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Abstract 8 

Neglected tropical diseases (NTDs) are the most prevalent diseases worldwide affecting one-9 

tenth of the world population. Although there are multiple approaches to diagnosing these 10 

diseases, using skin manifestations and lesions caused as a result of these diseases along with 11 

other medical records is the preferred method. This fact triggers the need to explore and 12 

implement a deep learning-based diagnostic model using multimodal data fusion (MMDF) 13 

techniques to enhance the diagnostic process. This paper, thus, endeavored to present a 14 

thorough systematic review of studies regarding the implementation of MMDF techniques for the 15 

diagnoses of skin-related NTDs. To achieve its objective, the study used the PRISMA method 16 

based on predefined questions and collected 427 articles from seven major and reputed sources 17 

and critically appraised each article. Since no previous studies were found regarding the 18 

implementation of MMDF for the diagnoses of skin related NTDs, similar studies using MMDF 19 

for the diagnoses of other skin diseases, such as skin cancer, were collected and analyzed in this 20 

review to extract information about the implementation of these methods. In doing so, various 21 

studies are analyzed using six different parameters including research approaches, disease 22 

selected for diagnosis, dataset, algorithms, performance achievements and future directions. 23 

Accordingly, although all the studies used diverse research methods and datasets based on their 24 

problem, deep learning-based convolutional neural networks (CNN) algorithms are found to be 25 

the most frequently used and best performing models in all studies reviewed. 26 
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1. Introduction 28 

Being the largest organ in the human body, the skin can serve as an indicator of some illnesses 29 

arising from different causes such as cancer, internal organ failure, and neglected tropical 30 

diseases. NTDs are the most prevalent diseases globally affecting more than one billion people 31 

worldwide (i.e., more than ten percent of the world’s population), particularly, in the tropical 32 

areas of the world among the poorest, most vulnerable and outcast groups and still have 33 

devastating impacts on people's physical, mental, and social well-being [1][2][3][4]. However, 34 

these diseases can be diagnosed using skin related symptoms since majority of the NTDs have 35 

primary skin indicators or associated clinical features where 18 of the 20 NTDs (recognized by 36 

the World Health Organization (WHO)) having skin related symptoms [5]. Hence, the utilization 37 

of DL-based diagnostic systems for the diagnoses and recognition of skin related NTDs will be a 38 

great achievement in overcoming the NTDs. This study endeavored to present a thorough 39 

systematic review of studies regarding the implementation of MMDF techniques for the 40 

diagnoses of skin related NTDs. Since no previous studies implemented MMDF techniques for 41 

the diagnoses of skin NTDs, related studies conducted for the diagnoses of skin diseases other 42 

than NTDs using MMDF and DL methods were deeply appraised by this review. These studies 43 

confirmed that the utilization of MMDF techniques outperforms the traditional diagnostic 44 

models that implemented DL methods without MMDF [6][7][8][9]. It is in view of these facts 45 

the study is -motivated to conduct this systematic literature review and a thorough appraisal of 46 

previous studies using the PRISMA method of systematic review based on the following guiding 47 

questions:  48 

• What DL methods or approaches were utilized for the diagnoses of the skin disease(s)? 49 

• Which data fusion methods were used for the skin disease diagnosis tasks?  50 

• What types of medical data were integrated to demonstrate MMDF method for the 51 

diagnoses of the skin diseases?  52 

• Which algorithms were used and how does each algorithm perform in the DL-based 53 

MMDF skin disease diagnostic model or system? 54 
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2. The Need for Intelligent Diagnostic Systems 55 

In recent times, due to the high desire to enhance the diagnostic processes in the healthcare 56 

sectors, the utilization of automated and intelligent diagnostic systems is getting greater attention 57 

for the diagnosis of various diseases. In this regard, intelligent diagnostic systems built based on 58 

machine learning (ML) and deep learning (DL) methods are the most researched and deployed 59 

approaches in the healthcare sector to support diagnostic decision making. On the other hand, in 60 

the real-world clinical settings, efficient disease diagnostic processes are basically carried out by 61 

using different clinical data that are taken from different sources and different formats or 62 

modalities including textual patient information and medical clinical images such as X-ray, 63 

dermoscopic images or even patient skin images. The integrative utilization of the diverse 64 

modalities of medical data can be used to enhance the diagnostic processes, thereby enhancing 65 

the quality of healthcare services, by using the ML and DL methods. In ML, this process of 66 

integrating multiple modalities of data (possibly taken from different sources) is technically 67 

called multimodal data fusion [10][11]. Multimodal data techniques are playing vital roles in 68 

developing intelligent disease diagnostic systems for different diseases such as in dermatology 69 

