95% 211 

CI 0.46 to 1.44; Brier score 0.0063). Nevertheless, the downstream analyses evaluated 212 

all of the well-calibrated models. 213 

Figure 2 214 

The net benefits of these models were higher than those of either the treat-all or 215 

treat-none prediction (Figure 2b). It also applied to those using a threshold of 95% 216 

specificity. With this threshold, we found the DI-VNN to be the best model in terms of 217 

clinical utility with a net benefit of 0.0023 (95% CI 0.0022 to 0.0024). 218 

Regarding model explainability, both clinicians chose the DI-VNN among the 219 

well-calibrated models. They considered the plausibility of the top-five predictors 220 

according to the counterfactual probabilities (Table 3). One of the top predictors in the 221 

DI-VNN, i.e., severe preeclampsia, could change most of the predicted events into 222 

nonevents (PN 98.57%, 95% CI 98.5% to 98.63%) if the predictors were changed from 223 

positive to negative. Most of the nonevents were also changed into events (PS 2.08%, 224 

95% CI 2.07% to 2.09%) if the predictors were changed from negative to positive. In 225 

addition, we also show the models' parameters (Tables C9-C14) and all counterfactual 226 

probabilities (Tables C15-C17). 227 

Table 3 228 

The discrimination ability differed among the well-calibrated models according 229 

to the ROC curves (Figure 3) and AUROCs (Figure 4). Based on the internal calibration 230 
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split, we identified that the best model was also the DI-VNN (AUROC 0.742, 95% CI 231 

0.734 to 0.750; sensitivity 49.09%, 95% CI 47.60% to 50.58%). Using external 232 

validation, the AUROC of the DI-VNN (0.561, 95% CI 0.558 to 0.564) was 233 

considerably robust (i.e., the 95% CI >0.5). 234 

Figure 3 235 

Furthermore, we compared the best model with those from previous studies. 236 

Only three studies fulfilled the eligibility criteria from three literature databases within 237 

the last 5 years. All of the studies were systematic reviews. Thus, we also searched 238 

eligible articles in the systematic reviews, including those published more than 5 years 239 

earlier. This step resulted in 381 records, including the three systematic reviews (Figure 240 

B10). We included 27 studies (Tables D1, D2) of these records for the meta-analysis. 241 

These studies used only a training set; thus, the evaluation metrics were extracted only 242 

from the training set. We categorized these studies based on the publication year such 243 

that the trend of the predictor modalities could be differentiated. By estimation, the DI-244 

VNN was outperformed by those using ultrasound only from previous studies published 245 

from 1992 to <2002 (Figures 3, 4, Table C18). This finding was according to the 246 

sensitivity. However, those models were developed using smaller sample sizes (Figure 3) 247 

and were only evaluated using training sets (Figure 4). We also identified the latter issue 248 

for the previous model, which used both ultrasound and biomarkers but without other 249 

predictors, from a previous study published in a later year. Meanwhile, based on the 250 

AUROC using external validation splits, the DI-VNN was also estimated to outperform 251 

the previous models, which used either ultrasound or biomarkers without or with other 252 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.08.24300958doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.08.24300958
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

predictors, from previous studies published from 2002 to 2016 (i.e., the two latest 253 

groups of publication years). 254 

Figure 4 255 

Eventually, we chose the DI-VNN to predict FGR/SGA in advance among 12-256 

to-15-year-old females that visited primary, secondary, or tertiary care. Similar to the 257 

development pipeline of the prediction model, only a pregnant woman was eligible for 258 

the use of the DI-VNN to compute a predicted probability of FGR/SGA. We deployed 259 

the DI-VNN as a web application (https://predme.app/fgr_sga/). It can be used for future 260 

use or independent validation of the DI-VNN because it is open access.  261 

Discussion 262 

We developed, validated, and deployed a web application to predict FGR/SGA in 263 

advance using the medical history of diagnoses and procedures. The prediction model 264 

for the web application was the DI-VNN, chosen among five prediction models in this 265 

study, using only an internal validation set. However, external validation also 266 

demonstrated the robustness of the DI-VNN’s predictive performance. It was also 267 

comparable to those developed in the previous studies, which used ultrasound and 268 

biomarkers without or with other predictors. 269 

For predicting FGR/SGA, the previous models, as systematically reviewed in 270 

this study (Table D2), mainly required either ultrasound or biomarker measurements 271 

and a specific range of gestational ages. The models included those which were 272 

competitive with the DI-VNN based on the AUROC by internal validation (Figure 4). 273 

