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Abstract 1 

 Opioid addiction constitutes a public health crisis in the United States and opioids cause 2 

the most drug overdose deaths in Americans. Yet, opioid addiction treatments have limited 3 

efficacy. To help address this problem, we used network-based machine learning techniques to 4 

integrate results from genome-wide association studies (GWAS) of opioid use disorder and 5 

problematic prescription opioid misuse with transcriptomic, proteomic, and epigenetic data from 6 

the dorsolateral prefrontal cortex (dlPFC) in opioid overdose victims. We identified 211 highly 7 

interrelated genes identified by GWAS or dysregulation in the dlPFC of individuals with opioid 8 

overdose victims that implicated the Akt, BDNF, and ERK pathways, identifying 414 drugs 9 

targeting 48 of these opioid addiction-associated genes. This included drugs used to treat other 10 

substance use disorders and antidepressant drugs. Our synthesis of multi-omics using a systems 11 

biology approach revealed key gene targets that could contribute to drug repurposing, genetics-12 

informed addiction treatment, and future discovery.   13 
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Introduction 14 
 15 

Worldwide, over 60 million people misuse opioid drugs resulting in an estimated 12.9 16 

million healthy years of life lost (disability-adjusted life years)1. These drugs include both opioids 17 

prescribed for pain relief (e.g., hydrocodone, oxycodone) and illicit opioids (e.g., heroin, fentanyl). 18 

In the United States, over 9 million people in the housed population (which excludes homeless and 19 

institutionalized individuals) aged 12 and older were estimated to misuse opioids in 20202, and 20 

over 80,000 people died of an opioid-related overdose in 2021 – continuing a decades long 21 

epidemic of opioid misuse and overdose deaths3,4. Yet only 1.27 million people in the United States 22 

receive medication-assisted treatment with one of the three medications approved to treat opioid 23 

use disorder (OUD)5: methadone (opioid agonist), buprenorphine (opioid agonist/antagonist), or 24 

naltrexone (opioid antagonist). Substance use disorders are widely accepted to involve genetic and 25 

experiential influences on brain circuits related to motivated behavior. Thus, there is a great need 26 

for a better understanding of the neurobiology of opioid addiction and the identification of novel 27 

targets for drug development. 28 

Several recent genome-wide association studies (GWAS)6–10 have identified genetic 29 

variants and genes associated with increased risk of opioid addiction phenotypes. Other studies 30 

have identified gene dysregulation in postmortem human brains associated with opioid overdose 31 

deaths11–15. Up to 18 genome-wide significant loci have been reported across the most recent 32 

GWASs for OUD or prescription opioid misuse, with replicated associations being observed for 33 

OPRM1 7–10, FURIN 7–9, the SCAI/PPP6C/RABEK cluster 7–9, and PTPRF 6,9. In parallel, four 34 

RNA-seq studies identified hundreds of potentially differentially expressed genes in human 35 

postmortem dorsolateral prefrontal cortex (dlPFC), which were enriched for a variety of biological 36 

functions (e.g., extracellular matrix, angiogenic cytokines, and MAPK signaling). These studies 37 
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did not include replication, but we found that 11 genes replicate across these cohorts for the dlPFC 38 

(Bonferroni corrected p < 0.05), and a meta-analysis16 of these cohorts identified up to 335 39 

dysregulated genes in the dlPFC (Benjamini-Hochberg FDR p-value < 0.05). 40 

Although these recent findings provide important clues to the biology underlying opioid 41 

addiction, these genes do not function in isolation. Additional insights may be gained through a 42 

systems biology approach that identifies affected functional networks from disease-associated 43 

genes17. Here, we used results from existing studies to identify 404 opioid addiction-related genes 44 

from which we removed potential false positives with the recently developed Gene set Refinement 45 

through Interacting Networks (GRIN17) software. GRIN enabled us to identify a tightly integrated 46 

set of 211 genes that mapped to multiple neurobiological pathways. Fifty of the 211 genes 47 

implicated in opioid addiction signaling or other substance use disorders were tightly 48 

interconnected using cross validation and a concise shortest-paths network between pairs of genes. 49 

We created a conceptual model of the network mapped to BDNF and MAPK signaling pathways 50 

and synaptic signaling processes, among others, showing widespread downregulation of these 51 

genes in opioid addiction. Moreover, multiple genes appear to be promising targets for novel drug 52 

repurposing for treating OUD based on their role as gene targets for drugs used to treat other 53 

substance use disorders. Our results demonstrate the utility of integrating multiple omics in 54 

systems biology approaches that leverage machine learning techniques, discovering novel 55 

biological relationships that underlie opioid addiction. 56 

Results 57 

Meta-analysis of opioid addiction omics data sets combined with network biology identifies 211 58 

highly interrelated genes. 59 
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We first identified opioid addiction-associated genes from multiple omics data sets using 60 

the postmortem dlPFC and GWAS SNP-nearest gene assignment (Figure 1). Using consistent 61 

significance thresholds within each omics data set across studies (Online Methods), we identified 62 

404 unique opioid addiction genes from the following omics data types: 256 genes associated with 63 

H3K27ac ChIP-seq peaks11, 13 DNA methylation-associated genes15, 33 GWAS-associated 64 

genes6–10, 3 protein-coding genes associated with differentially abundant proteins from LC/MS 65 

proteomics12, and 104 differentially expressed genes from RNA-seq11–14 (Supplementary Tables 66 

