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Abstract 
Objec�ve: Observa�onal studies using electronic health record (EHR) databases o�en face challenges 
due to unspecific clinical codes that can obscure detailed medical informa�on, hindering precise data 
analysis. In this study, we aimed to assess the feasibility of refining these unspecific condi�on codes 
into more specific codes in a Dutch general prac��oner (GP) EHR database by leveraging the available 
clinical free text. 

Methods: We u�lized three approaches for text classifica�on—search queries, semi-supervised 
learning, and supervised learning—to improve the specificity of ten unspecific Interna�onal 
Classifica�on of Primary Care (ICPC-1) codes. Two text representa�ons and three machine learning 
algorithms were evaluated for the (semi-)supervised models. Addi�onally, we measured the 
improvement achieved by the refinement process on all code occurrences in the database. 

Results: The classifica�on models performed well for most codes. In general, no single classifica�on 
approach consistently outperformed the others. However, there were varia�ons in the rela�ve 
performance of the classifica�on approaches within each code and in the use of different text 
representa�ons and machine learning algorithms. Class imbalance and limited training data affected 
the performance of the (semi-)supervised models, yet the simple search queries remained par�cularly 
effec�ve. Ul�mately, the developed models improved the specificity of over half of all the unspecific 
code occurrences in the database. 

Conclusions: Our findings show the feasibility of using informa�on from clinical text to improve the 
specificity of unspecific condi�on codes in observa�onal healthcare databases, even with a limited 
range of machine-learning techniques and modest annotated training sets. Future work could 
inves�gate transfer learning, integra�on of structured data, alterna�ve semi-supervised methods, and 
valida�on of models across healthcare se�ngs. The improved level of detail enriches the 
interpreta�on of medical informa�on and can benefit observa�onal research and pa�ent care. 
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Introduc�on 
Observa�onal studies leveraging electronic health record (EHR) databases are increasingly common. 
These studies primarily rely on clinical codes assigned to pa�ent records to document medical 
condi�ons and treatments. The precision of these codes is influenced by factors such as the healthcare 
professional's coding skills and the terminology systems implemented within the EHR. A significant 
challenge arises when codes lack specificity, such as "Fracture: hand/foot bone" or "Infec�on of 
circulatory system." These broad categories obscure the details of individual condi�ons, complica�ng 
the extrac�on of specific data like hand fractures or endocardi�s cases. Consequently, this lack of detail 
hampers in-depth analysis. 

Refining these unspecific clinical codes into more specific codes using addi�onal clinical informa�on 
can enhance observa�onal research. However, the manual review of extensive clinical documenta�on 
to achieve this is labor-intensive and imprac�cal for large datasets. Hence, automated classifica�on 
methods that can discern the correct specific codes from clinical texts would be a substan�al aid. 

Automa�cally assigning diagnos�c codes to medical texts using supervised learning algorithms has 
been a large focus of clinical machine learning and natural language processing (NLP) research [1,2]. 
Studies have been conducted in various languages [3-5], including Dutch [6-8], and have shown 
increasingly promising results [9-11]. These studies have primarily focused on databases or datasets 
containing text and labeled data, for example, codes from the Interna�onal Classifica�on of Diseases 
(ICD). The issue we face involves observa�onal data with unspecific codes not already labeled with a 
more specific code, which precludes using a supervised approach without prior manual annota�on. 

When labeled data are scarce, semi-supervised or unsupervised learning methods become valuable 
[12]. Semi-supervised learning combines labeled and unlabelled data or employs a par�al labeling 
process to minimize manual effort while providing results comparable to fully supervised methods [13-
15]. This approach has been effec�vely used in clinical contexts, such as cancer risk iden�fica�on [16] 
and biomedical text classifica�on [17]. Unsupervised methods, including rule-based systems [18], 
methods relying on named en�ty recogni�on and summariza�on [19], and methods using word 
embedding similari�es [20], have been applied to clinical code assignment, as well as in Dutch clinical 
se�ngs [21].To our knowledge, previous research has not explored the reclassifica�on of unspecific 
clinical codes into more specific ones in unlabeled EHR datasets. 