The models were by Shlossman, et al 27 (nos. 17e, 17f, and 17b), Bednarek, et al 28 (no. 274 

21), Valiño, et al 29 (no. 16), and Poon, et al 30 (no. 24). Conversely, external validation 275 
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estimated that the DI-VNN would outperform the other previous models with the 276 

similar requirements. The models were by Bano, et al 31 (no. 22a), Carbone, et al 32 (no. 277 

15c), Leung, et al 33 (no. 8c), and Krantz, et al 34 (no. 9b). Furthermore, evaluation of 278 

the previous models used training sets only, in which the predictive performances might 279 

have been overoptimistic. 280 

The DI-VNN required neither ultrasound nor biomarkers without or with other 281 

predictors. We would expect wider access for FGR/SGA predictions as either (1) a 282 

prediction model for use in resource-limited settings or (2) a preliminary prediction 283 

model before ordering advanced predictor measurements. However, the DI-VNN needs 284 

an impact study to evaluate its effect on patient outcomes in various settings. 285 

An effective prevention for FGR was given by ≤16 weeks’ gestation.3 To widen 286 

prevention time window, more clinical trials are needed. These studies are more 287 

efficient if they are conducted among pregnant women with higher risk, as predicted by 288 

the DI-VNN. Since it did not require a specific range of gestational ages, the DI-VNN 289 

opens more opportunities to conduct such trials. 290 

One of the strengths of this study were no requirements from our models, 291 

including the DI-VNN, for either ultrasound or biomarker measurements to predict 292 

FGR/SGA in advance. We could apply our models to a general population of pregnant 293 

women. Furthermore, our model did not require a specific gestational age range for 294 

computing the predicted probability. Unlike previous studies, we also conducted 295 

external validation to estimate the future predictive performance of the DI-VNN. 296 

However, we also identified several limitations of this study. The predictive 297 

performance of the best model, i.e., the DI-VNN, was considerably moderate according 298 

to the AUROC as was the sensitivity at 95% specificity using an internal validation set. 299 
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However, previous models also achieved similar predictive performances. Another 300 

limitation was that medical histories from electronic health records might take time to 301 

execute; yet, this is considerably more achievable in many settings. It still needs to be 302 

determined if the DI-VNN can improve patient outcomes. Nevertheless, this problem is 303 

not exclusive to this study because many previous studies in medicine have yet to 304 

evaluate the impacts of their prediction models.35 305 

Abbreviations 306 

AUROC, area under the receiver operating characteristics curve  307 

CI, confidence interval 308 

DI-VNN, deep-insight visible neural network 309 

ENR, elastic net regression 310 

FGR, fetal growth restriction 311 

GBM, gradient boosting machine 312 

ICD-10, International Classification of Disease version 10 313 

OR, odds ratio 314 

PC, principal component 315 

PN, probability of necessity 316 

PS, probability of sufficiency 317 

RF, random forest 318 

ROC, receiver operating characteristics 319 

RR, ridge regression 320 

SGA, small for gestational age 321 
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Figure Captions 520 

Figure 1. Subject selection by applying a retrospective design and data partitioning 521 
for internal and external validations. The set for association tests included censored 522 
outcomes. The summation of the internal and external validation numbers differs from 523 
the total because: (1) there were subject overlaps; (2) the numbers of subjects and visits 524 
in the censored internal validation are not shown; and (3) we excluded subjects with no 525 
pregnancy before data analysis. a, the first and second pregnancies of a subject within 526 
the database period, not parity; b, subjects per pregnancy episode; c, only subjects in the 527 
external random split overlapped with those in the internal validation sets; n, sample 528 
size; (?), number of censoring; (–), number of nonevents; (+), number of events. 529 

