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ABSTRACT 
   

BACKGROUND 

Introducing data-driven technologies into health systems can enhance population health and 

streamline care delivery. The use of diverse and geographically varied data is key for tackling health 

and societal challenges, despite associated technical, ethical, and governance complexities. This 

study explored the efficacy of federated analytics using general linear models (GLMs) and machine 

learning (ML) models, comparing outcomes with non-federated data analysis. 

METHODS 

A Conditional Transformation Generative Adversarial Network was used to create two synthetic 

datasets (training set: N=10,000; test set: N=1,000), using real-world data from 381 asthma patients. 

To simulate a federated environment, the resulting data were distributed across nodes in a 

Microsoft Azure Trusted Research Environment (TRE). GLMs (one-way ANOVA) and ML models 

(gradient boosted decision trees) where then produced, using both federated and non-federated 

approaches. The consistency of predictions produced by the ML models were then compared 

between approaches, with predictive accuracy of the models quantified by the area under the 

receiver operating characteristic curve (AUROC). 

FINDINGS 

GLMs produced from federated data distributed between two TREs were identical to those 

produced using a non-federated approach. However, ML models produced by federated and non-

federated approaches, and using different data distributions between TREs, were non-identical. 

Despite this, when applied to the test set, the classifications made by the federated models were 

consistent with the non-federated model in 84.7-90.4% of cases, which was similar to the 

consistency of repeated non-federated models (90.9-91.5%). Consequently, overall predictive 

accuracies for federated and non-federated models were similar (AUROC:  0.663-0.669). 

INTERPRETATION 

This study confirmed the robustness of GLMs utilising ANOVA within a federated framework, 

yielding consistent outcomes. Moreover, federated ML models demonstrated a high degree of 

classification agreement, with comparable accuracy to traditional non-federated models. These 

results highlight the viability of federated approaches for reliable and accurate data analysis in 

sensitive domains. 
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Introduction 

Embedding new, data driven technologies into health and care systems can improve population health 

and bring efficiencies to health and social care delivery. Correspondingly, digital health innovation is a 

stated priority for international organisations and governments, such as the World Health 

Organisation1  and the UK Government2. 

Tackling complex health and societal challenges using data-driven approaches requires access to 

data from different sectors and geographical sources. However, data access can be challenging. 

Aside from the technical challenges of integrating large, disparate data, there are ethical and 

governance restrictions associated with pooling highly sensitive, individual-level data. Recent papers 

and reviews have recognised the barriers to data egress and have suggested different solutions for 

analysis, including the concept of federated analytics3-6. Federated analytics is a data paradigm that 

enables different Data Controllers, and those they authorise, to collaboratively perform analytics on 

their respective local data, without exchanging the raw data itself7, 8. In essence, Data Controllers 

enable the deployment of code across their data with only aggregated results extracted from their 

local environments in lieu of the data itself.   

There are advantages and disadvantages to a federated approach to data analysis. Limited direct 

exposure to data and a lack of data egress can address some concerns of privacy, security and 

governance, although model updates and partial aggregates can inadvertently, under certain 

circumstances, lead to the sharing of personal information9, 10. Without direct exposure to the data, 

analysts are more reliant on the Data Controller or agreed processor to perform data cleansing, and 

opportunities to explore the data are limited11. Also, there are concerns that federated analytics may 

reduce the accuracy of results in comparison to performing analysis on pooled data7.   

This study tested the ability to federate analytics utilising differing statistical approaches, namely 

general linear models (GLMs) and machine learning (ML) models. The resulting outputs were then 

compared to those produced using non-federated data.  

Methods 

This research was conducted with Health Research Authority and Research Ethical Approvals (East 

Midlands – Derby Research ethics committee, reference 20/EM/0158).   

Sample data 

This study used a real-world dataset, from which a synthetic dataset was generated for the purpose 

of testing federated versus pooled data analysis. The real-world data was from a cohort of 381 
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patients with a physician-confirmed diagnosis of asthma who were admitted to secondary care at a 

single centre in 2019. The response variable was readmission within 30 days, which occurred in 

12·9% of cases. Clinical data was linked to meteorological and air quality data from The Centre for 

Environmental Data Analysis (CEDA), for the day of admission using the subjects' home address for 

geolocation; see Table 1 for details of the variables included in the real-world dataset. From this two 

synthetic datasets were generated using a Conditional Transformation Generative Adversarial 

Network (CT-GAN) deep learning method12 from the Synthetic Data Vault (SDV) library, an open-

source Python library13. The first synthetic dataset was a “training set” of N=10,000 cases, and the 

second was a “test set” of N=1,000 cases. 