In this study, we aimed to enhance the specificity of clinical codes without relying heavily on manual 
annota�on. We evaluated and compared three classifica�on approaches (search queries, semi-
supervised learning, and supervised learning) on a selec�on of unspecific condi�on codes in a Dutch 
general prac��oner (GP) EHR database, and determined the total number of code refinements by 
applying the classifica�on models to the en�re database.  
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Materials and methods 
Database and popula�on 
This study used data from the Integrated Primary Care Informa�on (IPCI) database [22], a longitudinal 
EHR database. IPCI covers pa�ents from 1993 to 2022, currently holding EHRs of 2.5 million pa�ents 
with a median follow-up dura�on of 4.8 years. The data are standardized using the Observa�onal 
Medical Outcomes Partnership Common Data Model (OMOP CDM), allowing standardized analy�cs 
and facilita�ng interna�onal research collabora�on [23-25]. The IPCI governance board approved this 
research under code 2022-04. All pa�ents in the database were eligible for inclusion. 

Coded condi�ons 
Dutch GPs code condi�ons using the Interna�onal Classifica�on of Primary Care (ICPC-1), a 
terminology containing many unspecific codes. The concept mapping from ICPC-1 to the Systema�zed 
Nomenclature of Medicine Clinical Terms (SNOMED CT), provided by the Dutch Na�onal Ins�tute for 
Health Informa�on and Communica�on Technology (Nic�z) 1, was used as star�ng point to iden�fy 
178 unspecific ICPC codes, defined as codes with a mapping to two or more SNOMED CT codes. For 
example, ICPC-1 code L74: "Fracture: hand/foot bone" maps to SNOMED CT codes 20511007: 
"Fracture of hand" and 15574005: "Fracture of foot". We selected eight unspecific ICPC-1 codes from 
the Nic�z mapping for this feasibility study. Addi�onally, we iden�fied two other ICPC-1 codes with a 
general or broad descrip�on not included in the mapping, D75: "Malignant neoplasm of colon/rectum" 
and K70: "Infec�on of circulatory system". Table 1 lists the studied ICPC-1 codes and the more specific 
SNOMED CT codes. 

Table 1. The ten unspecific ICPC-1 codes in this feasibility study with their more specific SNOMED CT 
codes.  

ICPC-1 codes SNOMED CT codes 
Code Description Code Description 
D01 Abdominal pain/cramps general 51197009 Stomach cramps   

102614006 Generalized abdominal pain 
D75 Malignant neoplasm of colon/rectum 363406005 Malignant tumor of colon   

363351006 Malignant tumor of rectum 
K70 Infec�on of circulatory system 3238004 Pericardi�s   

56819008 Endocardi�s   
50920009 Myocardi�s 

K78 Atrial fibrilla�on/fluter 49436004 Atrial fibrilla�on   
5370000 Atrial fluter 

L72 Fracture: ulna/radius 54556006 Fracture of ulna   
12676007 Fracture of radius 

L73 Fracture: �bia/fibula 31978002 Fracture of �bia   
75591007 Fracture of fibula 

L74 Fracture: hand/foot bone 20511007 Fracture of hand   
15574005 Fracture of foot 

N18 Paralysis/weakness 44695005 Paralysis   
26544005 Muscle weakness 

R07 Sneezing/nasal conges�on/running nose 76067001 Sneezing   
68235000 Nasal conges�on   
64531003 Nasal discharge 

S86 Seborrheic derma��s/Pityriasis capi�s 50563003 Seborrheic derma��s   
400201008 Pityriasis capi�s 

 

 
1 htps://www.snomed.org/member/netherlands 
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Data extrac�on and annota�on 
We extracted every occurrence of the ten selected ICPC-1 codes, along with the free-text notes within 
a five-day window surrounding the date each code was recorded. We randomly selected a test set of 
200 code occurrences for each ICPC-1 code from the complete set of code occurrences. The first author 
manually annotated the code occurrences with the more specific codes, in the following also called 
subcodes, based on the pa�ent's free-text notes in the five-day window. Each subcode received a 
binary label, which allowed to indicate the presence of mul�ple subcodes, e.g., a pa�ent could have 
both a broken hand and foot. A separate set of 300 randomly selected code occurrences, not in the 
test set, was also annotated as a modest training set for the supervised classifica�on models. Figure 1 
illustrates the experimental setup. 

 

Figure 1. Experimental setup for the development and evaluation of classifiers that assign more 
specific SNOMED CT codes to unspecific ICPC-1 codes. The diagram provides an overview of the entire 

process, starting from the set of N code occurrences in the IPCI database and the subsequent 
sampling and creation of (pseudo-)labeled occurrences. The diagram also highlights the three 

classification approaches (search query, semi-supervised, and supervised classification) and their 
evaluation on the test sets. Additionally, the data extraction process is visualized. 

Classifica�on approaches 
We compared three classifica�on approaches: search queries, semi-supervised learning, and 
supervised learning. In all approaches, we built a binary classifier per subcode to allow the assignment 
of mul�ple subcodes per code occurrence. For the search-query approach, we determined simple 
search terms for each subcode solely based on the descrip�on of the ICPC-1 code without inspec�on 
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of the notes in the database. The exact substrings are in Supplemental Table S1. If we found a substring 
in the text, we considered the subcode present. The search queries could directly be evaluated on the 
test set. For the semi-supervised approach, we used self-training [15]. The search queries were used 
to predict the labels of all code occurrences except those in the test set. These pseudo-labels were 
used to train the semi-supervised classifica�on models. For computa�onal efficiency, we limited the 
training set to 150,000 occurrences. The supervised models were trained using the 300 occurrences in 
the manually annotated training set.  

Feature extrac�on 
We combined and processed all text within the five-day �me window around each code occurrence to 
create a Bag-of-Words (BoW) feature vector. Processing included conversion to lowercase and 
tokeniza�on to unigrams and bigrams. We u�lized two text representa�ons: a BoW representa�on 
normalized using Term Frequency-Inverse Document Frequency (TFIDF), and averaged word 
embeddings (AVGEMB), allowing us to capture lexical and seman�c informa�on. We created the word 
embeddings by training a 300-dimensional Word2Vec model [26] using gensim [27], with a token 
window of five, on the en�re IPCI database, consis�ng of 662 million clinical notes with 8.5 billion 
tokens. 

Machine learning algorithms 
We used three classifica�on algorithms for (semi-)supervised model training: L1-regularized logis�c 
regression (LR) using the glmnet R-package, extreme gradient boos�ng (XGB) using the xgboost R-
package, and a neural network (NN) using the nnet and caret R-package. Hyperparameters were 
op�mized with 3-fold cross-valida�on (See Supplemental Table S2). Combined with the two text 
representa�ons, we evaluated six different method combina�ons. 

Model evalua�on 
For each subcode, we evaluated the performance of the search query, with binary predic�ons, and the 
(semi-)supervised models, with probability scores, on the annotated test set using the area under the 
receiver operator characteris�c curve (AUROC), the area under the precision-recall curve (AUPRC), and 
the F1-score for the search query and the maximum F1-score across all probability thresholds for 
(semi-)supervised models. Addi�onally, we assessed the global explainability in the LR and XGB models 
using TFIDF features by iden�fying the most important features. For LR, we measured feature 
importance based on the magnitude of coefficients (beta values). In XGB, we assessed feature 
importance using average gain, indica�ng each feature's contribu�on to model performance. Lastly, 
we applied the models to the full set of occurrences (except the test set) to determine the percentage 
of code occurrences that were assigned at least one subcode. Here, the maximum F1-score on the test 
set determined the probability threshold for the (semi-)supervised models.  
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Results 
Dataset characteris�cs and code counts 
Table 2 presents the dataset characteris�cs per ICPC-1 code. A considerable varia�on in characteris�cs 
can be observed across the ICPC-1 codes. Table 3 displays the number of subcodes per condi�on code 
in the training and test sets, showing class imbalances for several codes. For example, in S86 
(Seborrheic derma��s/Pityriasis capi�s) one subcode occurs in 78% of the test set code occurrences 
and the other subcode in only 9%. For some codes, such as L74 (Fracture: hand/foot bone), a subcode 
was assigned to almost all occurrences (95%), while for others, such as L73 (Fracture: tibia/fibula), a 
subcode could not be assigned in 37% of the occurrences because the informa�on in the notes was 
insufficient. The rela�ve outcome counts in the test and training sets were comparable across all 
condi�on codes. 

Table 2. The dataset characteristics and the descriptive statistics of notes for the ten ICPC-1 codes in 
the IPCI database. D01: Abdominal pain/cramps general, D75: Malignant neoplasm of colon/rectum, 

K70: Infection of circulatory system, K78: Atrial fibrillation/flutter, L72: Fracture: ulna/radius, L73: 
Fracture: tibia/fibula, L74: Fracture: hand/foot bone, N18: Paralysis/weakness, R07: Sneezing/nasal 

congestion/running nose, S86: Seborrheic dermatitis/Pityriasis capitis. 