[12]. In this regard, MMDF techniques are advancing diagnostic accuracy, where these methods 70 

outperform other baseline methods, as presented in [13]. 71 

2.1. Deep Learning and Diagnoses of NTDs 72 

The current diagnostic approaches used for NTDs are mainly based on clinical procedures, such 73 

as patient observation and laboratory examinations based on limited resources in most affected 74 

areas. Currently, however, there are efforts towards the utilization of intelligent diagnostic tools 75 

using ML and DL approaches. Since most of the NTDs are curtly being diagnosed using skin 76 

manifestation, the utilization of DL-based approaches for the diagnoses of these diseases would 77 

be a great potential to support and enhance the diagnostic processes. In this regard, different 78 

studies were previously conducted to diagnose various NTDs. Beesetty et al. [14], conducted a 79 

study towards leprosy skin lesion detection employing a Siamese (Siamese NN)-based few-shot 80 

learning (FSL) model for a small clinical dataset and claimed a higher (91.25%) diagnostic 81 

accuracy. On the other hand, Ali et al. [15] used ML methods for early prediction of 82 

Schistosomiasis and concluded with the CatBoost model showing the best performance with the 83 
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highest accuracy of 87.1%.  An optimized diagnostic approach was also proposed for NTDs by 84 

selecting three diseases and developing a model using SVM and the black hole algorithm (BHO) 85 

achieving an accuracy of 96% [16]. Another study reviewed by the current study demonstrated a 86 

DL-based diagnostic model for NTDs using skin images only and achieved 70% accuracy [17]. 87 

All the aforementioned studies utilized ML and DL methods for the diagnoses of NTDs and 88 

achieved remarkable results in terms of accuracy. However, no previous studies were found that 89 

utilized DL-based methods using MMDF techniques which will help to achieve higher 90 

diagnostic accuracies, as experimented in other studies for non-NTD skin diseases which require 91 

further research. 92 

2.2. Data Fusion Approaches 93 

Data or information fusion represents the usage of data or information from different sources in 94 

different formats or modalities for interpretation in all tasks that require any type of parameter 95 

estimation or prediction using data or information [18]. There are different fusion techniques to 96 

combine and aggregate multimodal data which include feature-level fusion, decision-level or late 97 

fusion, hybrid multimodal fusion, model-level fusion, rule-based fusion, classification-based 98 

fusion and estimation-based fusion [19].  99 

2.2.1. Feature Fusion 100 

Feature fusion is a data integration technique used to aggregate multiple feature sets extracted 101 

from multiple input data to generate a single feature set [19]. In image processing problems, it 102 

refers to the fusion of feature vectors of training images extracted from shared weight network 103 

layer and feature vectors composed of other numerical data [20]. It helps to learn image features 104 

fully for the description of their rich internal information [21]. Various studies are found and appraised 105 

that use feature fusion techniques to develop diagnostic models for the diagnoses of skin diseases, as 106 

summarized in Table 1. 107 

2.2.2. Model Fusion 108 

Model fusion, also known as late fusion, represents a fusion approach that combines different 109 

models. The study done by AlDahoul et al. [22],  combines two deep neural networks including 110 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 16, 2024. ; https://doi.org/10.1101/2024.01.07.24300957doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.07.24300957


                              5 

  

binary normal/attack classifier and multi-attack classifier to train a deep neural network (DNN) 111 

for network anomaly detection. As mentioned in [19], the model fusion technique uses the 112 

connection between experimental data under different modalities. 113 

2.2.3. Image Fusion 114 

Image fusion combines different images and generates informative images by integrating images 115 

obtained from different sources [23]. A previous study [24], suggested that aggregating medical 116 

images helps to enhance diagnostic accuracy. This claim was demonstrated by fusing clinical 117 

images and dermoscopic images using the deep convolutional neural networks (DCNN) methods 118 

and achieved an overall accuracy of 81.3%. While the clinical images are clinically captured 119 

photographs [25], dermoscopic images represent images taken by dermatologists using 120 

dermoscopy [26]. 121 

2.2.4. Multimodal Data Fusion 122 

Multimodal data represents the different formats or modalities of data such as text, image, video, 123 

and audio. A multimodal data fusion approach is used for combining particular modalities to 124 

derive multimodal representation [10][11][19][27]. This approach has multiple applications for 125 

healthcare systems as it allows the combination of different modalities of data, such as textual 126 

medical history of patients, clinical images of patients (such as skin images of patients) to form a 127 

single multimodal dataset that can be used to train diagnostic models using ML and DL methods. 128 