1-7). 67 

Of the 404 opioid addiction-related genes, we sought to identify those that are highly 68 

interconnected in biological networks using multiple lines of experimental evidence from data 69 

independent of the opioid omics data sets. Using GRIN17, we removed potential false positive 70 

genes based on network connectivity within a multiplex network consisting of 10 layers of 71 

biological evidence. GRIN uses the algorithm Random Walk with Restart (RWR) to identify 72 

tightly interconnected genes and removes those that do not depart from the gene ranks of a null 73 

distribution. GRIN identified 211 highly interrelated opioid addiction genes across omics data 74 

types (Figure 2A, Supplementary Tables 8-9).  75 

Before GRIN filtering, the 404 unfiltered genes were significantly enriched for 103 Gene 76 

Ontology (GO18) Biological Process terms. The 211 genes that remained after GRIN filtering were 77 

enriched for 293 terms, including 96 of the same enriched biological processes as were in the 78 

unfiltered gene set prior to the application of GRIN (Figure 2B, Supplementary Tables 10-11). 79 

In contrast, the 193 genes removed by GRIN were not significantly enriched for any GO Biological 80 

Process terms, clearly differentiating them from the 211 retained genes. Thus, the subset of 211 81 
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genes retained by GRIN were highly biologically interrelated based on interconnectivity within 82 

the biological multiplex network and better mapping to known biological processes. 83 

 84 

A subset of multi-omic genes previously implicated in opioid signaling and substance use disorders 85 

are highly interconnected in biological networks. 86 

 Of the 211 genes retained by GRIN, we focused on a subset of 50 unique, high-confidence 87 

genes (Supplementary Table 12) that were either implicated across 2 or more studies or 88 

previously implicated in opioid signaling or in other substance use disorders (Online Methods). 89 

Gene set enrichment analyses indicated that, among other functions, these high confidence genes 90 

were enriched for the BDNF and MAPK signaling pathways and synaptic signaling processes 91 

(Supplementary Table 13). 92 

Using shortest paths network traversal to identify the fewest connections between each pair 93 

of the 50 high-confidence opioid addiction genes, we found that 43 were directly connected to at 94 

least one other gene in the set (Figure 3A, Supplementary Table 14). Moreover, the other 7 high 95 

confidence genes were only two connections away from at least one of the other 50 high confidence 96 

genes (Figure 3A, Supplementary Table 14). Only 127 additional network-connecting genes (not 97 

high-confidence opioid addiction genes) were necessary to link pairs of genes that could be 98 

connected as direct neighbors or by a shared neighboring gene. Furthermore, 3 of the 127 network-99 

connecting genes (SERPINB1, SORCS1, and SORL1) were members of the original 211 GRIN-100 

retained gene set (Figure 3A, Supplementary Table 15). 101 

 Next, we explored the interconnectivity of the 50 high-confidence opioid addiction genes 102 

using RWR. We employed a cross-validation approach in which a subset of the opioid addiction 103 

genes were used as starting points to explore the biological networks with RWR, and the remaining 104 
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genes were ranked against the rest of the genes in the biological network based on how often the 105 

gene was visited by RWR. Using this cross-validation approach, we observed a high area under 106 

receiver-operator characteristic curve (AUROC) value (AUROC = 0.94; Figure 3B). The high 107 

AUROC value indicated that, during cross validation, genes that were used to explore the networks 108 

frequently visited the genes that were left out of the gene set. Combined with our small shortest 109 

paths network, these results confirmed that these 50 genes were highly interconnected in our 110 

biological multiplex network.  111 

 112 

Conceptual model of biological pathways underlying opioid addiction multi-omic genes. 113 

After integrating the 211 multi-omic opioid addiction genes using our network approaches, 114 

we identified multiple pathways unifying these genes. From this investigation, we developed a 115 

conceptual model consisting of 45 opioid addiction genes and 26 other genes, proteins, or 116 

molecules in associated pathways (Figure 4). Multiple genes in the BDNF pathway were 117 

implicated, including BDNF, whose expression was downregulated and its receptor NTRK2 118 

(TrkB), which exhibited decreased H3K27ac ChIP-seq peaks in opioid samples (Figure 4). A 119 

number of genes were also implicated downstream of the BDNF pathway, including RASGRF1, 120 

PIK3R1 and GSK3B in the PI3K/Akt pathway. The ERK MAPK pathway was also strongly 121 

implicated, as the μ-opioid receptor (OPRM1), GABAB receptor (GABBR2), and PDE4B were 122 

implicated upstream of ERK along with multiple ERK phosphatases (DUSP2, DUSP4, DUSP6, 123 

DUSP10, PPP6C). Downstream of the ERK and Akt pathways, CREB (CREB5) and a number of 124 

its target genes were also implicated in opioid addiction, including several immediate early genes 125 

(ARC, EGR1, EGR2, EGR4, FOS, MYC, NPAS4) and genes involved in synaptic plasticity (BDNF, 126 
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NTN1)19. Additionally, the transcription factor RORA was predicted to activate the transcription of 127 

the multi-omic opioid addiction genes: astrotactin-2 (ASTN2) and galectin-3 (LGALS3)20. 128 

In addition to the BDNF, ERK, and Akt signaling pathways, multiple ion channel subunits 129 

and cell adhesion molecules that may influence neurotransmission were identified by multi-omic 130 

integration. Filamin A (FLNA) binds OPRM1 21, FURIN 22, and the GRIK3 subunit of the kainate 131 

glutamatergic receptor23 (Figure 4). Moreover, the astrocytic glutamate transporter EAAT2 gene 132 

(SLC1A2) was implicated by hypoacetylated ChIP-seq. Multiple ionotropic GABA receptor 133 

subunit genes (GABRE, GABRG3), a voltage-gated calcium channel subunit gene (CACNB2), and 134 

multiple ATP or Ca2+-activated K+ channel subunit genes (ABCC8, KCNMA1, KCNN1) were 135 

identified by ChIP-seq, GWAS, or RNA-seq. Genes encoding cell adhesion molecules (NCAM1 136 