ICPC-1 code D01 D75 K70 K78 L72 L73 L74 N18 R07 S86 
No. of codes  418,143 145,405 9,735 352,190 61,992 46,835 42,89

4 
22,804 63,558 125,060 

No. of patients 179,263 14,213 2,663 48,138 34,148 18,039 26,58
3 

9,388 34,839 68,850 

Mean no. of codes per patient 2.3 10.2 3.7 7.3 1.8 2.6 1.6 2.4 1.8 1.8 
Median no. of codes per 
patient 

1 4 1 3 1 1 1 1 1 1 

Mean age 39.6 70.1 59.3 73.4 42.6 48.2 40.1 59.5 42.3 45.6 
SD age 24.5 11.8 18.1 11.3 28.3 23.1 22.5 20.8 24.2 24.0 
Percentage female 67% 47% 34% 48% 64% 59% 50% 50% 49% 55% 
Median no. of notes per code 6 3 3 4 5 4 5 5 4 3 
Median no. of characters per 
code 

471 363 307 320 514 299 508 416 361 245 

 

Table 3. Subcode counts and percentages in the annotated test sets (200 code occurrences) and the 
training sets (300 code occurrences) for each of the ten ICPC-1 codes. Also shown are the number and 

percentage of code occurrences with no, two, and three subcodes assigned. 

ICPC-1 
code 

SNOMED CT  
subcode 

training set  
(200) 

test set 
(300) 

ICPC-1 
code 

SNOMED CT  
subcode 

training set  
(200) 

test set 
(300) 

D01 Generalized abdominal pain 261 87% 165 83% L73 Fracture of �bia 81 27% 48 24%  
Stomach cramps 50 17% 43 22% 

 
Fracture of fibula 150 50% 85 43%  

no subcode 30 10% 22 11% 
 

no subcode 90 30% 73 37%  
two subcodes 41 14% 30 15% 

 
two subcodes 21 7% 6 3% 

D75 Malignant tumor of colon 155 52% 120 60% L74 Fracture of hand 158 53% 86 43%  
Malignant tumor of rectum 49 16% 30 15% 

 
Fracture of foot 133 44% 105 53%  

no subcode 105 35% 55 28% 
 

no subcode 9 3% 9 5%  
two subcodes 9 3% 5 3% 

 
two subcodes 0 0% 0 0% 

K70 Myocardi�s 27 9% 13 7% N18 Paralysis 84 28% 49 25%  
Pericardi�s 145 48% 100 50% 

 
Muscle weakness 204 68% 147 74%  

Endocardi�s 50 17% 39 20% 
 

no subcode 53 18% 25 13%  
no subcode 94 31% 60 30% 

 
two subcodes 41 14% 21 11%  

two subcodes 16 5% 12 6% R07 Sneezing 36 12% 36 18% 
 three subcodes 0 0% 0 0%  Nasal conges�on 179 60% 127 64% 
K78 Atrial fibrilla�on 221 74% 142 71% 

 
Nasal discharge 71 24% 32 16%  

Atrial fluter 28 9% 16 8% 
 

no subcode 44 15% 32 16%  
no subcode 61 20% 48 24% 

 
two subcodes 29 10% 25 13%  

two subcodes 10 3% 6 3% 
 

three subcodes 1 0% 2 0% 
L72 Fracture of ulna 46 15% 44 22% S86 Seborrheic derma��s 228 76% 156 78%  

Fracture of radius 184 61% 128 64% 
 

Pityriasis capi�s 36 12% 17 9%  
no subcode 95 32% 56 28% 

 
no subcode 52 17% 37 19% 
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two subcodes 25 8% 165 14% 

 
two subcodes 16 5% 10 5% 

 
Model performance 
We developed 286 classifica�on models for the 22 subcodes. For each subcode, the models comprised 
a search query model, six semi-supervised models, and six supervised models. Figure 2 illustrates the 
performance of all the models on the test sets. We observed that the models' overall performance, 
ranging from good to excellent for most subcodes, was comparable across different classifica�on 
approaches. However, the performance of the (semi-)supervised models varied across the different 
text representa�ons and machine learning algorithms. Specifically, the supervised models, trained on 
the 300 annotated occurrences, achieved beter results with TFIDF features than with averaged word 
embeddings, especially when using XGB and LR. Semi-supervised models, trained on a larger dataset 
(N - 200), showed a similar trend but with smaller performance differences. 

 

Figure 2. Performance on the test set across all subcode models, per classification approach (search 
query, semi-supervised learning, and supervised learning), method (search terms, text representation, 

and machine learning algorithm), and evaluation metric (AUROC, AUPRC, and F1-score). The points 
indicate the performance of the individual subcode models.  

The average performance of the best models per classifica�on approach was comparable, but showed 
notable varia�on across subcodes. Figure 3 presents the predic�ve performance of the three 
approaches measured by AUROC for all subcodes, with the (semi-)supervised models using LR and 
TFIDF features. For example, the search query model outperformed the (semi-)supervised models in 
classifying atrial flutter and myocarditis, while the supervised models were beter in classifying 
subcodes such as fracture of hand and paralysis. Supplementary Figures S1 and S2 show these same 
paterns for the AUPRC and F1 evalua�on metrics. The complete evalua�on results are available in the 
supplementary material. 
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Figure 3. Predictive performance, measured by the AUROC, for each subcode model, developed using 
the search query, and semi-supervised and supervised learning using TFIDF features and regularized 

logistic regression, LR. The dashed line indicates an AUROC value of 0.5. 

Effect of class imbalance 
To inves�gate the factors contribu�ng to the subop�mal performance of several models, we examined 
the impact of class imbalance of subcodes on model performance. Figure 4 illustrates the rela�onship 
between the number of posi�ve examples in the training set for the supervised models across all 
subcodes. As expected, subcode models with significant class imbalance, for instance, myocarditis and 
atrial flutter, which had fewer posi�ve examples, tended to demonstrate poorer performance. 
Supplementary Figure S3 extends this analysis to the test set for all classifica�on approaches, 
confirming the nega�ve effect of class imbalance on the performance of semi-supervised models as 
well. 

 

Figure 4. Scatterplots demonstrating the relationship between the number of positive examples in the 
training set in each subcode and the corresponding model performance for the supervised models 

using LR with TFIDF features across all subcodes. The color and shape of the points indicate the 
different subcodes, the grey line illustrates a regression line, and its respective adjusted R2 is 

presented in each graph. 

Feature importance 
We inves�gated the most important features contribu�ng to the model predic�ons to understand the 
performance differences between classifica�on approaches. Table 4 lists the top-5 important features 
for the (semi-)supervised models (TFIDF LR) and the search query terms of three subcodes: stomach 
cramps (D01), atrial fibrillation (K78), and fracture of foot (L74). These subcodes were chosen because 
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of their varying performances across the three classifica�on approaches. The most important features 
of the other models are available in the supplementary material.  

For the semi-supervised models of stomach cramps and fracture of foot, terms with high beta values 
were similar to the search terms. However, for atrial flutter, no similar term was found. Instead, terms 
related to the other subcode, atrial fibrillation, appeared with both nega�ve and posi�ve beta values. 
This likely reflects the class imbalance and the frequent co-occurrence of atrial fibrillation and flutter 
within the texts. The supervised model for atrial flutter also iden�fied a similar atrial fibrillation term, 
but only with a nega�ve associa�on, yet this model was not discrimina�ve at all. For the stomach 
cramps subcode, the supervised model, which had only two non-zero beta value terms related to the 
search term, surprisingly outperformed the semi-supervised model that had a greater number of 
related terms. For the fracture of foot subcode, the supervised model's feature associa�ons were more 
diverse and less focused on the term 'foot' than the semi-supervised model, but their performances 
were similar. These results and some non-intui�ve findings highlight the complexity of feature 
importance in classifica�on and the challenges in explaining model performance. 

Table 4. The five features with the largest absolute non-zero beta values in the (semi-)supervised 
models using regularised logistic regression (LR) and TFIDF bag-of-words features for three example 

subcode models. The terms were translated where necessary. The search queries and the AUROC, 
AUPRC, and F1 score values are listed per model for ease of comparison. A term between hashtags (#) 

indicates an anonymization tag. 

Code: subcode Search query Semi-supervised Supervised  
Term Term Beta Term Beta 

D01: Stomach cramps kramp (cramp) buikkrampen (stomach cramps) 7.93 krampen (cramps) 2.06  
def (defication) 0.31 buikkrampen (stomach cramps) 1.02  
diarree (diarrhea) 0.27 

  
 

soepel (supple) 0.24 
  

 
buikpijn (stomach pain) -0.28 

  

AUROC; AUPRC; F1 0.97; 0.84; 0.91 0.75; 0.56; 0.58  0.82; 0.74; 0.72  
K78: Atrial flutter Flutter boezemfibrilleren (atrial fibrillation) 0.75 cardiologie_#hospital# 

(cardiology_#hospital#) 
0.62 

fladder (flutter) car (cardiology/cardiologist) 0.32 onder (under) 0.44  
conclusie (conclusion) 0.30 mogelijk (possible) 0.38  
af (atrial fibrillation) -0.25 huis (home) 0.25  
atriumfibrilleren (atrial fibrillation) -0.40 atriumfibrilleren (atrial fibrillation) -0.58 

AUROC; AUPRC; F1 0.98; 0.67; 0.80 0.69; 0.20; 0.28  0.49; 0.09; 0.20  
L74: Fracture of foot voet (foot) voet (foot) 17.27 voet (foot) 3.70  

tijdens (during) 0.87 teen (toe) 1.86  
lopen (walking) 0.53 kon (could) 1.49  
mt (metatarsal) 0.40 vinger (finger) -1.93  
teen (toe)  0.34 hand -2.62 

AUROC; AUPRC; F1 0.90; 0.89; 0.90 0.96; 0.97; 0.94  0.99; 0.99; 0.94  

 
Subcode assignment 
To illustrate the impact of the code refinement, we applied the classifica�on models to the set of code 
occurrences (N-200) for each of the ten ICPC-1 condi�on codes. Our study included 1,288,616 
condi�on occurrences from 436,124 pa�ents across all ten ICPC-1 codes. We found that 62.3% 
(802,931) of these occurrences could be refined to more specific codes using supervised learning 
(TFIDF LR). The semi-supervised method (TFIDF LR) showed a similar refinement rate of 62.2% 
(801,519), and the search query method reached 57.5% (740,954). Supplemental Figure S4 illustrates 
for each ICPC-1 code the propor�on of occurrences that could be refined. Although the number of 
refined codes varied per ICPC-1 code, there was a high level of agreement between the different 
classifica�on approaches. It should be noted that the refinement rate does not indicate the accuracy 
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of the classifica�ons. Instead, it highlights the poten�al of these models to enhance the granularity of 
data in the database. 
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Discussion 
Condi�on code refinement 
This study explored the feasibility of refining unspecific ICPC-1 condi�on codes in a Dutch GP database 
into more specific SNOMED subcodes using clinical free-text data. Using three different classifica�on 
approaches, we developed and evaluated 286 classifica�on models for 22 subcodes within ten 
different unspecific ICPC-1 codes. We found that it was possible to accurately classify each code into 
its subcodes using one of the different classifica�on approaches and the informa�on from the clinical 
text, proving its feasibility. In general, no single classifica�on approach consistently outperformed the 
others across all subcodes. However, the rela�ve performance of the classifica�on approaches varied 
within the different subcodes.  

Despite its simplicity, the search query approach using terms from the ICPC-1 code descrip�ons yielded 
good results for most subcodes. The best semi-supervised models, using TFIDF features, performed 
similarly. Consistent with findings from other studies, the semi-supervised models achieved results 
comparable to those of supervised models [13-15]. Nonetheless, inaccuracies in pseudo-labels, 
stemming from the choice of search terms and class imbalance within the dataset, may have nega�vely 
impacted the semi-supervised performance. The best supervised models, using TFIDF features  and 
trained with a modest set of manually annotated code occurrences, o�en matched the performance 
of the semi-supervised and search query approaches. However, their performance was not consistent 
across subcodes, impacted by the class imbalance and the limited number of posi�ve examples for 
certain subcodes. Regarding different text representa�ons and machine learning algorithms, models 
using dense averaged word embedding features along with LR or XGB performed less well than TFIDF 
features, probably due to the small training set, as this effect was most pronounced in the supervised 
models.  

Ul�mately, applying the different approaches to all code occurrences, we could enhance over half of 
the unspecific ICPC-1 codes to a more specific SNOMED code. This significant improvement in detail 
underscores the clinical u�lity of our feasibility study and the poten�al of simple classifica�on models 
to increase the granularity of condi�on coding within large-scale observa�onal healthcare datasets.  

Strengths and limita�ons  
Our study has several limita�ons. Firstly, we examined a limited number of unspecific ICPC-1 codes 
due to prac�cal constraints. While we ensured a diverse range of condi�ons for a comprehensive 
overview and enhancing the generalizability of our findings, codes not included in our study may 
obtain different results. Secondly, we only use three classifica�on algorithms with one lexical and 
seman�c text representa�on. While more sophis�cated techniques, such as deep learning models, 
could improve performance, they also introduce risks of overfi�ng [28] and complicate interpretability 
[29]. