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Abstract: 18 

Background: Autism is a partially heritable neurodevelopmental condition, and people with 19 

autism may also have other co-occurring conditions such as ADHD, anxiety disorders, 20 

depression, mental health issues, learning difficulty, physical health conditions and 21 

communication challenges. The concomitant development of autism and other neurological 22 

conditions is assumed to result from a complex interplay between genetics and the environment. 23 

However, only a limited number of studies have performed analysis on multivariate genetic 24 

autism associations. 25 

Methods: We conducted to-date the largest multivariate GWAS on autism and 8 autism co-26 

occurring condition traits (ADHD, ADHD childhood, anxiety stress, bipolar, disruptive 27 

behaviour, educational attainment, major depression, and schizophrenia) using summary 28 

statistics from leading studies. Multivariate associations and central traits were further identified. 29 

Subsequently, colocalization and Mendelian randomization (MR) analysis were performed on 30 
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the associations identified with the central traits containing autism. To further validate our 31 

findings, pathway and quantified trait loci (QTL) resources as well as independent datasets 32 

consisting of 92 (30 probands) whole genome sequence data from the GEMMA project were 33 

utilized.   34 

Results: Multivariate GWAS resulted in 637 significant associations (p < 5e-8), among which 35 

322 are reported for the first time for any trait. 37 SNPs were identified to contain autism and 36 

one or more traits in their central trait set, including variants mapped to known SFARI autism 37 

genes MAPT and NEGR1 as well as novel ASD genes KANSL1, NSF and NTM, associated 38 

with immune response, synaptic transmission, and neurite growth respectively. Mendelian 39 

randomization analyses found that all 8 co-occuring conditions are associated with autism while 40 

colocalization provided strong evidence of shared genetic aetiology between autism and 41 

education attainment, schizophrenia and bipolar traits. Allele proportions differences between 42 

MAPT (17q21.31) region aberrations and MAPT H1/H2 haplotypes, known to associate with 43 

neurodevelopment wwere found between GEMMA autism probands and controls. Pathway, QTL 44 

and cell type enrichment implicated microbiome, enteric inflammation, and central nervous 45 

system enrichments.      46 

Conclusions: Our study, combining multivariate genome-wide association testing with 47 

systematic decomposition identified novel genetic associations related to autism and autism co-48 

occurring driver traits. Statistical tests were applied to discern evidence for shared and 49 

interpretable liability between autism and co-occurring traits. These findings expand upon the 50 

current understanding of the complex genetics regulating autism and reveal insights of neuronal 51 

brain disruptions potentially driving development and manifestation. 52 

Highlights:  53 

• Multivariate GWAS resulted in 637 significant ASD associations (p < 5e-8), among 54 

which 322 are reported for the first time.  55 

• The novel associations mapped to known SFARI autism genes MAPT and NEGR1 and 56 

novel ASD markers KANSL1, NSF and NTM markers, associated with immune 57 

response, synaptic transmission, and neurite growth, potentially driving the gut brain-58 

barrier hypothesis driving ASD.  59 
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• Mendelian randomization analyses found that the co-occuring traits ADHD, ADHD 60 

childhood, anxiety stress, bipolar, disruptive behaviour, educational attainment, major 61 

depression, and schizophrenia are strongly associated with autism.  62 

Keywords: Autism biomarkers, Multivariate GWAS, Mendelian randomization, GEMMA 63 

Introduction 64 

Autism spectrum disorders (autism) is an umbrella term for a group of heterogeneous 65 

neurodevelopmental conditions that manifest in early childhood. Autism is associated with 66 

polygenic markers and with several key factors such as family history, genetics and environment 67 

(Khachadourian et al. 2023; Nayar et al. 2021; Chaste and Leboyer 2012). The diagnosis of 68 

autism is based on its key characteristics including difficulties in social communication and 69 

interaction, restricted and repetitive behaviors, hyperactivity and divergent responses to sensory 70 

inputs. The most common co-occurring conditions in autistic persons are attention deficit 71 

hyperactivity disorder (ADHD), ADHD childhood, anxiety, bipolar (BP), depression, epilepsy, 72 

obsessive compulsive disorders (OCD) and stress related conditions, all of which share 73 

overlapping diagnostic attributes and challenging symptoms with autism (Khachadourian et al. 74 

2023; Romero et al. 2016). According to US data, autistic children tend to fare less well in 75 

educational attainment (EA) and about one in three have a reduced intellectual ability, as defined 76 

by intelligence quotient (IQ less than 70) (Baio et al. 2018; Tamm et al. 2020). Some children 77 

with autism having higher IQ scores also comparatively experience harder academic struggles 78 

due to co-occurring conditions and difficulties in social interactions (Ashburner, Ziviani, and 79 

Rodger 2010). 80 

 81 

Together with recent advances in genomics technology and pivotal support from the engaged 82 

autism community, 1,162 genes are currently implicated with autism development and these are 83 

curated in the SFARI (Arpi and Simpson 2022; Grove et al. 2019; Pinto et al. 2014) gene 84 

module. These genes, with varying degrees of effect, are scored using the Evaluation of Autism 85 

Gene Link Evidence (EAGLE) framework (Schaaf et al. 2020). Surprisingly, while it is known 86 

that common variants contribute to the majority of genetic background (Gaugler et al. 2014), 87 

only a few robust genetic associations have been recently reported. Most of these are attributed 88 

to the landmark study conducted by Grove and colleagues, employing a large Danish cohort with 89 
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18,381 autism cases and 27,969 controls, where 12 significant variant associations were reported 90 