In this regard, various studies implemented and demonstrated MMDF for the diagnoses of 129 

different skin diseases as summarized in Table 2. 130 

3. Materials and Methods 131 

To conduct and report this systematic review, we follow as a basis, the steps suggested by the 132 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model 133 

[28][29] as described below.  134 
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3.1. Search Strategy 135 

Research articles were searched from all the major indexing databases and search engines, such 136 

as Google Scholar, PubMed, IEEE Explore, and ScienceDirect. In addition, proper search 137 

keywords were prepared and used while searching for the articles, where the search keywords 138 

have the appropriate level of relationships with the topics and contents of the articles. A set of 139 

searching keywords have been used to deeply search and filter the articles. In this regard, 140 

Boolean operators “AND” and “OR” were mainly used. The “AND” operator was used to search 141 

for articles in a specific research area to narrow down the search results; “multimodal medical 142 

data” AND “data fusion” to search for articles containing both phrases. On the other hand, the 143 

“OR” Boolean operator was used to search for articles from wider perspectives as this operator 144 

broadens the search results such as “machine learning” OR “deep learning”.  145 

Using the specified methods and operators, multiple search keywords were initially prepared and 146 

used to find a sufficient amount of relevant articles. Although a lot of search keywords were used 147 

while searching for the articles, some of the keywords include ["Neglected Tropical Diseases" 148 

OR "NTDs" AND "Diagnosis" OR "diagnostic model" AND "Deep Learning" OR "DL" OR 149 

"Convolutional Neural Network" OR "CNN"  OR "Deep Neural Network" OR "DNN" OR 150 

"Recurrent Neural Network" OR "RNN"], ["Neglected Tropical Diseases" OR "NTDs" AND 151 

"Diagnosis" OR "diagnostic model" AND "Deep Learning" OR "DL" or "Convolutional Neural 152 

Network" OR "CNN" OR "Deep Neural Network" OR "DNN" OR "Recurrent Neural Network" 153 

OR "RNN" AND "Data Fusion" OR "Multimodal medical Data" OR "Multimodal Data 154 

Fusion"], [(((deep learning) AND ((diagnostic model) OR (diagnostic system) OR (diagnostic 155 

tool)) AND (skin diseases) AND (skin images)) AND (medical record)) AND (data fusion))]. 156 

3.2. Eligibility Criteria 157 

Out of the total 427 selected articles, not all articles are critically relevant for the review 158 

concerning the integration of multimodal data fusion techniques based on DL methods for the 159 

diagnosis of skin related NTDs. Hence, a set of inclusion and/or exclusion criteria are applied, as 160 

shown below. 161 
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� Articles must use and demonstrate DL methods for the diagnosis of skin NTDs, at least 162 

skin diseases if not implemented for skin NTDs, with proper evaluation of the methods 163 

used.  164 

� Articles must use and demonstrate proper utilization of multimodal data fusion 165 

techniques for the diagnosis of skin NTDs, at least skin diseases since there are no 166 

previous studies that use multimodal data fusion techniques for the diagnosis of skin 167 

NTDs so far.  168 

� Articles must incorporate precise presentation or discussion and evaluation of all the 169 

methods and techniques used in that particular article.  170 

� An Article that used DL methods for the diagnosis of skin related diseases other than 171 

NTDs is selected if that particular article uses new or emerging DL methods and presents 172 

a proper analysis of the methods and techniques used for the diagnosis of that particular 173 

skin disease(s). However, articles that use the popular and previously used DL methods 174 

for the diagnosis of diseases other than skin diseases have fewer chances to be selected. 175 

� The article should have an appropriate level of similarity and relationships in its topics 176 

and contents with the searching keywords used to deeply search and filter the articles. 177 

� Articles that do not utilize DL and data fusion techniques are excluded from analysis. 178 

� Articles published in languages other than English are excluded from analysis. 179 