Table 1. Characteristics of synthetic data used in modelling 
Variable Levels 

Outcome 

Readmission within 30 Days No, Yes 

Patient Demographics 

Age at Index Admission Continuous 

Sex Female, Male 

Ethnicity White, South Asian, East Asian, Black, Mixed, Other 

IMD Decile 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Height Continuous 

Weight Continuous 

Patient Physiology 

Asthma Type SNOMED195967001, J450, J458, J459, J46X 
Eosinophil Count Continuous 

Respiratory Rate Continuous 

O2 Saturation Continuous 

Peak Flow Continuous 

Medications 

Oral Prednisolone No, Yes 

Inhaled Steroids 
Beclometasone, Budesonide, Ciclesonide, Duoresp, Fluticasone, 
Flutiform, Fostair, None, Oxis, Relvar Ellipta, Sereflo, Seretide, Sirdupla, 
Symbicort, Trelegy 

Date of Index Admission 

Month 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

Weekday Working Day, Weekend, Public Holiday 

Hour of Day 
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 
23 

Atmospheric Conditions at Index Admission 

PM10 Concentration Continuous 

PM2.5 Concentration Continuous 

Nitrous Oxide Concentration Continuous 

Nitrogen Dioxide Concentration Continuous 
Sulphur Dioxide Concentration Continuous 

Temperature Continuous 

Relative Humidity Continuous 

Dew Point Continuous 

 
Legend. Variable characteristics of the synthetic data used in the modelling provided in category groups. IMD: Index of 
Multiple Deprivation, O2: Oxygen, PM10: Particular matter 10 particle count, PM2.5:  Particular Matter 2.5 particle count.  

 

To simulate a scenario where federated analytics would be applicable, datasets were then divided 

across “nodes”, each of which was a Microsoft Azure Trusted Research Environment (TRE), and 
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represented the data held in a different database by a different Data Controller (e.g., in different 

hospitals). In addition, the full dataset was also held, to allow non-federated (“pooled”) analysis to 

be performed, as the gold standard for comparison. 

Federated learning for general linear models 

The algorithms underlying the calculation of the standard deviation, analysis of variance (ANOVA), 

and Fisher-Neyman factorisation were evaluated, to understand their potential for federation (see 

Supplementary Analysis 1 for further details). A simple one-way ANOVA was selected to test the 

federation of a GLM, with the resulting model being compared to one produced using a non-

federated approach. This used the test set of N=1,000 cases, with the 10-micron particulate matter 

(PM10) counts as the dependent variable, and readmission within 30 days as a (binary) independent 

variable. For the models on federated data, the dataset was divided between two simulated nodes 

using four different approaches to simulate different scenarios; see Figure 1. Specifically, the “row-

split” randomly divided the cases in a 1:1 ratio between the two nodes, to simulate the situation 

where each node held data for a different set of cases, but the same set of variables. The “column-

split” divided the data such that the dependent and independent variables were on different nodes, 

to simulate the situation where each TRE held data for all cases, but for a different set of variables. 

These two approaches were also combined into a “row- and column-split” and “ragged-split”, where 

each TRE held data for different sets of cases, and different sets of variables for these. 
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Figure 1. Approaches to splitting data across federated models 

 

Legend. Each panel represents a different approach to dividing the rows (cases) and columns (variables) of a table across 
two nodes, with the cell colours indicating the node on which data for a specific cell would be held. Figure a) represents 
pooled/non-federated data, where the whole table is held on a single node; b) represents a row-split, where cases are 
divided between the two nodes, both of which include all variables; c) represents a column-split, where variables are divided 
between the two nodes, both of which include all cases; d) represents a combination of a row- and column-split, where 
subsets of variables and cases are held on different nodes; and e) represents a ragged-split, where individual variables*case 
combinations can be held on either node.  

 

For the federated models, in addition to the TRE nodes, there was also a controlling hub, which sent 

requests for data to the individual TRE nodes and compiled the resulting data to perform the ANOVA 

analysis. The controlling hub never directly accessed the underlying datasets, with TRE nodes instead 

only sharing aggregated data, including sums, and row counts, which could be used to compute 

global means and degrees of freedom accurately (see Figure 2). 

In scenarios where the data were partitioned among TRE nodes in a column-wise manner, either solely 

or in combination with row-wise partitions, unique identifiers were established for each row. The TRE 

nodes then shared the factors assigned to each unique row throughout the network (Figure 2, steps 

A1 and A2) to produce the statistical outputs. 

Once the unique row identifiers and factor assignments were established, the following steps were 

shared across all partitioning modes: 

1. Calculation of Sum and Row Counts: Each TRE node returns the sum and row counts for each 

combination of factors to the controlling hub. This step allows for the computation of group-

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 7, 2024. ; https://doi.org/10.1101/2024.01.06.23300659doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.06.23300659
http://creativecommons.org/licenses/by-nd/4.0/


wise and global means of the response variable, as well as various degrees of freedom across 

the federated data set (Figure 2, step B). 

2. Distribution of Global Mean: The global mean is sent back to each TRE node (Figure 2, step C). 

3. Computation of Sum of Squared Deviations: Each TRE node calculates the sum of squared 

deviations from the global mean and returns it to the controlling hub (Figure 2, step D). 

4. Calculation of ANOVA Statistics: The final ANOVA statistics, along with confidence intervals for 

the differences between means, are computed using the sum of squared deviations and 

Tukey’s HSD respectively. 

 

Figure 2.  Data communications in a federated ANOVA environment 

 
Legend. Hub-to-node communications are indicated by blue arrows, and node-to-hub communications by orange arrows. A1 
and A2 are necessary for column-split, a combined row- and column-split, and ragged data partitioning, where each node 
has incomplete sight of the covariates for each row, and so it is necessary for the hub to retrieve the known covariates from 
each node, combine them and distribute the complete set back to each node, thus relying on covariates not being sensitive 
in nature. In all partitioning modes, for every group of covariates, the nodes can return the sum of the response and row 
count (B), as well as being able to compute and return the sum squared deviation (D) from a given global mean computed 
by the hub using the per-group sum and row counts (C). API: Application Programming Interface, TRE: Trusted Research 
Environment, SSq Deviations: Sum of Squared Deviations.  

 

Federated learning for machine learning models 

The performance of ML models using existing software stacks, trained using a federated approach 

was assessed. For this analysis, only the row-split scenario was considered, with the cases from the 

training set (N=10,000) being randomly divided between three TRE nodes in a 5:3:2 ratio. We tested 

two different modes of federation, which are visualised in Figure 3. The first was “online” learning, 

where a single ML model is initialised and passed sequentially between all federated environments. 

The second approach was “concurrent” learning, where separate models are trained in each 

federated environment and returned to the controlling hub, where they are combined or averaged. 

The response variable was 30-day readmission, with all 24 factors in Table 1 considered as predictors. 

ML models comprised Gradient Boosted decision trees from CatBoost 1.2 (Yandex, Moscow, Russia), 

a high-performance open-source library14, 15. An Application Programming Interface (API) endpoint 

was utilised to execute a training cycle using the concurrent mode of federation. All models were 
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generated using the same random seed, in order to negate the impact of this when comparing across 

models. However, to test the potential impact that changing the random seed could have, the pooled 

(i.e., non-federated) model was also repeated a further three times using different random seeds, 

which were compared to the original pooled model.   

The resulting models were then applied to the test set (N=1,000), to compare consistency and 

performance. Each model was used to produce both a predicted probability of 30-day readmission, 

and a predicted binary classification for this outcome for each case. The predicted probabilities were 

compared between models using Spearman’s rho, and the binary classification using the percentage 

agreement, in order to test for consistency of the models. In addition, the predictive accuracy of each 

model was quantified using the area under the receiver operating characteristic curve (AUROC) for 

the predicted probability, and the accuracy, sensitivity, specificity and positive/negative predictive 

value statistics for the binary classifications. The AUROCs were then compared between the models 

using the algorithm suggested by Delong et al., with p<0.05 deemed to be indicative of a statistically 

significant difference in performance16. 
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Figure 3.  Schematic of the learning methods utilised for federated machine learning.  
 