(Grove et al. 2019).  91 

 92 

Given that there is overlap in symptoms between autism and ADHD, a genetics study recently 93 

found shared genetic factors underlying autism and ADHD (Peyre et al. 2021), with partial 94 

concordance between bidirectional colocalization single nucleotide variants (SNPs). However, 95 

the study was limited to general ADHD (onset age 10+), and not childhood ADHD.  96 

Astoundingly many (47% median) autistic children have reported one or more gastrointestinal 97 

(GI) symptoms (Holingue et al. 2018; Boorstein 2008). Recently, there have been promising 98 

results that link microbiome disruption and diversity (Morton et al. 2023) as a novel contributing 99 

factor to autism.  Interestingly, while Grove and colleagues found that 7 of the 12 autism SNP 100 

associations have similar significance towards EA and psychosis traits depression and 101 

schizophrenia (Grove et al. 2019), still very little is known concerning the joint and the shared 102 

genetic mechanisms between autism and autism co-occurring traits including ADHD, ADHD 103 

childhood, EA, depression and their potential links to gastrointestinal disruptions.     104 

To attenuate on the genetic knowledge gaps in autism and expand the exploration of potential 105 

shared co-occurring trait genetic associations, this study performed multivariate genome wide 106 

association with summary statistics from autism and 12 co-occurring traits from large reputable 107 

cohorts. To achieve this, colocalization (coloc) was systematically applied to test the robustness 108 

between the shared variants and traits (Wallace 2021). Mendelian randomisation (MR) was 109 

further applied, using the multivariate variants and the essential traits, to assess liability 110 

relationships between autism and the selected co-occurring conditions (Bowden, Davey Smith, 111 

and Burgess 2015; Rees, Wood, and Burgess 2017). This study seeks to clarify functional, 112 

regulatory and tissue type differentiation with enrichment and integration of quantified trait loci 113 

(QTL) integration while validating our key findings with independently sequenced genomes 114 

from the GEMMA cohort (Troisi et al. 2020).   115 

Methods and Materials 116 

Genome-wide summary statistics for autism and ADHD were collected from the Psychiatric 117 

Genomics Consortium (PGC) and iPSYCH (Pedersen et al. 2018; Sullivan et al. 2018) studies. 118 

Education attainment (Okbay et al. 2022) summary file was collected from the Social Science 119 
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Genetic Association Consortium (SSGAC). Additional autism co-occurring traits, selected based120 

on LDSC genetic correlation with autism, include ADHD childhood, bipolar (BP), anxiety-stress121 

disorder (ASRD), disruptive behaviour (DBD), major depression (MDD) and schizophrenia122 

(SCZ), with sample sizes ranging from 31,890-765,283 are shown in Table 1 (additional details123 

in Supplementary Table 1). Summary statistics are joined, yielding 4,525,476 SNPs, and applied124 

in a multivariate GWAS setting. Follow-up analysis includes decomposition aiming to detect the125 

most important traits while colocalization and Mendelian randomisation analysis are conducted126 

to explore shared liability as shown in Figure 1.  127 

 128 

 129 
Figure 1: Workflow for the analyses conducted in the study. Multivariate GWAS was performed on selected GWAS130 

studies including autism and 8 co-occurring traits: ADHD, ADHD childhood, bipolar, anxiety, disruptive behaviour,131 

educational attainment, major depression and schizophrenia. 37 SNPs were selected and evaluated with132 

Colocalization and Mendelian Randomization. Further validation of these SNPs utilized pathway and EBI133 
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eQTL/sQTL catalogs as well as the GEMMA -study. The GEMMA whole genome sequencing (WGS) processing 134 

included variant calling to infer structural and single nucleotide variants (SVs and SNVs) present in the samples. 135 

 136 

Multivariate GWAS and determination of central traits 137 

Multivariate GWAS on autism and autism co-occurring biomarker traits were performed using 138 

metaPhat/metaCCA software that performs multivariate analysis by implementing Canonical 139 

Correlation Analysis (CCA) for a set of univariate GWAS summary statistics  (Ruotsalainen et 140 

al. 2021; Cichonska et al. 2016; Lin et al. 2020). The objective of metaCCA is to find the optimal 141 

genetic effect combination that is maximally correlated with a linear combination of the trait 142 

variables. Autism multivariate central traits are identified by MetaPhat decomposition based on 143 

iterative tracing of p-values (p) from trait subsets (relative to 5x10-8) and Bayesian Information 144 

Criterion (BIC) (Schwarz 1978) representing model fit. The central traits are the union of the 145 

driver biomarker traits together with the subset traits yielding the lowest BIC value. MTAG 146 

(Turley et al. 2018), a high performant multivariate-GWAS that addresses sample overlap, is 147 

additionally performed for validation.  148 

Genetic annotations, pathway enrichment and validation 149 

SFARI Base Gene resource, GeneCards and GWAS catalog were used to assess the novelty of 150 

variants and genes associated with autism (Arpi and Simpson 2022; Safran et al. 2010; 151 

MacArthur et al. 2017). snpXplorer was applied towards SNP annotation(Tesi et al. 2021) . 152 

Reactome and WikiPathway databases pathway enrichments were evaluated with the Enrichr 153 

tool (Kuleshov et al. 2016). Human organ and cell type systems enrichment analysis, 154 

encompassing 1,466 tissue-cell type and single-cell RNAseq panels, was conducted using 155 

WebCSEA (Dai et al. 2022, Lake et al. 2018). eQTL and sQTL were assessed within the QTL 156 

catalog, via FIVEx portal (Kwong et al. 2022).  157 

Colocalization analyses 158 

Colocalization was performed for the selected multivariate autism SNPs to assess if the 159 

associated variants in the locus are shared genetically between autism and the 8 co-occurring 160 

related autism traits to account for erroneous results that may follow from analyzing individual 161 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 24, 2024. ; https://doi.org/10.1101/2024.01.07.24300940doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.07.24300940
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

SNPs. Errors can occur when a SNP associated with trait 1 and trait 2 are in linkage 162 

disequilibrium (LD). The analyses were performed using the R package coloc (Giambartolomei 163 

et al. 2014; Wallace 2020).  164 

 165 

The colocalization analysis was conducted using the absolute base factor colocalization method 166 

(coloc.abf), which is a Bayesian colocalization analysis method. A region size window of 100KB 167 

(50±KB flanking the SNP position) was selected to comprehensively span potential LD and 168 

regulatory elements (Piovesan et al. 2016). The different hypotheses tested include: H0 (no liable 169 

variant), H1 (liable variant only for trait 1), H2 (liable variant only for trait 2), H3 (two separate 170 

liable variants), H4 (common liable variant shared between the traits). As recommended 171 

(Wallace 2020), default setting prior probability thresholds were applied: 1e-4 for H1, H2 and 172 

H3 and 1e-5 for H4 while posterior probability (H4 > 0.90) is conservatively applied to estimate 173 

shared liability.    174 

Mendelian randomization analyses 175 

Mendelian Randomization analyses (MR) was conducted on the selected autism multi-trait SNPs 176 

based on their assigned central traits, to explore the liability, direction and independent (reverse 177 

causation) relationships between autism and its related biomarkers (Phillips and Smith 1991). 178 

Instrumental strengths, approximated with F1 score > 10, were calculated using SNP effect and 179 

standard error values (Bound, Jaeger, and Baker 1995; Palmer et al. 2012). The analyses were 180 

performed using the R package MendelianRandomization (Bowden, Davey Smith, and Burgess 181 

2015). 182 

Whole genome sequencing 183 

The results were validated using yet unpublished data from the EU Horizon2020 GEMMA 184 

research project with genotype variant calls in 97 (30 proband) WGS samples from the GEMMA 185 

prospective cohort (Troisi et al. 2020). 49 of these samples were sourced from 15 Italian 186 

families, 19 samples from 6 US families and 25 samples from 7 Irish families. These samples, 187 

assayed on whole blood and collected during enrollment, were sequenced with 30-40X coverage 188 

on Illumina NovaSeq 6000 platform. Data was aligned to GRCh38 reference genome using bwa 189 

mem v0.7.17 (Li 2013) and reads were sorted and duplicates marked with samtools v1.12 (Li et 190 
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al. 2009). Quality control was performed with omnomicsQ -software (Gutowska-Ding et al. 191 

2020). For variant calling DeepVariant v1.4.0 (Poplin et al. 2018) was utilized and variants were 192 

annotated with Variant Effect Predictor (McLaren et al. 2016) version 111.0.. Presence of the 193 

H1H2 inversion was evaluated based on haplotype defining variant rs8070723 (Allen et al. 194 

2014). Structural variants were called with Smoove v0.2.6, a wrapper for Lumpy  v0.3.1. to 195 

detect the 238bp deletion in MAPT gene intron 9 and to further validate the presence of the 196 

900kb H1H2 inversion (Pittman, Fung, and de Silva 2006), which is not reliably detected from 197 

short read sequencing. 198 

Statistical analysis 199 

All statistical analyses were performed using R 4.2.2 software and available as R markdown 200 

results in the github project (https://github.com/jakelin212/mvasd_gwas). Genome-wide 201 

association is called on the standard and strict p-value threshold of 5e-8, to account for multiple 202 

testing based on the assumption of about 1-million independent tests (Risch and Merikangas 203 

1996). Bonferroni correction is applied for multiple testing.  204 

Results 205 

GWAS summary statistics 206 

Genome-wide summary statistics for autism and ADHD were collected from the PGC and 207 

iPSYCH (Pedersen et al. 2018; Sullivan et al. 2018) studies. Education attainment (Okbay et al. 208 

2022) summary file was collected from the Social Science Genetic Association Consortium 209 

(SSGAC). Altogether, using summary statistics, 12 autism co-occurring traits were assessed for 210 

genetic correlation with the landmark autism study (Grove et al. 2019), the largest genetic 211 

correlation values, as computed by LDSC (Bulik-Sullivan et al. 2015), were between autism and 212 

ADHD (0.535), followed by MDD (0.505) and ADHD childhood (0.478). Shown in Table 1 213 

below, 8 traits are shown to be genetically correlated with autism (p < 0.05) and additional 214 

details of all traits are shown in Supplementary Table 1.   215 

 216 

Table 1. Data of autism and 8 genetically correlated traits (P < 0.05, calculated from LDSC) are presented and 217 
applied towards multivariate-GWAS to explore multivariate associations and additional trait refinement. More 218 
details and excluded traits are listed in Supplementary Table 1.  219 
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Trait Heritability (H2) 
Genetic  
correlation P 

Genetic 
covariance Intercept 

Autism1 0.203 (0.015) na na na na 

ADHD2 0.094 (0.005) 0.535 (0.041) 1,44E-38 0.074(0.006) 0.233 (0.009) 
ADHD 
Childhood3 0.235 (0.015) 0.478 (0.052) 5,21E-20 0.104 (0.012) 0.260 (0.007) 

ASRD4 0.211 (0.019) 0.441 (0.079) 2,22E-08 0.090 (0.015) 0.221 (0.006) 

Bipolar5 0.068 (0.003) 0.219 (0.041) 9,67E-08 0.026 (0.005) 0.032 (0.006) 

DBD6 0.1004 (0.012) 0.186 (0.07) 0,008 0.026 (0.010) 0.179 (0.006) 

EA7 0.321 (0.009) 0.207 (0.025) 9,95E-17 0.053 (0.007) -0.005 (0.007)

MDD8 0.026 (0.002) 0.505 (0.003) 2,78E-36 0.037 (0.003) 0.155 (0.005) 

SCZ9 0.395 (0.014) 0.258 (0.035) 7,87E-14 0.07 (0.01) 0.018 (0.007) 
 
Abbreviations 
ADHD=Attention Deficit Hyper Disorder; ASRD=Anxiety-Stress Disorder;  
DBD=Disruptive Behaviour Disorder;  EA=Education attainment; MDD=Major Depression Disorder; SCZ=Schizophrenia 
 
1. Grove et al. 2019 (PMID: 30804558) 
2. iPSYCH+deCODE+PGC, Demontis et al. 2023 (PMID: 36702997) 
3. iPSYCH, Rajagopal et al. 2022 (PMID: 35927488) 
4. iPSYCH excluding autism cases Mai et al. 2019 
5. Discovery excluding UKB Mullins et al. 2021 (PMID: 34002096) 
6. Demontis et al. 2021 (PMID: 33495439) 
7. Discovery cohorts excluding 23andme, Okbay et al. 2022 (PMID: 35361970) 
8. PGC excluding UKB, Wray et al. 2018 (PMID: 29700475) 
9. PGC Wave 3, Trutbetskoy et al. 2022 (PMID: 35396580) 

 
 220 

Multivariate autism central trait SNPs, pathway and organ tissue enrichment 221 

Multivariate GWAS was performed with autism together with its genetically correlated traits, 222 

ADHD, ADHD childhood, ASRD, bipolar, DBD, EA, MDD, and SCZ (Table 1) and 637 (p < 223 

5e-8) SNP associations were found, including 322 variants that are reported for the first time for 224 

any trait (Supplementary Table 6) according to GWAS catalog. Two  associations (rs2388334 225 

and rs1452075) intersected with the twelve associations identified in the landmark common 226 

genetic variants of autism study (Grove et al. 2019). When assessed at the gene level, all 12 were 227 

concordant (as indicated in STable 6). Decomposition implemented in MetaPhat, using stepwise 228 

tracing of p-value and Bayesian information criteria (BIC) contributions (Lin et al. 2020; 229 

Schwarz 1978), identified 37 autism central trait SNPs where 16 were identified with 230 

multivariate GWAS approach (all relevant univariate SNPs p > 5e-8, listed in Supplementary 231 

Table 2). These 37 multivariate autism SNPs, 17 of which had previously been reported in 232 
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existing GWAS studies, mapped to 35 genes (Table 2) and confirmed that 8/35 (ARHGAP32, 233 

CADPS, CUL3, KANSL1, MACROD2, MAPT, MSRA and NEGR1) are known curated SFARI 234 

genes, with autism susceptibility EAGLE  scores <= 3 (indicating limited evidence) (Schaaf et 235 

al. 2020). The variant rs538628 within the NSF gene, a regulator of AMPA receptor endocytosis 236 

and critical for mediating glutamatergic synaptic transmission (Iwata et al. 2014), previously 237 

only implicated in mice with autism-like behaviors (Xie et al. 2021) and MAPT are identified to 238 

associate with the autism optimal central traits of autism, EA and SCZ ( MAPT p = 3.98e-31, 239 

NSF p = 1.99e-27, Supplementary Table 2, trace plots are provided in supplementary data ). 240 

Shown in the same table, MTAG (Turley et al. 2018) multivariate GWAS validation was 241 

performed to address potential cohort sample overlaps and similar results were found (  MAPT  p 242 

= 1.99e-20, NSF p = 5.37e-18).    243 

 244 

Shown in Supplementary Table 7,  Figure 2e and Supplementary Figure 3, pathway enrichment 245 

using the 35 associated genes was performed with Enrichr (Kuleshov et al. 2016). Nervous 246 

systems development (GO:0007399) was found to be the most significant (p = 1.73e-08) while 247 

neural and microtubule structural related pathway hits from Reactome (Fabregat et al. 2018) and 248 

WikiPathways (Nesterova et al. 2019) featured pathways were Inclusion Body Myositis (MAPT 249 

and PSEN1, p = 1.27e-04) and COPII-mediated Vesicle Transport (NSF and SERPINA1, p =  250 

4.69e-03) Additionally, human organ tissue system enrichment analysis was performed using 251 

WebCSEA (Dai et al. 2022) found significance with the digestive, nervous, sensory, lymphatic 252 

and respiratory organ systems (Figure 2f, p < 1e-03). As shown in Supplementary Figure 4, the 253 

most enriched tissue types are related to cerebrum, cortex, intestine and blood related 254 

components discerned from 1,355 tissue-type (TS) as well as data from the human brain single 255 

cell project (Lake et al. 2018).  256 

 257 

Table 2: Multivariate GWAS autism-central SNPs tested with Coloc and MR tests towards the identified autism 258 
central traits, with all 8 traits passing MR and 19 gene regions/traits pairings passed Coloc (H4 > 0.90), indicated 259 
with +. Coloc and MR details are additionally listed in Supplementary Tables 3 and 4. The order of the central traits 260 
are determined by p-value importance during decomposition processing. Known GWAS associations (17/37) are 261 
marked as * while SFARI autism gene members (8) are in bold.  262 
 263 
rsid Gene (SFARI Score) Chr:pos:ref>alt SNP consequence Central traits 

rs6699841 NEGR1 1:72645850:A>G intergenic EA Autism 

rs67980110 ENSG00000237435 1:96470851:T>C regulatory EA Autism ADHD 
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rs2391769* NA 1:96978961:A>G intergenic Autism ADHD 

rs58378462+ ENSG00000221849 2:104138639:A>G intron 
Autism EA+ ADHDCHILD 
ADHD 

rs11897599 MRPS18BP2 2:140449566:A>G downstream EA Autism ADHD 

rs78826721+ NDUFS1 2:207002314:A>G intron SCZ+ EA Autism 

rs6748341* CUL3 2:225377574:T>C regulatory Autism EA SCZ 

rs1452075* CADPS 3:62481063:T>C intron EA Autism 

rs62243489+ CADPS 3:62482927:T>G intron EA+ Autism 

rs6806355+ NA 3:70488292:T>G intergenic BP SCZ+ EA+ Autism 

rs35544582+ SLC30A9 4:42044036:A>C intron EA+ Autism 

rs67779882 NA 5:92488009:A>G intron,non_coding EA Autism ADHD 

rs406413* ENSG00000246316 5:113898581:T>C intron EA Autism 

rs2388334* ENSG00000271860 6:98591622:A>G intron BP EA Autism 

rs6999466+* MSRA 8:10265712:A>G intron MDD EA+ Autism 

rs877116* ENSG00000253695 8:10712945:T>G intron Autism ASRD 

rs2409743* ENSG00000270076 8:11070360:T>G intron,non_coding Autism ASRD 

rs2409784+ BLK 8:11396856:A>C intergenic Autism ASRD+ 

rs11775333 NA 8:142637867:T>C regulatory EA Autism 

rs11143599 ENSG00000221844 9:76101777:T>G intron,non_coding BP Autism 

rs1848797+* ENSG00000238280 10:64552934:A>G intron BP+ EA Autism 

rs12761761* BNIP3 10:133775375:T>C downstream EA Autism 

rs2237943 SERGEF 11:17838248:T>C regulatory EA Autism ADHD 

rs4609618 ARHGAP32 11:128818792:A>C intergenic Autism ADHD 

rs568828+ NTM 11:131732259:T>G intergenic Autism SCZ+ ADHD+ 

rs177413+ PSEN1 14:73683194:T>C intergenic BP+ Autism EA SCZ 

rs736281* NA 14:94287830:T>C intron EA Autism 

rs28929474* SERPINA1 14:94844947:T>C intron EA Autism 

rs62065453+* ENSG00000131484 17:43573419:A>G regulatory Autism EA+ SCZ+ 

rs62057107+* CRHR1 17:43896032:T>C intergenic Autism EA+ SCZ+ 

rs62061734+* MAPT 17:44018488:T>C intron Autism EA+ SCZ 

rs2696633+ KANSL1 17:44270059:T>G intron Autism EA+ SCZ 

rs538628* NSF 17:44787313:T>C regulatory Autism EA SCZ+ 

rs1792709* ENSG00000206129 18:53768975:A>G intron Autism SCZ 

rs6079546 MACROD2 20:14716738:T>G intergenic MDD EA Autism 

rs6035835 XRN2 20:21271669:A>G intergenic Autism ADHDCHILD ADHD 

rs9974470 ENSG00000249209 21:35012066:A>G intron EA Autism 

rs9974470 ENSG00000249209 21:35012066:A>G intron EA Autism 

Colocalization analyses 264 

Colocalization analysis was conducted on the 37 multivariate SNP associations identified to 265 

contain autism as a central trait. The comparative analysis was performed on the relevant 266 

mapped gene window, from start to end while adding 25 KBs on both ends to cover regulating 267 
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and promoter regional elements. For the two SNPs that did not map to a gene, the window size 268 

used for the colocalization analysis was 100 KB (50 +-KB), estimated and derived from the gene 269 

median length of 24KB (Fuchs et al. 2014). Additional information concerning the number of 270 

regional LD adjusted SNPs applied to the colocalization test is shown in Supplementary Table 3. 271 

A total of 19/37 SNPs showed strong evidence for a common liability variant with autism (H4 > 272 

0.9, details shown in Supplementary Table 3) and the traits having common autism liable 273 

variants included EA (9), SCZ (6), BP (2), ADHD (1) and ASRD (1). Notably. SNP rs62061734, 274 

mapping to the MAPT gene and rs538628, mapping to the NSF gene had H4 of 99% for EA and 275 

SCZ, respectively (shown in Figure 2a-b) while SNP rs568828, mapping to the NTM gene had 276 

H4 of 99% for SCZ and ADHD (Supplementary Table 2).   277 

Mendelian randomization analyses 278 

Mendelian randomization analysis was conducted for the 8 central traits genetically correlated 279 

with autism. The lead SNPs, with F1 scores > 25 (listed in Supplementary Table 4, where > 10 is 280 

considered strong (Palmer et al. 2012)) were found to lend significantly increase probability of 281 

autism (p < 0.001 both IVW and MR-Egger (EA and SCZ are shown in Figure 2c-d), accounting 282 

for horizontal pleiotropy and multiple testing with Bonferroni correction of 8 traits), after 283 

checking for directionality with MR Steiger testing.   284 

 285 
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  286 
Figure 2: Results from the post GWAS analysis of the 37 selected SNPs. a,b) Colocalization processing using the287 

original summary statistics of autism and EA for (a) rs62061734 (MAPT, failed colocalization with H4 probability288 

8.19%, p = 0.09), autism and NSF for  (b) rs538628 (NSF, SCZ passed colocalization with H4 probability 0.94%, p289 

= 1.1e-05), depicting supporting regional SNPs (x-axis) and their negative log10 p-value (y-axis) and effect290 

direction (circles negative, triangles positive). c,d) Mendelian randomization (MR) results using inverse variance291 

weighted (IVW) -method for association of autism SNP effects (y-axis) and c) EA and d) SCZ effects (x-axis). e)292 

Pathway analysis for the genes associated with the selected SNPs show enrichment in processes related to neurons293 

using Reactome database. The length of the bar represents the significance of that specific gene-set or pathway and294 

the color indicates the significance of the pathway. Details of the pathways and genes with their associated p-values295 

are listed in Supplementary Table 8. f) Organ system enrichment was applied using WebCSEA, using the selected296 

37 multivariate gene associations and found enrichment (p < 1e-03) with the autism relevant digestive, nervous and297 

sensory organ systems as well as lymphatic and respiratory systems.  298 
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 299 

Validation 300 

The associations of MAPT and NSF genes are among the affected autism hits in the concordant 301 

SNPs. To assess the impact of the reported multivariate associations on expression (eQTL) and 302 

splicing regulatory quantitative trait loci across tissues, the majority (22/37 eQTL, 24/37 sQTL, 303 

details listed in Supplementary Table 9) of the associations found are cited in the EBI QTL 304 

Catalog (Kerimov et al. 2021) where they associate (adjusted p < .05) with adipose, brain and 305 

neuron tissues. Furthermore, filtering on GeneCards (Safran et al. 2010) curations, the presented 306 

autism central genes are enriched with systems related to gut, microbiome, intestinal immune, 307 

enteric nervous and central nervous systems (Supplementary Table 5).    308 

 309 

Additionally, the distribution of these autism-central trait related SNPs in 97 (30 autism proband) 310 

family based GEMMA (Troisi et al. 2020) samples was investigated. Visualized in Figure 3, 311 

distinct clustering and proportional differences between the 30 proband and 67 controls were 312 

found with repect to the neurological developmental genes MAPT and NSF were found. MAPT 313 

SNP was present in 7/30 (23%) probands compared to 25/67 (37%) controls while for NSF was 314 

enriched in 24/67 of the controls as compared to 4/30 (13%) probands. Shown in Supplemntary 315 

Table 8, the phi coefficients for MAPT, NSF and KANSL SNPs between probands and controls 316 

were > 0.2, indicating strong correlations. Separated by approximately 770K bases apart, these 317 

two genes are both found in the 17q21.31 arm and referred to as the MAPT H1/H2 haplotypes 318 

(Supplementary Table 8). This haplotype, associated with the Tau microtubule-associated 319 

protein, has been previously implicated in Parkinson’s disease and neurological development 320 

disorders (Wang and Mandelkow 2016; Wider et al. 2010). After overlaying the autism 321 

multivariate-GWAS variants in the context of the Grove et al. (Grove et al. 2019) study as a 322 

Manhattan plot (Supplementary Figure 5), capturing KANSL1, MAPT and NSF, the reported 323 

MAPT and NSF autism linked SNPs were found to be enriched with the MAPT H2 haplotype 324 

(shown in Figure 3), as well as a deletion event located in intron 9 of MAPT, thus impacting 325 

MAPT alternate splicing and potentially reduction aggregation of Tau (Corsi et al. 2022).  326 

 327 
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328 
Figure 3: Results from the validation with GEMMA -cohort. Heatmap shows the clustering of the selected SNPs in329 
the cohort, with rows showing the genes associated to each SNP and samples shown in columns. Samples with330 
structural variation in chr17q21.31 can be seen to cluster together on the left. Darker yellow annotation highlights331 
the samples with the 238bp deletion located in intron 9 of MAPT -gene, also associated with the H2 haplotype.332 
Assessment of the H1/H2 haplotype for MAPT was evaluated using SNP rs8070723. H1 haplotype has been shown333 
to increase risk of other neurological disorders such as Altzheimer and Parkinson's Disease, and as seen in the334 
GEMMA cohort, autism probands tend to express the H1 haplotype in lighter purple (23 out of 30). 335 

Discussion 336 

Using multivariate statistical learning approaches, this study constitutes the largest and most337 

comprehensive genetically correlated multi-trait GWAS analysis with summary statistics338 

performed on autism and its genetically correlated traits; ADHD, ADHD childhood, ASRD,339 

bipolar, DBD, EA, MDD, and SCZ to explore the underpinnings driving the complexities in340 

autism. 37 associations containing autism as a central trait were discovered, with 16 of these341 

associations were detected only due to the increased statistical power of this multivariate GWAS342 

analysis (lowest univariate p-value all traits > 5e-08, and 12/16 confirmed with the MTAG tool343 

(Turley et al. 2018), Supplementary Table 2). Enrichment analysis confirmed that the344 
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multivariate autism association results are related to neuron and gut tissues and developmental 345 

pathways as well as inflammation and microbiome domains, further underscoring the 346 

intersection of genome and microbiome as well as supportive of the gut-brain axis hypothesis 347 

associated to autism (Morton et al. 2023; Cheng et al. 2023). The genetic associations pertaining 348 

to MAPT, NSF and NTM are known markers to microtubule dysregulation and cytoskeleton 349 

pathways (Supplementary Table 7) and add additional support to the canon of impairments in the 350 

regulation of the brain-barrier and gut permeability underpinning autism development 351 

(Fiorentino et al. 2016). Using the multivariate autism central trait gene sets, based on 352 

comprehensive human tissue cell type and single cell data (Dai et al. 2022, Lake et al. 2018) 353 

analysis, enrichments were detected with digestive, nervous, and sensory organ systems (Figure 354 

