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2 

Abstract 22 

Based on historical influenza and COVID-19 forecasts, we quantify the relationship between the number 23 

of models in an ensemble and its accuracy and introduce an ensemble approach that can outperform the 24 

current standard. Our results can assist collaborative forecasting efforts by identifying target participation 25 

rates and improving ensemble forecast performance. 26 

Text 27 

Pioneered by the Centers for Disease Control and Prevention’s (CDC’s) 2013-2014 Influenza 28 

Season Challenge, real-time, collaborative forecast efforts have become the gold standard for 29 

generating and evaluating forecasts for infectious disease outbreaks (1,2). Individual component 30 

forecasts are aggregated into ensemble predictions that are the primary external communication 31 

provided by the organizing hubs and have consistently outperformed individual models (3–5). 32 

The current COVID-19 and influenza ensemble forecasts use the median across all eligible 33 

forecasts for each requested target, though other strategies that weight individual forecasts based 34 

on historical performance may further improve performance (6). To assist public health decision-35 

makers considering target participation rates and the optimal design of ensemble forecast 36 

models, we retrospectively analyzed data from recent US-based collaborative outbreak forecast 37 

efforts to identify how the number of models included in an ensemble impacts performance. 38 

 We analyzed forecasts from five recent public collaborative forecast efforts including 39 

forecasts for influenza-like illness (ILI) from 2010-2017 (5), for COVID-19 reported cases, 40 

hospital admissions, and mortality from 2020-2023 (7), and for influenza hospital admissions 41 

from 2021-2023 (8). For each, we identified time periods with maximal model participation, 42 
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created training and testing time periods, and obtained forecasts for individual, non-ensemble, 43 

models that produced at least 90% of all possible forecasts throughout those periods (Table S1). 44 

We created ensemble forecasts of size , where n is the number of individual 45 

models included in a given ensemble and N is the total number of available individual models, 46 

using three strategies: (1) randomly sampling combinations of n models (Random), (2) choosing 47 

the top individually performing n models from a training period (Individual rank), or (3) 48 

choosing the top performing ensemble of size n from a training period (Ensemble rank). We 49 

compared performance of all ensembles against a baseline model (Baseline) that produces 50 

forecasts based on historical seasonality for ILI (5) or flat forecasts for all other metrics (3), and 51 

an unweighted ensemble composed of all submitted models that is currently used in real-time as 52 

the gold standard forecast (Published ensemble). We summarized probabilistic ensemble forecast 53 

skill (Figure 1A) using the log score for ILI forecasts and the weighted interval score (WIS) for 54 

all others (9,10), and transformed scores as needed so that lower numbers indicate better 55 

performance (Figure 1B). Further methodological details are provided in the supplement. 56 

 When using random sampling for choosing component ensemble models, we found that 57 

for all forecasting exercises, including more models yielded better average forecast performance 58 

and all ensembles outperformed the Baseline model after the inclusion of at least four models 59 

(Figure 1B). Increasing the ensemble size above four models only slightly improved the average 60 

forecast performance, but substantially decreased the variability of performance across randomly 61 

assembled models. For example, for influenza hospital admission forecasts, increasing the 62 

number of models in the ensemble from four to seven improved the average ensemble 63 

performance by 2%, but reduced the interquartile range across possible ensembles by 56.5%. In 64 
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essence, increasing the ensemble size increases the likelihood that a randomly chosen ensemble 65 

performs well. 66 

Ensemble creation based on the individual rank order performance from the training 67 

period gave mixed forecast results, while creation based on historical ensemble performance 68 

consistently selected high-performing ensembles that prospectively beat or matched the 69 

Published ensemble (Figure 1B, Table 1). For the Ensemble rank method, performance generally 70 

plateaued or declined when more than four models were included for both the testing (Figure 1) 71 

and training period (Figure S1). The Ensemble rank of size four had relative forecast 72 

performance against the Published ensemble of 0.94 and 0.84 for ILI and influenza hospital 73 

admissions, respectively, and 0.93, 0.95, and 1.06 for COVID-19 cases, hospital admissions, and 74 

mortality, respectively, where values less than 1 indicate performance improvements. While the 75 