� Finally, articles published prior to the year 2014 are also excluded. 180 

3.3. Article Search 181 

Different searching methods such as ‘basic search’ and ‘advanced search’ methods were used on 182 

multiple article sources. First, the ordinary or basic searching method was used where general 183 

titles and the proposed keywords were entered in the regular ‘search box’ of each of the 184 

databases and searched. Secondly, the ‘advanced search’ option was used which allows to 185 

specify subject areas, related topics, publication dates and other relevant options which helps to 186 

obtain articles that are relevant to the topic by narrowing down the search results.  187 

Using both of the search methods and search keywords, a thorough and rigorous searching was 188 

conducted on multiple search engines, journals, databases and libraries to find relevant articles. 189 

The sources include Google Scholar, IEEE Explore, MDPI, Mendeley, Nature, PubMed, 190 
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ScienceDirect, AJOL, IDP, NCBI, PLOS, Springer, and Tropical Medicine and Health. Finally,191 

by specifying article publication dates and applying the searching methods on the different192 

databases, 427 articles that were published between the year 2014 and 2024 were collected and193 

prepared for screening. Each database was used independently to search articles. In this regard,194 

Google Scholar was primarily used and it allowed us to collect 178 articles from the195 

aforementioned different sources. Furthermore, extensive searches were done in search of196 

articles that implement multimodal data fusion for the diagnosis of skin NTDs. However, no197 

relevant articles were found related to this particular area.  198 

On the other hand, previously searched sources such as academic web portals, academic libraries199 

and research sites were also used as there were relevant documents from these sources. Hence,200 

16 articles were collected from such sources.  201 

202 

Fig 1: Total collected articles and their distribution by article databases/ search engines 203 

3.4. Relevant Article Selection 204 

To select relevant articles, an extensive searching method was used using wider options of205 

searching keywords. The entire process of article selection for this review was conducted based206 
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on the PRISMA method as it was an evidence-based minimum set of items for reporting for207 

systematic reviews and meta-analyses [29][28]. This was done to provide insights for the recent208 

and future research regarding the utilization of DL methods for NTDs diagnosis, the integration209 

of data fusion techniques if they have been used for NTDs and finally to assess and present210 

feedback so as to enhance the performances of such DL-based models.  211 

A series of screening operations were implemented on the collected articles in order to identify212 

the most relevant set of articles for this review. In this case, the first level screening was213 

conducted manually on a total of 427 files using file names and titles of the article. This task214 

allowed us to check if there were duplicates as there were similar files downloaded from multiple215 

sources and it was performed manually by opening and checking files. In this process, 397 items216 

were selected out of the total 427 articles in three phases as summarized in Figure 2 below. 217 

Then, the next levels of screenings were performed using software tools such as ‘EndNote’ and218 

‘Rayyan’. As a reference management tool, EndNote was used to create a library containing the219 

collected articles and for manipulation and data processing to check duplicate files in the library.220 

It automatically removed 25 articles as there were duplicate files from different folders followed221 

by an automatic duplicate detection where one duplicate article was identified by EndNote and222 

removed leading to a library containing 371 articles.  223 

224 

Fig 2: Distribution of articles after first and second level screening 225 
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The next task involved screening the articles using a higher-level screening software tool based226 

on title, author names and abstracts. For this purpose, Rayyan, a free online software tool [30]227 

was employed which is mainly used to speed up the literature screening process in systematic228 

reviews. This online tool uses the article library exported from EndNote and it was first used to229 

check duplication. Through this process, 4 duplicated articles were detected in the library and230 

two of them were removed where 369 articles were finally identified using Rayyan for the final231 

screening process. Next, using this online software tool, 90 articles that have a relationship with232 

the current topic of the study were selected based on title and abstract analysis. Further screening233 

was required to identify articles in relation to the study area and 18 articles were identified out of234 

the 90 related articles. Finally, 9 articles were selected for the final analysis. The overall article235 

selection procedure is outlined using the PRISMA flow chart as depicted in Figure 3 below. 236 

 237 

Fig 3: Article selection for systematic literature review following PRISMA flow chart  238 
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4. Results 239 

After conducting three levels of screening, 90 articles that have a direct relationship with the240 

current systematic review have been selected for further screening based on full-text reading and241 

analyses. The selected articles and their respective publication year along with the distribution of242 

the publications years have been shown in Figure 4 below. As shown in Figure 4, the articles243 

used for this systematic review included studies that have been published recently, where the244 

majority of the studies representing 31% are articles published in 2023, 25% were published in245 

2022, 16% were published in 2021, 14% were published in 2020, and the remaining 14% were246 

articles published from 2014 – 2019. 247 

248 

Fig 4: Distribution of articles after the third level screening by publication year 249 

Finally, the 90 articles were further analyzed by categorizing them into four different groups, (i)250 

articles that utilized DL methods for the diagnosis of skin diseases, (ii) articles that implement251 

ML & DL techniques for the diagnosis of NTDs, (iii) articles about the implementation of252 

multimodal data fusion techniques for medical data fusion, and (iv), articles that implement253 

multimodal data fusion based on DL-based methods for the diagnosis of skin diseases as shown254 

in Figure 5 below.  255 
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256 

Fig 5: Distribution of articles by research area/methods and selected diseases after the third level screening 257 

As portrayed in Figure 5 above, 54.44% of articles utilized ML and DL methods for the258 

diagnosis of skin diseases in general, 20% deal with multimodal data fusion techniques for259 

healthcare systems and 20% implementation of DL-based multimodal data fusion methods for260 

the diagnosis of skin diseases. On the other hand, 5.56% of the articles utilized ML and DL261 

methods for the diagnoses of NTDs in general have been identified and analyzed. However, no262 

article has been found that deals with the implementation of DL-based MMDF methods for the263 

diagnosis of NTDs which has led to the analyses of previous studies that used this approach for264 

the diagnoses of different skin diseases other than the NTDs. By conducting the fourth level265 

screening, 18 articles that utilize different fusion techniques for the diagnosis of various skin266 

diseases have been identified.  267 

4.1. Article Analysis 268 

The final screening has resulted in the separation of 7 of the 18 articles due to the fusion269 

techniques they utilize for the diagnosis of skin diseases. The fusion techniques presented in270 

those 7 studies are feature fusion (5 studies), image fusion (1 study) and model fusion (1 review271 

study) as presented in Table 1 below. Table 1 presented the analysis of three different types of272 

fusion other than MMDF using five different parameters as shown in the table below.  273 
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Table 1: Review of the future fusion and related techniques for skin disease diagnoses 274 

Ref 
Pub. 

Yr. 

Study Method / 

Approach Used 

Disease(s) 

Selected 

Dataset(s) 

Used 

Algorithm(s) 

Used 

Performance 

Results Achieved 

[31] 2019 

Transfer Learning and 

multi-layer feature fusion 

network 

Skin 

Lesion 

HAM1000

0 dataset CNN 

high recognition 

(ROC-AUC 96.51) 

[24] 2021 

Image fusion (clinical & 

dermoscopic): multi-

labeled deep feature 

extractor and clinically 

constrained classifier 

chain (CC) 

Skin 

Cancer 

(Melanom

a) 

publicly 

available 7-

point 

checklist 

dataset DCNN, CC, PCA 

Reported 81.3% 

accuracy 

[6] 2022 
Multiclass skin lesion 

classification using 

feature fusion & extreme 

learning machine (ELM) 

Skin 

Disease 

(Skin 

Lesion) 

HAM1000

0 and 

ISIC2018 

SVM, fine KNN, 

DT, NB, 

ensemble tree 

(EBT), & single 

hidden layer 

ELM 

Registered best 

accuracy of 94.36 

percent 

[32] 2022 

Apply features fusion on 

manual  and automatic 

feature extraction  

Skin 

Cancer 

DermIS 

dataset 

CNN, LSTM, 

LBP, LBP, 

Inception V3 

Achieved 

maximum accuracy 

of 99.4% 

[33] 2023 

Dual-branch (feature) 

fusion network using 

DCNN and Transformer 

branches for local and 

global feature extraction 

Skin 

Disease 

(Skin 

Lesion) 

Used a 

private 

dataset 

XJUSL DCNN 

Reducing the 

number of 

parameters by 

11.17 M improved 

classification 

accuracy by 1.08% 

[34] 2023 

Feature fusion: fast-

bounding box (FBB), 

Hybrid Feature Extractor 

(HFE), and the CNN 

VGG19 based CNN 

Skin 

Cancer 

(Melanom

a) 

ISIC 2017 

and the 

Academic 

torrents 

dataset CNN 

Registered 99.85% 

accuracy 

 275 
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On the other hand, 2 articles presented a review of the multimodal data fusion techniques for the 276 

diagnoses of skin diseases other than NTDs. Although the 2 articles [12][13], didn’t implement 277 

MMDF techniques for a specific skin disease diagnosis using their datasets of preferences, they 278 

presented theoretical analyses. All in all, 9 articles are used for the final analysis of this review.  279 

After conducting the final screening procedures, 9 articles have been selected for the final 280 

analysis of this systematic review as presented in Table 2 below. The 9 articles selected utilized 281 

DL-based methods based on MMDF techniques for the diagnoses of different skin diseases other 282 

than NTDs. The 9 studies are selected for the final analysis of this review since there are no 283 

similar studies found for the diagnosis of skin related NTDs based on MMDF.  Since skin related 284 

NTDs are being diagnosed using skin photos or images, patient records and related information, 285 

these studies are selected and reviewed to analyze the different techniques utilized by those 286 

studies. The final analysis is conducted on the 9 articles using 5 different analysis criteria (the 287 

methods used, diseases selected for diagnosis, dataset used, algorithms used and corresponding 288 

performance achievements) to identify research gaps as presented in Table 2 below.  289 

5. Discussion 290 

The primary goal of this systematic review was to collect and analyze research studies that are 291 

pertinent to the area of DL-based models that use multimodal data fusion techniques for the 292 

diagnosis of skin related NTDs. Since no studies were found in the specified area, similar or 293 

related studies that implement MMDF techniques based on DL for the diagnoses of skin diseases 294 

were collected and analyzed to extract pertinent information. In doing so, 9 articles (indexed in 295 

Scopus and Web of Science) about data fusion techniques, particularly MMDF techniques for the 296 

diagnosis of skin diseases have been examined and analyzed. Table 2 below presents the 297 

summary of the studies that implemented the different MMDF techniques based on DL for the 298 

diagnoses of different skin diseases. 299 
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Ref. 
Pub. 

Yr. 

Study Method / Approach 

Used 

Disease(s) 

Selected  Dataset(s) Used 

Algorithm(s) 

Used 

Performance / Accuracy 

Results Achieved 

Recommendations 

Forwarded 

[35] 
2018 

 

 

Combining multiple imaging 

modalities (dermatoscopic & 

macroscopic) with patient 

metadata 

5 cases 

(such as 

melanoma) 

New DS composed 

of 2917 cases, from 

five classes (five 

selected diseases) 

CNN, Random 

Forrest classifier, 

ResNet-50 arch., 

ILSVRC 2015 

binary melanoma detection 

(AUC 0.866 vs 0.784) and in 

multiclass classification 

(mAP 0.729 vs 0.598)  

Integrating more benign 

non-excised skin and further 

stratify them based on 

suspicion 

[36] 2020 

 

Multiplication-based DF, 

using the metadata  

No specific 

disease 

selected 

ISIC’2018 and three 

types of metadata  

CNN, the color 

constancy 

algorithm 

outperforms traditional 

baseline approaches (p-values 

are smaller than 0.05) 

Exploring effects of more 

types of metadata for more 

skin diseases 

[7] 2021 

 

Combining images and 

metadata features: the 

(MetaBlock) Skin Cancer 

ISIC 2019 and PAD-

UFES-20 

CNN: using 5 

pre-rained 

models  

Performs better than the other 

combination approaches in 6 

out of 10 scenarios.  N/A 

[8] 2021 

 

 

Performance analysis of 

classifiers, and a naive 

combination of patient data 

and an image classifier Skin Cancer 

Collected 431 WSIs 

from two different 

laboratories with 

patient information CNN 

CNN: AUROC of 92.30%  

±0.23% &  balanced accuracy 

of 83.17% ±0.38%), naive 

strategy: accuracy to 86.72% 

±0.36%. 

Results achieved need to be 

confirmed systematically in 

larger studies with diverse 

data sets. 

[37] 
2022 

 

 

 

a DNN with two encoders 

and application of a 

multimodal fusion module 

with intra-modality self-

attention and inter-modality 

cross-attention Skin Cancer PAD-UPES-20 

CNN: CNN 

models (ResNet-

50) 

ACC (0.768 ± 0.022) and 

BACC (0.775 ± 0.022) & 

claimed outperforming other 

metadata fusion methods 

(MetaNet (P = 0.035) and 

MetaBlock (P = 0.028))  

Integrating the model into 

smartphone as a potential 

and handy tool to screen for 

skin disease and skin cancer 
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[38] 2022 

 

 

Multimodal Transformer: 

Vision Transformer (ViT) 

model, Soft Label Encoder 

(SLE), and a Mutual 

Attention (MA) block Skin disease 

A private DS 

collected (760 

images) & 

benchmark DS of 

the ISIC 2018  

CNN: CNN 

models 

(ResNet101, 

Densenet121) 

and ViT models 

Private DS (accuracy: 0.816, 

which is better than other 

popular networks) & On ISIC 

2018 DS (accuracy: 0.9381 

and an AUC of 0.99) 

To focus on image feature 

extraction and also, the data 

collection and data cleaning 

of skin diseases 

[39] 
2022 

 

 

 

Medical image analysis: 

Preprocessing, feature 

extraction, and 

classification/diagnosis, & 

the hold-out technique to 

split the dataset 

7 skin 

diseases  HAM10000 dataset 

CNN: 6 CNN 

pre-trained 

models, Hyper-

Parameter 

Optimization 

(HPO) algorithms 

Av. acc, sensitivity, 

specificity, precision, & disc 

similarity coefficient (DSC) 

of around 99.94%, 91.48%, 

98.82%, 97.01%, and 94.00%  

Testing other DL techniques 

to improve the classification 

accuracy and using other 

benchmark datasets with 

different skin disorders 

[9] 2022 

 

 

A DNN-based multi-modal 

classifier using wound 

images and their locations:- 

body map development, 

multi-modal network 

Wound 

Diagnosis 

developed (AZH 

DS), public DS 

(Medetec DS), and 

developed a mixed 

DS (AZHMT DS) 

 (AlexNet + 

MLP, AlexNet + 

LSTM, ResNet50 

+ MLP, VGG16 

+ LSTM) 

Max. Acc. on mixed class: 

varies from 82.48 to 100% 

the max. acc. on wound-class 

varies from 72.95 to 97.12% 

in various experiments 

Adding more modalities and 

more data, and  using more 

specific wound image 

classifier and wound 

location classifier networks  

[40] 2023 

 

 

Mapping heterogeneous data 

features, fusion of clinical 

skin image & patient clinical 

data, feature extraction & 

attention mechanisms Skin Cancer 

PAD-UFES-20:- 

skin images and 

patient information 

CNN: 

(VGGNet19, 

ResNet50, 

DenseNet121 & 

Inception-V3) 

Achieved accuracy of 80.42% 

(an improvement of about 9% 

compared with the model 

accuracy using only medical 

images) 

expanding scope of data 

collection: various types of 

imaging data (CT, MRI, US) 

and their corresponding 

clinical information  
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5.1. Methods used for building diagnostic models for skin diseases 300 

In the final analysis of this systematic review, the nine studies identified proposed and 301 

demonstrated the MMDF approach for the diagnosis of different skin diseases using their 302 

corresponding datasets. The studies utilized different methods and algorithms that include CNN, 303 

random forest, multilayer perceptron (MLP), long-short term memory (LSTM), the color 304 

constancy algorithm, and hyperparameter optimization (HPO) algorithms. Accordingly, 88.9% 305 

of the studies (8 articles) primarily utilized the CNN algorithm along with CNN architectures, 306 

while 11.1% of the studies utilized MLP and LSTM along with CNN architectures including 307 

ResNet50, VGG16, and AlexNet. In general, the studies employed different methods to 308 

demonstrate the DL-based methods for combining different modalities of patient data using 309 

different methods, such as the attention-based mechanism for combining images and metadata 310 

features, a multimodal transformer using the Vision Transformer (ViT) model, and mapping 311 

heterogeneous data features. In addition, DCNN architectures such as Densenet121, ILSVRC 312 

2015, VGG16, VGGNet19, ResNet50, ResNet101, DenseNet121, Inception-V3, AlexNet with 313 

MLP, AlexNet with LSTM, ResNet50 with MLP, and ViT models were utilized for feature 314 

extraction and transfer learning purposes.  315 

5.2. Fusion strategies suggested for skin disease diagnosis 316 

Generally, data fusion techniques determine some issues, including the method of integrating 317 

data, the data being fused or integrated, and the level at which data will be integrated. The 318 

studies used for this review demonstrated various fusion approaches, mainly feature fusion, 319 

model fusion, image fusion, and MMDF techniques. In this regard, 89% of the selected studies 320 

analyzed in this review implemented MMDF approaches for integrating mainly clinical images 321 

and textual medical data. Whereas only one study (11%) demonstrated the MMDF approach for 322 

combining two imaging modalities (dermatoscopic and macroscopic images) with patient 323 

metadata [35].  324 

As reported by the studies used in this review, various fusion strategies have been experimented 325 

with on a particular dataset while developing a diagnostic model for specific skin disease(s). 326 