24, NRXN3 25) that can modulate synaptic connectivity were also implicated in our multi-omic 137 

opioid addiction gene set, and microglial inflammation was implicated by the galectin-3 gene 138 

(LGALS3 26). Notably, most genes exhibited decreased gene expression, hypoacetylated H3K27ac 139 

peaks, or increased DNA methylation, except for increased GABRE and MYC gene expression and 140 

increased protein abundance of LGALS3. 141 

 142 

Putative pharmacological target genes in opioid addiction. 143 

 After identifying biological pathways and highly interrelated genes by integrating the 144 

multi-omic opioid addiction data sets, we identified genes whose protein products are candidates 145 

for pharmacological manipulation and potential drug repurposing. We constructed a network of 146 

48 druggable opioid addiction genes and 414 approved or experimental drugs known to target the 147 

products of these genes (Figure 5, Supplementary Table 16). Currently approved treatments for 148 

opioid use disorder (OUD) or overdose that target the mu-opioid receptor (encoded by OPRM1) 149 
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are included in the network (buprenorphine, methadone, nalmefene, naloxone, and naltrexone). 150 

Naltrexone is also approved for treating alcohol use disorder (AUD)27, and other approved or 151 

investigational AUD treatments27 were also present in the network, such as acamprosate27 (GABRE 152 

and GABRG3), baclofen27 (GABBR2), ibudilast28 (PDE4B), and topiramate27,29 (CACNB2, GRIK3, 153 

and SCN8A; Figure 5, Supplementary Table 16).  154 

 In addition to drugs approved for treating substance use disorders, multiple drugs in the 155 

network targeting opioid addiction multi-omic genes are currently approved for psychiatric 156 

treatment or are known to have psychiatric effects. This includes the drug spironolactone (targeting 157 

CACNB2 and PGR), which has recently been investigated for treating AUD30, and multiple 158 

approved antidepressants31,32 such as amitriptyline (ADRA1D, NTRK2, OPRM1), amoxapine 159 

(ADRA1D, GABRE, GABRG3), and esketamine (BDNF, NTRK2). The network also includes 160 

known drugs of abuse (e.g., opioids, ethanol, promethazine) and widely prescribed drugs with 161 

potential for misuse, including antipsychotics (e.g., aripriprazole33,34 (OPRM1), dosulepin35 162 

(ADRA1D), olanzapine33 (GABRG3), pipamperone33 (ADRA1D), quetiapine33,36 (ADRA1D) and 163 

benzodiazepines (e.g., alprazolam37, lorazepam38, temazepam38 that all target GABRE and 164 

GABRG3). A number of opioids are also present in the drug-gene target network based on their 165 

characterized effects on OPRM1. 166 

Furthermore, multiple ionotropic and metabotropic ion channel and receptor subunits 167 

(ADRA1D, CACNB2, GABBR2, GABRE, GABRG2, GRIK3, KCNE4, KCNMA1, KCNS3, NTRK2, 168 

OPRM1, SCN8A) that were identified by multi-omic integration are known targets of approved 169 

drugs. Many drugs (“Other Drugs”, Figure 5) targeted 2 or more of the multi-omic opioid 170 

addiction genes that have not been investigated for psychiatric effects. For example, 9 genes 171 

(DAPK1, GSK3B, HIPK3, MARK1, NTRK2, PAK3, PLK4, STK17B, and STK24) were targeted by 172 
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fostamatinib, indicating its potential to affect many opioid addiction genes simultaneously. 173 

Furthermore, we identified antagonists and agonists for most of the gene targets present in the 174 

conceptual model in Figure 4 that were druggable, except for FURIN (only inhibitors), GABBR2 175 

(only agonists), LGALS3 (unknown action), SLC1A2 (substrate or inhibitors), and SST (only 176 

substrates). Thus, many of the genes in the biological pathways identified by our multi-omic 177 

integration are druggable targets and are novel candidates for drug repurposing studies. 178 

Discussion 179 

In the present study, we integrated multi-omic datasets using a systems biology approach 180 

to identify biological pathways and drug targets underlying opioid addiction. Importantly, by 181 

integrating genome-wide association studies and omics derived from the dlPFC of individuals who 182 

died from an opioid overdose, we identified distinct biological pathways implicated in this brain 183 

region, which is associated with opioid craving39–41, such as the Akt and BDNF signaling 184 

pathways, which were not identified in the original contributing studies. Drug-gene target network 185 

integration identified candidate drugs targeting gene products implicated in opioid addiction 186 

omics, as well as putative gene targets for experimental follow up. These efforts may inform the 187 

development of therapeutic interventions for opioid addiction. 188 

After identifying GWAS and omics-derived genes using consistent thresholds across 189 

opioid addiction studies, we used GRIN17 as a means of integrating these multi-omic data by 190 

identifying the most interrelated genes based on biological network connectivity. We used our 191 

previous validated multiplex network containing a dlPFC-derived predictive expression network 192 

in order to remove false positive genes from our gene set. Moreover, the dlPFC-specific network 193 

layers were congruent with the tissue of all transcriptomic and epigenetic data sets examined. 194 

Importantly, the 211 genes retained by GRIN were enriched for more GO Biological Processes 195 
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than the 404 genes not filtered by GRIN. From the 211 genes, we identified a subset of 50 that 196 

were either previously implicated in the risk for substance use disorders, in opioid receptor 197 

signaling, or by multiple opioid addiction omics. Based on the high AUROC value from our 198 

random walk with restart cross-validation approach and the fact that only 127 genes were needed 199 

to connect opioid addiction genes in a shortest paths network, we concluded that these 50 genes 200 

were highly interconnected in our multiplex network and therefore part of the same biological 201 

pathways. Notably, while some of these genes have previously been implicated in rodent models 202 

of opioid addiction (e.g., FOS42–44, MYC45,46) or opioid receptor signaling (NTN147, RTP448,49), 203 

many of the other genes are not well-characterized in relation to opioid addiction or from human 204 

postmortem brain tissue. 205 

Gene set enrichment analysis revealed a strong enrichment for the BDNF, ERK, and 206 

Akt/PI3K pathways from our opioid addiction genes. Notably, the study describing the LC/MS 207 

proteomics data set and two RNA-seq data sets previously implicated the p38 and ERK MAPK 208 

pathways11,12. Here, we confirm this finding and expand the implication of the ERK MAPK 209 

pathway beyond the genes identified in prior studies. Animal models have shown increased ERK 210 

phosphorylation in the hippocampus50 and of the ERK scaffold protein PEA-1551. Decreased 211 

BDNF and associated epigenetic alterations have also been observed in the ventral tegmental area 212 

of postmortem tissue from human heroin addicts52. Moreover, the Akt/PI3K pathway has been 213 

implicated in differential gene expression from whole blood of subjects diagnosed with opioid use 214 

disorder53. However, to our knowledge this is the first study from the dlPFC in which multiple 215 

genes in the BDNF (BDNF, NTRK2) and Akt pathways (GSK3B, PIK3R1, RASGRF1) were 216 

implicated by opioid-induced transcriptomic and epigenetic alterations. 217 
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We also note that many of the 45 genes in our dlPFC opioid addiction conceptual model 218 

affect synaptic plasticity or neuronal signaling, and were largely associated with H3K27 219 

hypoacetylation and/or decreased gene expression. Both excitatory receptor subunits (CACNB2, 220 

GRIK3) and inhibitory receptor subunits (ABCC8, GABBR2, GABRE, GABRG3, KCNMA1, 221 

KCNN1, OPRM1) were implicated in opioid addiction, and all except the GABRE subunit were 222 

associated with decreased expression or less active chromatin. Moreover, the EAAT2 glutamate 223 

transporter (SLC1A2) was implicated by H3K27 hypoacetylation, an astrocytic transporter 224 

responsible for removing glutamate from the synaptic cleft that has been implicated in bipolar 225 

disorder and schizophrenia54. Coupled with a net decrease in immediate early gene expression 226 

(ARC, EGR1, EGR2, EGR4, ETS1, ETV5, FOS, MYC, NPAS4), genes whose expression is induced 227 

by cellular activation55–59, our opioid addiction genes are associated with decreased neuronal 228 

activity in the dlPFC. Future studies are warranted to determine if decreased gene expression and 229 

H3K27 hypoacetylation occur equally within excitatory and inhibitory neurons in the dlPFC. 230 

Extending GWAS findings for opioid addiction, here we integrated omics data in the dlPFC 231 

based on its role in impulsivity and drug craving in opioid addiction39–41. This brain region has 232 

also been implicated in cigarette60 and cocaine craving61. Moreover, randomized clinical trials 233 

have been conducted using transcranial magnetic stimulation over this brain region to reduce 234 

opioid craving62,63. Although omics from whole blood53,64,65 and other brain regions, such as the 235 

midbrain66, nucleus accumbens13,67, orbitofrontal cortex68, and striatum69,70 have been generated 236 

from individuals with a history of opioid addiction, focusing on GWAS and the dlPFC enabled us 237 

to examine genes from a brain region-specific perspective. Future studies should examine 238 

biological pathways involving NAc omics, particularly the extent to which these pathways overlap 239 

with dlPFC pathways. Furthermore, while the H3K27ac ChIP-seq data set integrated in this study 240 
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were derived from NeuN-positive neurons11, omics derived from other cell types (e.g., astrocytes, 241 

microglia, oligodendrocytes) and neuronal subtypes can inform cell type-specific epigenomic, 242 

transcriptomic, and proteomic changes caused by opioid addiction. 243 

After identifying opioid addiction genes in the dlPFC, we sought to identify which genes 244 

were known targets of previously approved medications using network visualization. Notably, 245 

approved treatments for opioid addiction71 (buprenorphine, methadone, naltrexone) or overdose 246 

(nalmefene and naloxone) were present within our drug-gene target network. In addition to these 247 

opioid-related treatments, drugs for which there is evidence of efficacy in treating alcohol use 248 

disorder were present in the network, including acamprosate27, baclofen27, ibudilast28 , and 249 

topiramate. Of these, topiramate has limited evidence in clinical trials for its capacity to treat opioid 250 

addiction72, and has been extensively assessed for treating alcohol use disorder29 and to a lesser 251 

extent cocaine73 addiction. In addition to medications for treating substance use disorders, we 252 

identified multiple drugs that are widely prescribed for treating psychiatric disorders that may be 253 

comorbid with opioid addiction, such as depressive and anxiety disorders and schizophrenia. 254 

Studies are warranted to evaluate the extent to which these drugs could be used to treat opioid 255 

addiction. As many of the identified genes were associated with decreased gene expression or 256 

hypoacetylated H3K72ac ChIP-seq peaks, ascertaining whether these drugs increase (agonist) or 257 

decrease (antagonist) the downstream activity of these protein-coding genes is critical. 258 

Furthermore, an important question for drug repurposing efforts is how opioid addiction affects 259 

the expression of the genes identified in the dlPFC.  260 

In considering drugs to be repurposed for treating addiction, weighing the potential risks 261 

associated with them is essential. A number of drugs in the network that are widely used in 262 

psychiatry, such as the benzodiazepines alprazolam37 and lorazepam38, have the potential for 263 
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misuse; thus, any efforts to repurpose these drugs must consider their potential for adverse effects. 264 