Figure 2. Model calibration (a) and clinical utility (b). We evaluated both using a 530 
calibration split (i.e., ~20% of internal validation set) within the optimal range of 531 
predicted probabilities (equivalent to thresholds) across all of the models. This figure 532 
shows only the well-calibrated models. Solid lines with gray shading show the 533 
regression line and standard errors over point estimates of true probabilities. Dotted 534 
lines show a threshold of 95% specificity. CI, confidence interval; DI-VNN, deep-535 
insight visible neural network; ENR, elastic net regression; GBM, gradient boosting 536 
machine; PC, principal component. 537 

Figure 3. Model discrimination by receiver operating characteristics (ROC) curves. 538 
The evaluation used a calibration split (i.e., ~20% of the internal validation set) for only 539 
the well-calibrated models. The vertical dotted lines show 95% specificity, while the 540 
diagonal dotted lines show the area under the ROC curve (AUROC) of 0.5 as a 541 
reference. DI-VNN, deep-insight visible neural network; ENR, elastic net regression; 542 
GBM, gradient boosting machine; PC, principal components. 543 

Figure 4. Model discrimination by the area under the receiver operating 544 
characteristics curves (AUROCs). This figure shows only the well-calibrated models. 545 
The vertical dotted lines show AUROCs of 0.5 and the averages using internal 546 
calibration split, training set, and external random and non-random splits. See Appendix 547 
D for details of eligible models from previous studies. If any predictor list of these 548 
models is too long, then it is truncated by “…”. βhCG, β-subunit human 549 
choriogonadotropin; BMI, body-mass index; Cig., cigarette; CRL, crown-rump length 550 
(fetus); CU-R, cerebral-umbilical ratio; DI-VNN, deep-insight visible neural network; 551 
EFW, estimated fetal weight; ENR, elastic net regression; GBM, gradient boosting 552 
machine; ICA, internal carotid artery; MCA, middle cerebral artery; NT, nuchal 553 
translucency thickness (fetus); PAPP-A, pregnancy-associated plasma protein-A; PC, 554 
principal component; PlGF, placental growth factor; PI, pulsatility index; RA, renal 555 
artery; RI, resistance index; ROC, receiver operating characteristics; SD, systolic-556 
diastolic ratio; sFLT-1, soluble fms-like tyrosinase-1; UA, umbilical artery; UtA, 557 
uterine artery.  558 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.08.24300958doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.08.24300958
http://creativecommons.org/licenses/by-nc/4.0/


22 
 

Table 1. Subject characteristics for association tests and internal validation set. 559 

Variable  Not FGR/SGA a  
(n=26,459) 

FGR/SGA a 
(n=117) 

p value 

Pregnancy episode 
within database 
period b 

First pregnancy, c no. (%) 25,096 (94.85) 109 (93.16) (reference) 

Second pregnancy, c no. (%) 1363 (5.15) 8 (6.84) 0.41 

Maternal age Mean (SD), year 29 (6) 28 (6) 0.006** 

Insurance class First, no. (%) 3604 (13.62) 21 (17.95) (reference) 

Unspecified, no. (%) 87 ( 0.33) 1 ( 0.85) 0.51 

Second, no. (%) 9226 (34.87) 50 (42.74) 0.78 

Third, no. (%) 13,542 (51.18) 45 (38.46) 0.03* 

Marital status Married, no. (%) 16,831 (63.61) 77 (66) (reference) 

Single, no. (%) 2397 ( 9.06) 20 (17) 0.02* 

Unspecified, no. (%) 7117 (26.90) 20 (17) 0.05 

Divorced/widowed, no. (%) 114 ( 0.43) 77 (66) 0.97 

Occupation 
segment of the 
householder 

Central-government employee, no. (%) 7683 (29.04) 20 (17.1) (reference) 

Private company employee, no. (%) 9611 (36.32) 57 (48.7) 0.002** 

Private company employer or self-
employed, no. (%) 

7871 (29.75) 35 (29.9) 0.06 

Local-government employee, no. (%) 1278 ( 4.83) 5 ( 4.3) 0.42 

Unemployed, no. (%) 16 ( 0.06) 5 ( 4.3) 0.98 

Pregnancy-induced 
hypertension 

Negative, no. (%) 25,366 (9.6e-01) 98 (8.4e-01) (reference) 