Ensemble rank model did not always match the prediction interval coverage of the Published 76 

ensemble (Figure S2), its average rank for individual prediction tasks was always better than that 77 

of the Published ensemble (Figure S3-S7). We found that relative forecast performance is 78 

consistent when viewed across the different locations, dates, and targets (Figure S8-S16). 79 

 80 

 81 
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83 

Figure 1: Forecast performance on recent influenza and COVID-19 collaborative forecast efforts comparing 84 
the number of models included in the ensemble and different ensemble methodologies. (A) Weekly COVID-19 85 
mortality data for Massachusetts (black line) with forecasts from the published forecast that summarizes across all 86 
individual contributed forecasts (Published ensemble) and the best performing ensemble of size four from the 87 
training period (Ensemble rank). The line indicates the four-week point predictions and the shaded region indicates 88 
the 95% prediction interval for each ensemble. Ensemble rank forecasts require training and therefore are only 89 
shown during the testing period. (B) Summarized ensemble forecast scores from the collaborative forecast efforts 90 
for the weekly influenza-like illness (ILI) data provided by the CDC (ILI %), COVID-19 weekly case and mortality 91 
counts provided by JHU (COVID-19 cases and COVID-19 mortality), and COVID-19 and Influenza daily hospital 92 
admissions provided by HHS (COVID-19 admissions and Influenza admissions). Scores correspond to the average 93 
forecast performance during the respective testing periods across all dates, locations, and forecast horizons (Table 94 
S1). We plot the minimum (Grey region, lower), maximum (Grey region, upper), and mean (Solid black line) scores 95 
of random ensemble combinations of a given size (Random), and the trained ensembles composed of the top n 96 
individual performing models from the training period (Individual rank) or the best performing ensemble of size n 97 
from the training period (Ensemble rank). All scores are standardized by the baseline forecast model for that metric 98 
(horizontal dotted line), and the horizontal dashed line corresponds to the Published ensemble that is the unweighted 99 
ensemble across all models that submitted for a specific date and forecast target and is used as the gold-standard 100 
forecast prediction. Relative scores less than 1 indicate better accuracy than the Baseline. On average across the 101 
testing phase, the Published ensemble included 15 models for COVID-19 cases, 17 models for COVID-19 102 
admissions, 19 models for COVID-19 deaths, 21 models for influenza admissions, and 23 models for ILI. 103 
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Table 1: Forecast performance of ensembles of size four relative to the Published ensemble 104 

forecast model for each of the respective collaborative forecast efforts, where values less than 1 105 

indicate improved forecast performance. On average across the testing phase, the Published 106 

ensemble included 15 models for COVID-19 cases, 17 models for COVID-19 admissions, 19 107 

models for COVID-19 deaths, 21 models for influenza admissions, and 23 models for ILI. 108 

 109 

 110 

While our results are constrained by a limited number of diseases, forecasting exercises, and 111 

models to draw upon, they have several implications for future collaborative forecast efforts: (1) 112 

increasing participation in collaborative forecast hubs increases model diversity, improves the 113 

average forecast performance, and decreases variability between possible ensemble 114 

combinations, (2) while optimizing ensemble forecasts based on historical performance does not 115 

guarantee optimal future performance, data-driven selection of models can improve forecast 116 

performance compared to unweighted ensembles, and (3) evaluating ensemble rather than 117 

individual performance selects for complementarity in forecasts and consistently improved 118 

forecast performance. As public health officials and researchers look to expand collaborative 119 

 Random model (range) Individual rank  Ensemble rank 

COVID-19 Cases 1.01 (0.81-1.2) 1.06 0.93 

COVID-19 Admits 1.08 (0.94-1.27) 1.03 0.95 

COVID-19 Deaths 1.14 (1.02-1.37) 1.07 1.06 

ILI % 1.13 (0.89-1.9) 1.08 0.94 

Influenza Admits 0.99 (0.79-1.23) 0.94 0.84 
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forecast efforts and as funding agencies allocate budgets across methodological and applied 120 

forecast efforts, our results can be used to identify target participation rates, guide the 121 

interpretation and communication of ensemble forecasts, and improve forecast performance. 122 
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