Future work might also include using real world data to determine safety and whether there is 265 

evidence that the use of these medications is associated with decreased use of opioids. 266 

There are limitations to the current study that are worth noting. Notably, the omics from 267 

the dlPFC included in the study are from bulk tissue, rather than individual cellular populations. 268 

As they become available, integrating single-cell transcriptomic and epigenetic datasets would 269 

give valuable insight into the neuronal and/or glial cell populations affected by opioid addiction in 270 

the prefrontal cortex. Adding single cell-specific context into networks (e.g., including a 271 

glutamatergic neuron-specific predictive expression network) would provide additional cellular 272 

perspective into the relationships among the multi-omic genes, beyond a tissue-level perspective. 273 

Furthermore, gene dysregulation in the dlPFC was identified by comparing opioid overdose death 274 

cases to controls. Such differences in gene regulation may be attributable to a variety of causes 275 

(e.g., chronic opioid exposure / addiction, genetic risks for opioid addiction, acute death from an 276 

opioid overdose, differences in diet, other drug use, or circadian disruption). It is likely that 277 

functional studies in model organisms will be needed to differentiate such causes. Finally, while 278 

we have included currently available genes implicated by GWAS and omics data, there are likely 279 

additional genes contributing to opioid addiction that have not yet been implicated due to these 280 

genes failing to reach statistical significance. Thus, as sample sizes continue to increase from 281 

opioid addiction GWAS and postmortem omics data from opioid overdose, there may be additional 282 

genes and pathways implicated within the dlPFC based on increased statistical power. 283 

In summary, we used network biology techniques to integrate multiple opioid addiction 284 

omics data sets from a systems biology perspective. By identifying biological pathways 285 

dysregulated in the dlPFC following opioid addiction and druggable gene targets in these 286 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.04.24300831doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.04.24300831
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

pathways, we identified candidate medications that merit experimental follow up as potential 287 

treatments for opioid addiction. 288 

Online Methods 289 

 290 
Integrating opioid addiction multi-omic genes. 291 

Opioid addiction genes were integrated from the following types of previously published 292 

omics data sets involving postmortem dorsolateral prefrontal cortex (dlPFC) from control subjects 293 

and subjects who died of an opioid overdose: H3K27ac chromatin immunoprecipitation 294 

sequencing (ChIP-seq11), DNA methylation15, liquid chromatography-mass spectrometry 295 

(LC/MS12), and bulk RNA sequencing (RNA-seq11–14). We also included genes identified from 296 

opioid addiction genome-wide association studies (GWAS). Together, 404 unique genes present 297 

in the multiplex network were identified based on the following thresholding procedures. 298 

Differential ChIP-seq peaks were derived from previous H3K27ac ChIP-seq obtained from 299 

prefrontal cortex samples of controls and subjects that died of opioid overdose (Supplementary 300 

Table 1)11. From 388 differentially acetylated H3K27ac ChIP-seq peaks based on a threshold of 301 

Bonferroni-corrected p < 1e-7, peaks were re-mapped to genes using the “annotatePeak” function 302 

from the ChIPseeker R function74 using hg19/GRCh37 coordinates and a 1kb window around the 303 

transcriptional start site to define the promoter region. This annotation was used in contrast to the 304 

GREAT75 peak-to-gene annotation listed in the original publication11, as ChIP-seeker annotates 305 

the location of peaks (i.e. intronal, exonal, promoter, 5’UTR, 3’UTR, distal intergenic) and 306 

mapped peaks to genes that GREAT did not annotate. Reciprocally, if ChIPseeker did not map a 307 

peak to a gene, the GREAT peak-to-gene annotation was used. Together, these 388 H3K27ac 308 

ChIP-seq peaks mapped to 267 unique genes. Furthermore, we included the 5 genes (ASTN2, 309 
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DUSP4, ENOX1, GABBR2, KCNMA1) associated with variant enhancer loci lost in opioid 310 

overdose subjects using promoter-capture Hi-C that were statistically significant at FDR-corrected 311 

p < 1e-6, which added 2 unique genes to the H3K27ac ChIP-seq-associated gene list. Thirteen non-312 

coding RNAs identified by ChIP-seq peaks were excluded from downstream analysis as they were 313 

not present in any layer of the multiplex network (Supplementary Table 7): MIR30D, MIR3201, 314 

MIR3914-1, MIR4262, MIR4264, MIR4319, MIR4432, MIR4480, MIR4689, MIR4714, MIR4790, 315 

MIR488, and SNORA72. In total, 256 unique genes were included among the H3K27ac ChIP-seq 316 

peaks. 317 

Differentially methylated genes were identified using a previously published epigenome-318 

wide association study of dlPFC tissue from subjects who died from opioid overdose using the 319 

Illumina Infinium MethylationEPIC BeadChip DNA methylation chip testing 850,000 CpG 320 

regions (Supplementary Table 2)15. Thirteen CpG sites were identified with adjusted p-values of 321 

0.4 (uncorrected p < 6e-6) and 3 CpG islands that were not mapped to genes (cg25084741, 322 

cg10759972, and cg26506680) were excluded. This yielded 13 unique genes identified by opioid-323 

induced differential DNA methylation that were present in the multiplex network. 324 

Genes were included from opioid use disorder8–10 and prescription opioid misuse6 GWAS 325 

based on SNP-nearest gene associations from SNPs with p < 5e-8, resulting in 19 unique GWAS 326 

genes; an additional 15 unique genes were also identified from multi-trait analysis of GWAS 327 

(MTAG) using European opioid use disorder GWAS, alcohol use disorder, and cannabis use 328 

disorder summary statistics (Supplementary Table 3)7. These opioid addiction GWAS yielded 329 