Accordingly, the fusion methods or strategies include integrating multiple imaging modalities (2 327 
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image modalities in this case) with textual patient data [35], using a multiplication-based fusion 328 

approach (used to control data imbalance) [36], using the metadata processing block 329 

(MetaBlock) for enhancing features extracted from the images throughout the classification [7], 330 

other study used a naive combination of the patient data classifier module and a whole slide 331 

image classifier module [8]. Furthermore, using a DNN that has two encoders for extracting 332 

image features and textual features, a MMDF module with intra-modality self-attention and 333 

inter-modality cross-attention capability was experimented with, and it was reported that the 334 

model outperformed other fusion models [37]. On the other hand, a neural network with a 335 

multimodal transformer consisting of two encoders for both images and metadata and one 336 

decoder to fuse the multimodal information using the ViT model to extract image features, a soft 337 

label encoder for the metadata, and a mutual attention block to fuse the different features [38]. In 338 

another study, a fusion system was developed using four procedures consisting of preprocessing 339 

the image and metadata, feature extraction using six pre-trained models, feature concatenation 340 

(using CNN through convolutional, pooling, and auxiliary layers), and finally classification of 341 

skin disease [39]. Similarly, the feature concatenation method was used to develop a wound 342 

classifier multimodal network by concatenating the image classifier and location-based classifier 343 

outputs [9]. Finally, a skin cancer diagnostic model was developed following three procedures, 344 

including extracting features (skin images and patient clinical data using CNN architectures), 345 

using the attention mechanism (for handling the multimodal features), and finally developing a 346 

feature fusion model [40]. 347 

5.3. Achievements of MMDF techniques in diagnosing skin diseases 348 

As stated by the studies reviewed, in developing diagnostic models using MMDF techniques for 349 

skin diseases, various DL methods and algorithms were used, including CNN, Random Forest, 350 

MLP, and LSTM. The algorithms achieved sufficiently higher performances in their respective 351 

studies while being tested on a particular dataset. Consequently, it was confirmed that MMDF 352 

techniques outperform traditional baseline diagnostic approaches [7][36]. Furthermore, the 353 

majority of the studies reviewed reported that the disease classification models achieved 354 

accuracy of more than 80% [8][9][35][38]. A study using a DNN with two encoders that 355 

implement a multimodal fusion module with intra-modality self-attention and inter-modality 356 

cross-attention reported an accuracy of 76.8% [37]. Similarly, another study used in this review 357 
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that used medical image analysis based on feature extraction, feature concatenation, and 358 

classification or diagnosis methods reported 99.94% accuracy in the classification or diagnosis of 359 

seven selected skin diseases. In general, as the analysis results show, MMDF techniques are 360 

significantly improving classification accuracies. Therefore, the utilization of multimodal data 361 

fusion techniques based on the deep learning methods, algorithms, and models in different 362 

settings (such as an ensemble of two or more of those methods, algorithms, and models) is a 363 

potential research area that needs further investigation, especially for the diagnosis of NTDs.      364 

6. Conclusion 365 

In this systematic review, articles were collected from seven major and reputed sources where 366 

427 study papers were organized, classified, screened and selected to analyze the application of 367 

DL-based diagnostic models using multimodal data fusion techniques for the diagnoses of skin 368 

related NTDs. Although there are studies that demonstrate the utilization of DL methods for the 369 

diagnoses of NTDs, no previous studies were found regarding the implementation of MMDF 370 

methods for the diagnoses of NTDs. Similar studies using MMDF for the diagnoses of other skin 371 

diseases, such as skin cancer, are reviewed to extract information about the implementation of 372 

these methods. In doing so, the selected studies are analyzed using parameters such as research 373 

approaches used, disease(s) selected for the study, the dataset used, algorithms used, the 374 

performance achieved, and future directions suggested by the study. Accordingly, although all 375 

the reviewed studies used diverse research methods and datasets based on their problem, DL-376 

based CNN algorithms were found to be by far the most frequently used algorithm by all studies 377 

reviewed. In addition, DNN-based network architectures were widely utilized. In general, the 378 

implementation of MMDF methods for the diagnosis of skin diseases significantly enhances the 379 

diagnostic performances of models as per different studies reviewed, as confirmed in this review. 380 

Hence, utilizing MMDF methods for the diagnoses of skin diseases, particularly for skin related 381 

NTDs, would be paramount towards developing DL-based diagnostic models for NTDs. 382 
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