Positive, no. (%) 1093 (4.1e-02) 19 (1.6e-01) <0.001*** 

Multiple 
pregnancies 

Negative, no. (%) 26,271 (9.9e-01) 112 (9.6e-01) (reference) 

Positive, no. (%) 188 (7.1e-03) 5 (4.3e-02) <0.001*** 

Malaria Negative, no. (%) 26,439 (1.0e+00) 117 (1.0e+00) (reference) 

Positive, no. (%) 20 (7.6e-04) 0 (0.0e+00) <0.001*** 

Varicella Negative, no. (%) 26,446 (1.0e+00) 117 (1.0e+00) (reference) 

Positive, no. (%) 13 (4.9e-04) 0 (0.0e+00) <0.001*** 

Risk of adverse 
pregnancy by 
maternal age 

Negative, no. (%) 19,660 (7.4e-01) 93 (7.9e-01) (reference) 

Positive, no. (%) 6799 (2.6e-01) 24 (2.1e-01) <0.001*** 

Urinary tract 
infection 

Negative, no. (%) 26,294 (9.9e-01) 116 (9.9e-01) (reference) 

Positive, no. (%) 165 (6.2e-03) 1 (8.5e-03) <0.001*** 

Placenta previa Negative, no. (%) 26,187 (9.9e-01) 113 (9.7e-01) (reference) 

Positive, no. (%) 272 (1.0e-02) 4 (3.4e-02) <0.001*** 

Low 
socioeconomic 
status 

Negative, no. (%) 12,901 (4.9e-01) 72 (6.2e-01) (reference) 

Positive, no. (%) 13,558 (5.1e-01) 45 (3.8e-01) 0.05* 

This table shows only latent candidate predictors with significant associations by multivariate analyses (Table 2). * 560 
p≤0.05; ** p≤0.01; *** p≤0.001; a, Subject per pregnancy episode (not including censored delivery); b, Not 561 
FGR/SGA vs. FGR/SGA (not including those who were not pregnant); c, The first and second pregnancies of a 562 
subject within the database period; FGR, fetal growth restriction; SGA, small for gestational age; SD, standard 563 
deviation.  564 
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Table 2. Association between each latent candidate predictor and fetal growth 565 
restriction (FGR)/small for gestational age (SGA) by inverse probability weighting. 566 

Variable of interest Unadjusted OR (95% CI; p value) Adjusted OR (95% CI; p value) Adjustment 
Pregnancy-induced 
hypertension 

1.012 (1.011 to 1.013; p<0.001***) 1.007 (1.007 to 1.008; p<0.001***) Multiple 
pregnancies + 
Risk of adverse 
pregnancy by 
maternal age 

Multiple pregnancies 1.051 (1.047 to 1.054; p<0.001***) 1.048 (1.044 to 1.052; p<0.001***) Risk of adverse 
pregnancy by 
maternal age 

Malaria 0.993 (0.993 to 0.993; p<0.001***) 0.993 (0.993 to 0.993; p<0.001***) Low 
socioeconomic 
status 

Varicella 0.993 (0.993 to 0.993; p<0.001***) 0.993 (0.993 to 0.993; p<0.001***) (no adjustment) 
Risk of adverse 
pregnancy by 
maternal age 

0.996 (0.996 to 0.996; p<0.001***) 0.996 (0.996 to 0.996; p<0.001***) (no adjustment) 

Urinary tract 
infection 

1.068 (1.064 to 1.073; p<0.001***) 1.137 (1.128 to 1.146; p<0.001***) Risk of adverse 
pregnancy by 
maternal age 

Placenta previa 1.028 (1.026 to 1.031; p<0.001***) 1.022 (1.02 to 1.024; p<0.001***) Risk of adverse 
pregnancy by 
maternal age 

Low socioeconomic 
status 

0.999 (0.999 to 1; p=0.05*) 0.999 (0.999 to 1; p=0.05*) (no adjustment) 

* p≤.05; ** p≤.01; *** P ≤.001; CI, confidence interval; OR, odds ratio.  567 
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Table 3. Model explainability by clinical assessments based on counterfactual 568 
probabilities. 569 