 
 
Figure a) illustrates pooled (i.e., non-federated) learning, where data are moved from each TRE node into a central pooled 
environment for analysis by the ML algorithm. For the federated approaches, the federated learning system first passes an 
ML model into each TRE node. In online learning (Figure b), this ML model is trained iteratively across each TRE node, with 
each node performing local model updates using its own data, before sending only the updated model parameters to the 
next node, with the final node sending the final model parameters to a central server. In concurrent learning (Figure c), the 
ML model training is performed in parallel across all nodes, before updating the global model simultaneously. ML: Machine 
Learning, TRE: Trusted Research Environment. 
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FINDINGS 

Federation of general linear models 

ANOVA models were produced for the pooled data, as well as on data federated across two TREs, using 

the four approaches detailed in Figure 1. All five of these models returned identical results, which are 

reported in Table 2. 

Table 2. Comparison of ANOVA models across pooled and federated methods 

 Federation Method Coefficient (95% CI) p-Value 

Pooled -1.56 (-2.907, -0.212) 0.023 

Row-Split -1.56 (-2.907, -0.212) 0.023 

Column-Split -1.56 (-2.907, -0.212) 0.023 
Row- and Column-Split -1.56 (-2.907, -0.212) 0.023 

Ragged Split -1.56 (-2.907, -0.212) 0.023 

Legend. Results are from ANOVA modelling on the synthetic dataset, with PM10 concentration as the dependent variable, and 
readmission within 30 days as a (binary) independent variable. The coefficient represents the difference between the 30 day 
readmission yes versus no groups, and is reported alongside the 95% confidence interval (95% CI) computed using Tukey’s 
HSD. Separate models were produced using non-federated data (“pooled”), as well as using the four approaches to federation 
described in Figure 1.  PM10: Particular matter 10 particle count, HSD: honesty significance difference, CI: Confidence Interval. 

Federation of machine learning models 

ML models were then trained on the training dataset, both using a pooled approach, and with data 

federated across three TREs using a row-split approach; the federated models were produced using 

both concurrent and online learning approaches (as per Figure 3). Applying the resulting models to 

the test set for validation found that the classifications made by pairs of models to be in agreement 

in between 84·7-90·4% of cases, with Spearman’s rho for the predicted probabilities ranging from 

0·844-0·938 (Table 3). The pooled (i.e., non-federated) model was also repeated a further three 

times, with each using a different random seed, in order to assess how this would impact the 

resulting models. The agreement between the classifications produced by these models and the 

primary pooled model ranged from 90·9-91·5%, with Spearman’s rho for the predicted probabilities 

ranging from 0·914-0·931. As such, the consistency of classifications made between ML models 

trained on differently federated data was only marginally lower than that stemming from training 

repeated ML models on identical, non-federated datasets.  
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Table 3. Comparison of classifications made by machine learning models 

Pooled versus Online 
(Agreement: 84.7%; rho: 0.844*) 

    Online 
   Classification: No Classification: Yes 

Pooled 
Classification: No 573 99 

Classification: Yes 54 274 

Pooled versus Concurrent 
(Agreement: 90.4%; rho: 0.904*) 

    Concurrent 
   Classification: No Classification: Yes 

Pooled 
Classification: No 652 20 

Classification: Yes 76 252 

Online versus Concurrent 
(Agreement: 87.7%; rho: 0.938*) 

    Concurrent 
   Classification: No Classification: Yes 

Online 
Classification: No 616 11 

Classification: Yes 112 261 

Legend. Results are from machine learning models trained on a non-federated (“pooled”) or federated (“concurrent” or 
“online”) synthetic dataset, for the prediction of 30-day readmission. The resulting models were then applied to the test set 
(N=1,000), and the binary classifications made by each pair of models were compared. *The Spearman’s rho correlation 
coefficient between the predicted probabilities produced by the two models. 
 

Despite the differences between the binary classifications made by the federated and non-federated 

approaches, the pooled, online and concurrent models had similar predictive accuracies when 

applied to the test set (Table 4). The overall accuracy statistic ranged from 64·4%-71·7% and the 

AUROC for the predicted probabilities ranged from 0·663-0·669.  Specifically, the AUROC for the 

pooled model was 0·667 (95% CI: 0·621-0·713), which did not differ significantly from the 0·663 (95% 

CI: 0·616-0·710) for the online model (p=0·739) or the 0·669 (95% CI: 0·623-0·716) for the concurrent 

model (p=0·824).   