2f). At the tissue cell type level and further supporting the gut-brain axis and blood brain barrier, 355 

the analysis detected enriched autism relevant signals related to brain, adipose and gut 356 

eQTL/sQTL (Supplementary Table 9) tissue panels. 357 

Overall, the identified autism biomarkers passed MR with strong F1 measures and significantly 358 

contributed to improve the construction of meta psychiatric based autism polygenic scores 359 

(Jansen et al. 2020), shown to improve prediction relative to standard PRS in other complex 360 

conditions such as coronary heart disease and type 2 diabetes (Lin et al. 2023; Tamlander et al. 361 

2022).  These multivariate autism annotations are mapped to genes including MAPT and NSF 362 

that are known members of biological pathways driving neural disorders such as infantile 363 

epilepsy (Suzuki et al. 2019) and Parkinson’s Disease  (Brion, Octave, and Couck 1994; 364 

Derkinderen et al. 2021). Interestingly, colocalization tests for the MAPT region indicated shared 365 

genetic risk between only EA and autism (H4 0.99), while that for the NSF gene did not 366 

associate with EA, instead associated with SCZ (H4 0.94), suggesting intra region heterogeneity 367 

that demands future investigation. A MAPT association (rs17649553) has recently been cited as 368 

a strong (p = 4.86x10-37) association with protective effect towards Parkinson’s Disease (Nalls 369 

et al. 2014) as well as liable eQTL towards autism (Dominguez-Alonso, Carracedo, and 370 

Rodriguez-Fontenla 2023).  With respect to autism, the KANSL1, BNIP3, CADPS and NEGR1 371 

genes have been implicated with immune and microbiome features (Cheng et al. 2023) and 372 

behavioral developments (Singh et al. 2019).   373 

The most common traits in our set of 37 associations that passed colocalization with autism were 374 

EA (9), SCZ (6) and BP (2). It is known that the diagnosis for autism and ADHD, particularly 375 
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ADHD manifestation in young children, is similar with symptomatic issues concerning 376 

hyperactivity and attention span (Kern et al. 2015). While a previous study has performed 377 

comparison of genetic and functional enrichment of associations between autism and ADHD 378 

(Peyre et al. 2021) GWAS resources, this study further complements their results by inclusion of 379 

other autism co-occurring traits, including ADHD and ADHD childhood as well as EA. 380 

Interestingly, autism and ADHD have both been linked with dysbiosis disruption in microbiome 381 

composition and function, gastrointestinal and bowel habits issues (Morton et al. 2023).  382 

As part of validation, clustering and distribution proportion differences based on the autism 383 

identified SNP associations were detected between probands and non-autistic subjects on 384 

genomes from the GEMMA cohort (Troisi et al. 2020). The MAPT haplotype region (17q21.31) 385 

has been linked with neurological disorder development and general cognitive functions 386 

(Trampush et al. 2017), here intron 9 deletion associated to structural aberration event was highly 387 

depleted in autism probands (23%, 7/30). Deletion and its associated inversion event are known 388 

to disrupt alternate splicing and decrease the aggregation of tau, which would lead to instability 389 

and structural impairment in the brain neuronal cells (Avila et al. 2004). Our validation results 390 

are limited by the relatively small sample size (97) currently available in GEMMA. 391 

Nevertheless, the independent and deep sequencing data has allowed the harvesting of interesting 392 

observations concerning distribution autism-central trait associations in probands as compared to 393 

familial controls. The future release of other omics data types from autism cohorts and 394 

foundation, including additional microbiome, metabolome and methylation measurements, will 395 

allow for improved statistical power with deeper temporal analysis towards confirmation of gut-396 

brain-axis changes and genetic patterns driving autism heterogeneity and development.  397 

Conclusion 398 

Our study represents the largest autism multi-trait GWAS, analysis conducted to date, combining 399 

autism and 8 related trait genome-wide association summaries and performed systematic 400 

decomposition to identify novel genetic associations related to autism and autism co-occurring 401 

driver traits. Upon analysis with colocalization and Mendelian randomisation, EA, SCZ, BP and 402 

ADHD associations were found to share genetic risks with autism and potentially liable, 403 

signaling enrichment of potentially liable patterns within brain tissues and cell types implicated 404 

with neurodevelopment and the gut-brain axis hypothesis.  405 
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Figure Legends: 421 

 422 

Figure 1: Workflow for the analyses conducted in the study. Multivariate GWAS was performed 423 

on selected GWAS studies including autism and 8 co-occurring traits: ADHD, ADHD childhood, 424 

bipolar, anxiety, disruptive behaviour, educational attainment, major depression and 425 

schizophrenia. 37 SNPs were selected and evaluated with Colocalization and Mendelian 426 

Randomization. Further validation of these SNPs utilized pathway and EBI eQTL/sQTL catalogs 427 

as well as the GEMMA -study. The GEMMA whole genome sequencing (WGS) processing 428 

included variant calling to infer structural and single nucleotide variants (SVs and SNVs) present 429 

in the samples. 430 

Figure 2: Results from the post GWAS analysis of the 37 selected SNPs. a,b) Colocalization 431 

processing using the original summary statistics of autism and EA for (a) rs62061734 (MAPT, 432 

failed colocalization with H4 probability 8.19%, p = 0.09), autism and NSF for  (b) rs538628 433 

(NSF, SCZ passed colocalization with H4 probability 0.94%, p = 1.1e-05), depicting supporting 434 

regional SNPs (x-axis) and their negative log10 p-value (y-axis) and effect direction (circles 435 
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negative, triangles positive). c,d) Mendelian randomization (MR) results using inverse variance 436 

weighted (IVW) -method for association of autism SNP effects (y-axis) and c) EA and d) SCZ 437 

effects (x-axis). e) Pathway analysis for the genes associated with the selected SNPs show 438 

enrichment in processes related to neurons using Reactome database. The length of the bar 439 

represents the significance of that specific gene-set or pathway and the color indicates the 440 

significance of the pathway. Details of the pathways and genes with their associated p-values are 441 

listed in Supplementary Table 8. f) Organ system enrichment was applied using WebCSEA, 442 

using the selected 37 multivariate gene associations and found enrichment (p < 1e-03) with the 443 

autism relevant digestive, nervous and sensory organ systems as well as lymphatic and 444 

respiratory systems 445 

 446 

Figure 3: Results from the validation with GEMMA -cohort. Heatmap shows the clustering of 447 

the selected SNPs in the cohort, with rows showing the genes associated to each SNP and 448 

samples shown in columns. Samples with structural variation in chr17q21.31 can be seen to 449 

cluster together on the left. Darker yellow annotation highlights the samples with the 238bp 450 

deletion located in intron 9 of MAPT -gene, also associated with the H2 haplotype. Assessment 451 

of the H1/H2 haplotype for MAPT was evaluated using SNPs rs1052553 and rs8070723. H1 452 

haplotype has been shown to increase risk of other neurological disorders such as Altzheimer and 453 

Parkinson's Disease, and as seen in the GEMMA cohort, autism probands tend to express the H1 454 

haplotype in lighter purple (23 out of 30). 455 

 456 

Supplementary Figure Legends: 457 

 458 

Supplementary Figure 1: Genetic correlation of the traits included in the analysis. 459 

ASD=Autism Spectrum Disorder; ADHD=Attention Deficit Hyper Disorder; ASRD=Anxiety-460 

Stress Disorder; DBD=Disruptive Behaviour Disorder;  EA=Education attainment; MDD=Major 461 

Depression Disorder; SCZ=Schizophrenia. 462 

 463 

Supplementary Figure 2: P-value and BIC decomposition processing of MAPT and NSF to 464 

identify autism central traits. ASD=Autism Spectrum Disorder; ADHD=Attention Deficit Hyper 465 
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Disorder; ASRD=Anxiety-Stress Disorder; DBD=Disruptive Behaviour Disorder;  466 

EA=Education attainment; MDD=Major Depression Disorder; SCZ=Schizophrenia. 467 

 468 

Supplementary Figure 3: Pathway analysis using the WikiPathway database also highlights 469 

neuronal processes, with bar length and color indicating significance. More details listed in 470 

Supplementary Table 8. 471 

 472 

Supplementary Figure 4: Tissue and cell (TS) type enrichment using WebCSEA and the list of 473 

the 22 central trait genes found that the most enriched tissues are related to cerebrum, cortex and 474 

small intestine related tissue types. Lake 2017 refers to data from human brain single cell 475 

analysis project (https://pubmed.ncbi.nlm.nih.gov/29227469/) while HCA stands for histologic 476 

chorioamnionitis, an intrauterine inflammatory condition. 477 

 478 

Supplementary Figure 5: Autism multivariate GWAS associations within the MAPT H1/H2 479 

haplotype, 17q21 arm region, are presented in a Manhattan plot, in the context of Grove et al. 480 

GWAS results. Significance thresholds for p-values of 1e-05 indicated in blue and 1e-08 in red. 481 

Significant SNPs highlighted in green show rs62061734 (MAPT), rs269633 (KANSL1) and 482 

rs538628 (NSF). 483 

 484 

 485 

Supplementary Tables 486 

Supplementary Table 1: Data and sample details of autism and 8 genetically correlated traits (P < 487 

0.05, calculated from LDSC) are presented and applied towards multivariate-GWAS. Data from 488 

four excluded traits are additionally shown.  489 

 490 

Supplementary Table 2: 37 multivariate associations are identified with autism as a central trait 491 

where 17/37, shown with asterisk are previously reported in the GWAS Catalog and in bold, 8 492 

genes are identified as SFARI autism genes.   493 

 494 

SupplementaRY Table 3: 19 gene regions/trait pairings passed coloc (Posterior Prob H4 > 0.9, 495 

Shown in bold, ) called on coloc.abf with a window size of  ± 50 kb flanking the SNP locus 496 
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 497 

Supplementary Table 4:(A) Mendelian randomization (MR) results for autism as outcome and 498 

related traits. (B) MR where autism is the exposure and related traits are the outcome. 499 

 500 

Supplementary Table 5: MV associated genes are found in systems curated/implicated with gut 501 

microbiome and neural systems from GeneCards.  502 

 503 

Supplementary Table 6: List of 637 Significant SNPs (p < 5e-8), with 315 already reported in the 504 

GWAS catalog, identified by MetaPhat multivariate-GWAS using autism and 8 genetically 505 

correlated trait summary statistics. 506 

 507 

Supplementary Table 7: A) 108 enriched (p < 0.05) Go terms are annotated and (B) 46 pathways 508 

on WikiPathway C) KEGG D) Reactome resources  e) Tissue from the list of multivariate autism 509 

SNPs found enrichments in neuron and nervous systems related data.   510 

 511 

Supplementary Table 8: Autism central SNP alleles are mapped to GEMMA genotypes called 512 

from WGS. 513 

 514 

Supplementary Table 9:  eQTL and sQTL related results of the autism central associations 515 

relative to brain and nervous systems from EBI QTL catalog are captured via 516 

https://fivex.sph.umich.edu/. Study URLs are listed at the bottom of the table. 517 
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