Model Top-five predictor PN (95% CI) PS (95% CI) Clinician 1 Clinician 2 
DI-VNN a, b M791, Myalgia 97.63% 

(97.51% to 97.76%) 
1.7% 
(1.7% to 1.71%) 

Plausible Implausible, only a 
general symptom 

O141, Severe 
preeclampsia 

98.57% 
(98.5% to 98.63%) 

2.08% 
(2.07% to 2.09%) 

Implausible Plausible, especially 
early-onset 
preeclampsia  

O410, 
Oligohydramnios 

98.22% 
(98.11% to 98.33%) 

1.34% 
(1.33% to 1.34%) 

Plausible Plausible 

O470, False labor 
before 37 
completed weeks of 
gestation 

98.41% 
(98.15% to 98.67%) 

0.59% 
(0.59% to 0.59%) 

Plausible Plausible 

O48, Prolonged 
pregnancy 

98.33% 
(98.18% to 98.48%) 

0.82% 
(0.82% to 0.82%) 

Plausible Implausible, FGR/SGA 
mostly preterm and 
term 

PC-ENR b Placenta previa c 98.2% 
(98.15% to 98.25%) 

8.39% 
(8.39% to 8.39%) 

Implausible Plausible 

E86, Volume 
depletion 

98.08% 
(97.93% to 98.22%) 

8.44% 
(8.44% to 8.44%) 

Implausible Plausible 

K021, Caries of 
dentine 

99.9% 
(99.88% to 99.91%) 

9.31% 
(9.3% to 9.32%) 

Implausible Plausible 

O410, 
Oligohydramnios 

98.4% 
(98.32% to 98.49%) 

8.47% 
(8.47% to 8.47%) 

Implausible Plausible 

O624, Hypertonic, 
uncoordinated, and 
prolonged uterine 
contractions 

99.43% 
(99.37% to 99.49%) 

8.44% 
(8.44% to 8.44%) 

Implausible Implausible, after 
FGR/SGA onset and 
only during labor 

PC-GBM Urinary tract 
infection c 

98.96% 
(98.85% to 99.06%) 

5.7% 
(5.68% to 5.71%) 

Implausible Plausible 

E282, Polycystic 
ovarian syndrome 

99.82% 
(99.79% to 99.85%) 

2.34% 
(2.34% to 2.34%) 

Implausible Plausible, PCOS 
mostly with infertility 
which is likely 
undergoing ovarian 
stimulation, 
subsequently resulting 
in twin pregnancy and 
FGR/SGA 

E86, Volume 
depletion 

99.08% 
(98.97% to 99.19%) 

16.46% 
(16.43% to 16.49%) 

Implausible Plausible 

N832, Other and 
unspecified ovarian 
cysts 

98.68% 
(98.51% to 98.86%) 

8.22% 
(8.2% to 8.24%) 

Implausible Implausible, only large-
size cysts compete with 
fetal growth, yet, 
unspecified cysts are 
likely small, corpus-
luteum cysts 

Z349, Supervision 
of normal 
pregnancy, 
unspecified 

98.65% 
(98.61% to 98.7%) 

1.76% 
(1.76% to 1.77%) 

Implausible Implausible, no risk of 
FGR/SGA in normal 
pregnancy 

The clinicians assessed only the well-calibrated models without information on the predictive performances; the top-570 
five predictors had either a top probability of necessity (PN) or probability of sufficiency (PS); a, chosen by clinician 571 
1; b, chosen by clinician 2; c, latent predictor (see Table 2). CI, confidence interval; DI-VNN, deep-insight visible 572 
neural network; ENR, elastic net regression; FGR, fetal growth restriction; GBM, gradient boosting machine; PC, 573 
principal component; PCOS, polycystic ovarian syndrome; PN, probability of necessity (probability of predicted 574 
outcomes would have been nonevents among samples with a positive predictor and an event if changing the predictor 575 
to negative); PS, probability of sufficiency (probability of predicted outcomes would have been events among 576 
samples with a negative predictor and a nonevent if changing the predictor to positive); SGA, small for gestational 577 
age. 578 
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