34 unique genes, but one gene (TMX2-CTNND1) was not present in any layer of the multiplex 330 

and was excluded from downstream analyses (33 unique GWAS genes; Supplementary Tables 331 

6-7). 332 
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Differentially abundant proteins (Supplementary Table 4) were identified from a 333 

previously published LC/MS proteomics study from postmortem dlPFC from control and subjects 334 

diagnosed with opioid use disorder12. Three protein coding genes (ATP5J2, LGALS3, TAF15) were 335 

included based on a threshold of adjusted p-value < 0.05 and absolute value of log2 fold change 336 

(FC) greater than or equal to 1.5 (log2FC ≤ -1.5 or log2FC ≥ 1.5) which were included in 337 

downstream analyses. 338 

Differentially expressed genes (DEGs; Supplementary Table 5) were identified from four 339 

RNA-seq studies derived from postmortem dlPFC of controls and subjects who died of opioid 340 

overdose or were diagnosed with opioid use disorder11–14. DEGs were included in downstream 341 

analyses based on thresholds of adjusted p-value < 0.05 and |log2FC ≥ 0.5|. Using these thresholds, 342 

we identified 106 unique genes identified in opioid addiction by RNA-seq and 103 genes present 343 

in the multiplex were included in downstream analyses (AC018647.3, AL606753.2, and PARTICL 344 

were excluded, Supplementary Table 7). 345 

Multiple genes were implicated in opioid addiction by multiple lines of biological 346 

evidence. Four genes were identified across multiple omics data types: DUSP4, DUSP6, ETV5, 347 

and PLA2GS. Additionally, 60 ChIP-seq opioid addiction genes were identified by multiple 348 

H3K27ac ChIP-seq peaks, and ARL4D was identified as a DEG in two separate RNA-seq 349 

studies12,13. Furthermore, FURIN 7–9, NCAM1 7,8, OPRM1 7–10, and the SCAI/PPP6C/RABEPK 7–9 350 

gene cluster were identified across multiple opioid addiction GWAS. 351 

 352 

Multiplex network generation. 353 

Multiplex gene-gene networks were assembled from 10 layers from different types of 354 

biological evidence using GENCODE IDs for all genes. None of the multiplex network data 355 
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sources were from any of the opioid addiction omics data sets. The following network layers were 356 

used from HumanNet (version 2.0 23): co-citation, co-essentiality, co-expression, pathway 357 

databases, gene neighborhood, interologs, and phylogenetic associations. A merged protein-358 

protein interaction network was created by merging networks from HumanNet (version 2.0, 359 

literature curated and high-throughput assay-derived connections) and high-confidence 360 

interactions from STRING (version 11.0, taxa = 9606, protein.actions.v11.0, mode=binding, min 361 

score = 70076). Transcription factor-target relationships specific to the prefrontal cortex were 362 

included from Pearl et al20. All edge (connection) weights were normalized on a 0 to 1 scale 363 

irrespective of line of biological evidence. 364 

Brain region-specific network layers were also incorporated using RNA-seq data from the 365 

Genotype-Tissue Expression (GTEx) consortium77 and explainable-AI algorithms applied on the 366 

Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF). Using iterative 367 

random forest leave-one-out prediction (iRF-LOOP78), gene-gene predictive networks were made 368 

from the prefrontal cortex (BA9) given that all omics were derived from this brain region. After 369 

computing all edges with iRF-LOOP, only high-confidence edges (edge weights > 0.05) were 370 

included in the multiplex network. 371 

After compiling all network layers, the 10-layer multiplex was assembled using the 372 

“RWR_make_multiplex” function within the RWRtoolkit R library79. The final multiplex network 373 

contained 51,183 unique genes and 3,419,975 unique edges. 374 

 375 

Filtering opioid addiction multi-omic genes using GRIN 376 

We applied GRIN (Geneset Refinement using Interacting Networks)17 to identify the most 377 

biologically interrelated opioid addiction genes and remove potential false positive genes. GRIN 378 
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was applied with the previously validated 10-layer multiplex network described above using the 379 

404 unique genes identified from multiple omics data using equal weights for all genes. GRIN 380 

retained 211 opioid addiction genes which were used in all subsequent analyses. Gene set 381 

enrichment for Gene Ontology (GO) Biological Processes was then tested on the 404 genes prior 382 

to GRIN as well as the GRIN retained and GRIN removed gene sets using ToppGene80. Gene set 383 

enrichments were considered significant at a threshold of FDR-corrected p-value < 0.05. 384 

After retaining 211 opioid addiction genes, a set of 50 high-confidence genes were 385 

identified using two criteria. Three genes that were present in multiple omics data sets and retained 386 

by GRIN were included: DUSP4, DUSP6, and ETV5. Next, a subset of the 211 genes was included 387 

if each gene were associated with opioid-mediated signaling or a substance use disorder based on 388 

previously published research. This resulted in 47 additional genes in the high-confidence gene set 389 

based on a literature search from PubMed (https://pubmed.gov) using the following search terms: 390 

“[gene] opioid”, “[gene] addiction”, “[gene] substance use disorder.” ToppGene was then used to 391 

test for gene set enrichment of GO Biological Processes, GO Cellular Components, GO Molecular 392 

Functions, biological pathway enrichment (includes KEGG81, Reactome82, and PANTHER83 393 

pathways), and transcription factor binding sites (MSigDB84). 394 

 395 

Shortest paths network 396 

A shortest paths network connecting all pairs of the 50 opioid addiction-associated genes 397 

was generated using the shortest paths algorithm using the R package RWRtoolkit79. The 10-layer 398 

multiplex network was merged into a single network layer, and using the shortest paths algorithm 399 

identified the shortest possible network connections among all 2500 possible gene-gene pairs. 400 

Genes who were direct neighbors with at least one other opioid addiction gene (43 out of 50 opioid 401 
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addiction genes) were imported into the program Cytoscape85 (Version 3.9.1, Cytoscape 402 

Consortium, San Diego, CA, USA) for network visualization. For the other 7 genes (ADRA1D, 403 

FURIN, KIAA0040, LGALS3, NTN1, SLC1A2, SST), the connections between these genes and 404 

other opioid addiction genes that were separated by one neighbor (“network-connecting genes”) 405 

were included in the Cytoscape visualization. 406 

 407 

Random walk with restart cross validation. 408 

Using the RWR-CV function within RWRtoolkit79, we tested the interconnectivity of our 409 

refined 50 opioid addiction gene set using random walk with restart (RWR) with 5-fold cross 410 

validation. In one cross validation fold, 10 genes were left out of our input gene set, and the other 411 

40 genes were used as seed genes for RWR. All genes in the multiplex network were ranked by 412 

RWR, with true positives counted as left-out genes that were ranked by RWR, and true negatives 413 

counted as other genes in the network. A receiver-operator characteristic (ROC) curve was 414 

calculated based on true positive rate (true positives / true positives + false negatives) and false 415 

positive rate (false positives / false positives + true negatives), which was plotted using the R 416 

package ggplot286. The area under the curve was computed using RWRtoolkit. 417 

 418 

Overview and conceptual model visualizations 419 

An overview diagram of the approach used in this study was constructed using 420 

Biorender.com. Similarly, the conceptual model illustrating biological pathways among opioid 421 

addiction genes was constructed using Biorender.com. 422 

  423 

Identifying druggable targets involved in opioid addiction. 424 
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Multi-omic opioid addiction genes were then cross-referenced with previously 425 

demonstrated gene-drug interactions. Using DrugBank87, a network of drug-gene target 426 

interactions was created using all 211 genes retained by GRIN. These drug interactions included 427 

FDA-approved, investigational, and experimental uses of drugs targeting these genes, resulting in 428 

48 gene targets and 414 total drugs. Drug-gene target interactions were visualized using Cytoscape. 429 

Data Availability 430 

No primary data was generated for the present study. All primary data from DNA 431 

methylation, GWAS summary statistics, H3K27ac ChIP-seq, LC/MS proteomics, and RNA-seq 432 

are from previously published manuscripts. GWAS summary statistics from the Million Veteran 433 

Program (Kember et al., 2022) are available on the NIH database of Genotypes and Phenotypes 434 

(dbGaP) under accession phs001672. GWAS summary statistics from Deak et al., 2022 are 435 

publicly available at https://medicine.yale.edu/lab/gelernter/stats/. GWAS summary statistics 436 

from Gaddis et al., 2022 are available under dbGaP under accession phs000454.v1.p1.We used 437 

the top 10,000 SNPs from Sanchez-Roige et al., 2021 GWAS summary statistics, which are 438 

publicly available at 439 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8562028/bin/41380_2021_1335_MOESM2_ES440 

M.xlsx. Previously published data from H3K27ac ChIP-seq is available under dbGaP accession 441 

number phs002724.v1.p1. Previously published DNA methylation data is available at GEO 442 

accession number GSE164822. Previously published LC/MS proteomics is available at the 443 

ProteomeXchange PRIDE repository under PXD025269. Previously published RNA-seq data 444 

sets are available under dbGaP accession phs002724.v1.p1, GEO accession numbers 445 

GSE221515 and GSE174409, and SRA accession number SUB9455518.  446 
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All activities were approved by the Oak Ridge National Laboratory Institutional Review 447 

Board. The demographics of subjects from which GWAS summary statistics were derived along 448 

with descriptions of Institutional Review Boards to approve these studies have been 449 

characterized in previous publications and all subjects provided informed consent. All 450 

postmortem brain tissue samples are exempt from human subjects research. 451 

 452 

Code Availability 453 

The GRIN software and multiplex network that was used is publicly available at 454 

github.com/sullivanka/GRIN. Publicly available R packages (ggplot2, tidyverse) were used for 455 

data analysis and visualization using R version 4.1.3, and ChIP-seq peaks were assigned using 456 

ChIPseeker (version 1.30.3). Additional code used to generate results are available upon request. 457 
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Figures 491 

 492 

Figure 1. Multi-omic integration of opioid addiction phenotypes. 493 
Beginning with multiple data sets collected from opioid addiction (OA) cases and controls, OA 494 
genes were assembled from H3K27ac chromatin immunoprecipitation (ChIP-seq; peaks assigned 495 
to nearest gene), DNA methylation (CpG methylation site to nearest gene), genome-wide 496 
association studies (GWAS; SNP-to-gene assignment), differentially abundant proteins by LC/MS 497 
proteomics (protein-coding genes), and differential gene expression by RNA-seq. After integrating 498 
the overlapping and distinct genes identified by each omics data type, a biological multiplex 499 
network consisting of networks from multiple lines of biological evidence were constructed using 500 
data sources separate from any of the opioid addiction omics data sets. Network traversal 501 
algorithms were used to identify mechanistic connections among the multi-omic genes and identify 502 
dysregulated pathways in the dorsolateral prefrontal cortex (dlPFC). Figure made with 503 
Biorender.com.  504 
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 505 

Figure 2. Opioid addiction genes are retained by GRIN from multiple omics types 506 
and result in more Gene Ontology enrichments compared to the unfiltered gene set. 507 
a. Percentages of genes retained (orange) or removed (blue) by GRIN by each omics type, 508 
including genes shared across omics types (ChIP-seq_RNAseq, GWAS_MTAG_GWAS, pcHiC-509 
VELs_ChIPseq, and pcHiC-VELs_ChIPseq_RNAseq). b. From the 404 original opioid addiction 510 
genes (Pre-GRIN), 159 GO Biological Process terms were significantly enriched. The 211 genes 511 
retained by GRIN (Post-GRIN) were enriched for 96 of the same GO Biological Processes but 512 
were uniquely enriched for 197 additional terms. Only 7 terms were significantly enriched in the 513 
set of 404 genes prior to GRIN that were not significantly enriched in the post-GRIN set of 211 514 
genes.   515 
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 516 

Figure 3. Multi-omic opioid addiction genes are tightly interconnected as 517 
demonstrated by network biology. 518 
a. Network visualization of the shortest pathways between all pairs of 50 opioid addiction (OA)-519 
associated genes from GWAS and dlPFC omics. 43 genes were directly connected to at least one 520 
other gene by the networks (Direct Neighbor OA genes), and only 127 additional genes (Network-521 
Connecting Genes) were necessary to connect the other 7 genes (One Neighbor OA Genes) from 522 
10 network layers. Notably, three Network-Connecting genes (SERPINB1, SORCS1, and SORL1) 523 
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were members of the larger 211 GRIN-retained opioid addiction gene set. Gene Legend: indicates 524 
gene color from which omics data type or if it is a Network-Connecting Gene; Network 525 
Connections legend indicates network layer used to connect gene pairs. b. Using Random Walk 526 
with Restart to explore the biological networks starting from 50 OA-associated genes, 5-fold cross 527 
validation exhibits high recall based upon a mean area under receiver-operator characteristic curve 528 
(AUROC) value of 0.94.   529 
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 530 

Figure 4. Conceptual model of opioid addiction pathways implicated by multi-omic 531 
integration. 532 
Conceptual model of 45 opioid addiction genes identified via multiple omics data types and 26 533 
additional genes, proteins, or molecules in associated pathways. The mu-opioid receptor (OPRM1) 534 
and GABBR2 receptor inhibit downstream adenylyl cyclase/protein kinase A (PKA) signaling. 535 
PKA can phosphorylate ERK1 which is bound by the scaffolding protein PEA-15, and ERK can 536 
also be activated by upstream netrin (NTN1) and BDNF signaling molecules that were implicated 537 
in opioid addiction (BDNF, NTRK2, RASGRF1). DUSP2, DUSP4, DUSP6, DUSP10, and PPP6C 538 
all function as ERK phosphatases and PDE4B can reduce PKA activation, while Akt signaling 539 
(implicated by PIK3RA and GSK3B) and ERK signaling can activate NPAS4 and CREB5 to 540 
activate transcription of NTN1 (identified by DNA hypermethylation) and synaptic plasticity and 541 
immediate early genes (ARC, BDNF, EGR1, EGR2, EGR4, ETS1, ETV5, FOS, MYC, NPAS4, SST). 542 
ERK can also activate the transcription factor RORA to promote transcription of ASTN2 and 543 
galectin-3 (LGALS3), which is important in microglial inflammatory processes. OPRM1 544 
(chaperoned to the cell membrane by RTP4) and FURIN share a common scaffolding protein 545 
(filamin A; FLNA) with the glutamatergic kainate receptor subunit GRIK3, and SLC1A2 is an 546 
important glutamate transporter in astrocytes. Additional potassium and calcium channel subunits 547 
(ABCC8, KCNMA1, KCNN1) were implicated along with multiple ionotropic GABAA receptor 548 
subunits (GABRE, GABRG3) and cell adhesion molecules (NCAM1 and NRXN3). Color of gene 549 
text indicates which opioid addiction omics data set the gene originated from, and shading of the 550 
gene indicates the logFC of expression or histone acetylation state (not applicable for pc Hi-C 551 
VELs or GWAS genes). NTN1 was hypermethylated by a mean difference of 0.29 rather than a 552 
logFC difference in methylation state. Gray text genes indicate genes or molecules involved in 553 
pathways but were not implicated by an omics study. 554 
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Figure 5. Drug-gene target network includes current opioid treatments and putative 555 
candidate drugs for treatment repurposing. 556 
A network of 414 drugs and 48 target genes (orange) implicated in multi-omic opioid addiction 557 
studies. Current opioid addiction/opioid use disorder (OUD) treatments (light yellow-green) 558 
targeting the μ-opioid receptor (OPRM1) include buprenorphine, methadone, and naltrexone, as 559 
well as nalmefene and naloxone to prevent overdose. In addition to nalmefene and naltrexone 560 
which is used to treat OUD and alcohol use disorder (AUD), four approved or experimental alcohol 561 
use disorder treatments (light green) were present in the network: acamprosate (targeting GABRE 562 
and GABRG3), baclofen (targeting GABBR2), ibudilast (targeting PDE4B), and topiramate 563 
(CACNB2, GRIK3, and SCN8A). Drugs with known psychiatric effects (teal) targeting opioid 564 
addiction genes include spironolactone (also investigated for AUD), antidepressants (e.g., 565 
amitriptyline, amoxipine, and esketamine, targeting 6 unique genes). Some drugs in the network 566 
with known misuse potential (dark blue) include antipsychotic drugs (e.g., aripriprazole, 567 
quetiapine) and many benzodiazepines that act as anxiolytics (e.g., alprazolam, lorazepam). 568 
Multiple ion channel receptor subunits (15 total) are also known drug targets, and 9 genes are 569 
known to be targeted by fostamatinib. Other drugs with yet unknown psychiatric effects targeting 570 
opioid addiction genes are shown in light blue, along with a number of opioids (gray). This drug-571 
gene target network may guide additional hypotheses and follow up experiments to test the 572 
efficacy of these drugs in combating opioid addiction processes.  573 
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