Table 4. Comparison of predictive accuracy of machine learning models 

Model Accuracy Sensitivity Specificity PPV NPV 
AUROC 

(95% CI)* 

Pooled 
67·5% 

(675/1000) 
51·0% 

(78/153) 
70·5% 

(597/847) 
23·8% 

(78/328) 
88·8% 

(597/672) 
0·667 

(0.621-0.713) 

Online 
64·4% 

(644/1000) 
55·6% 

(85/153) 
66·0% 

(559/847) 
22·8% 

(85/373) 
89·2% 

(559/627) 
0·663 

(0·616-0·710) 

Concurrent 
71·7% 

(717/1000) 
46·4% 

(71/153) 
76·3% 

(646/847) 
26·1% 

(71/272) 
88·7% 

(646/728) 
0·669 

(0·623-0·716) 

Legend. Results are from machine learning models trained on a non-federated (“pooled”) or federated (“concurrent” or 
“online”) synthetic dataset, for the prediction of 30-day readmission. The resulting models were then applied to the test set 
(N=1,000), and the accuracy of the predictions made by each model was assessed. *The area under the receiver operating 
characteristic curve (AUROC) was calculated using the predicted probabilities from each model. P(N)PV: Positive (Negative) 
Predictive Value. 
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INTERPRETATION 

Federated analytics and learning is increasingly prevalent and may be default methodology for 

analysing sensitive health data17-19. However, the security benefits this offers20 can only be realised if 

the resulting analysis accurately reflects the pooled data analysis. 

This study demonstrates the feasibility of employing various statistical approaches within a 

federated analytics framework across diverse data domains. Selected traditional statistical methods, 

namely ANOVA, produced identical outputs irrespective of the way the data were partitioned 

between TRE nodes, which were in turn identical to the non-federated analysis of the pooled 

dataset. Therefore, for studies requiring analysis using GLM models, federated analytics can be used 

without impacting the results of the analysis21, 22. 

The federated analytics for ML models found differences between the models resulting from 

federated and non-federated approaches, and between the different learning methods used in the 

federated approaches. The classifications made by the three approaches were generally consistent, 

with the level of agreement between models being only marginally lower than for repeated models 

trained on identical non-federated datasets. In addition, the predictive accuracies of the ML models 

produced using pooled, online, and concurrent models were similar, ranging from 64·4% to 71·7%.  

However, it is important to recognise that differences exist in the ML models generated using a 

federated versus pooled approach. The clinical relevance of the differences in ML models generated 

using a federated versus pooled dataset, and the resulting impact on the performance of a tool at 

the individual level will be context dependent. This may be of relevance to regulators, especially for 

tools used as a medical device, and should be considered in regulatory pathways. Although several 

aggregation strategies for federated learning knowledge have been proposed, the field is still in its 

early stages of development, and more work is needed to determine the impact on the models 

derived. As well as the potential differences in ML models generated using a federated approach, 

there are other challenges with federated analytics which need to be explored. 

As well as the potential differences in ML models generated using a federated approach, there are 

other challenges with federated analytics which need to be explored. Primarily, it is vital to ensure 

that data are consistent and accurately matched across nodes. This results in a heightened reliance 

on metadata, which must accurately reflect the definitions and coding of variables. In addition, the 

responsibility of data cleansing and harmonisation resides with data controllers, creating potential 

inconsistencies in data quality across nodes. The lack of standardised frameworks and common data 

models can also exacerbate difficulties in conducting analytics across varied datasets. The levels of 
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data consistency, cleansing or harmonisation are difficult to identify where a federated approach is 

used, since no one individual has access to the whole dataset, potentially propagating 

misinterpretations and flawed analyses where these are inadequate. Secondly, whilst the federated 

approach can be effective in addressing privacy concerns, sophisticated strategies are required to 

balance privacy preservation with effective analysis. The governance associated with federated 

analytics is still in development23, 24.  

In conclusion, we demonstrate the potential of federated approaches in maintaining predictive 

accuracy while preserving data privacy and security. For traditional statistical techniques (here, a 

one-way ANOVA), the models generated using federated approaches were identical to those 

generated using a non-federated approach, irrespective of how the data were split across nodes. For 

ML analyses, there was some variability in the models produced using the federated and non-

federated approaches, and across the different federated approaches. Although there was no 

statistically significant difference in predictive accuracy observed between the models, the impact 

on clinical performance may be context specific and warrants further exploration.   
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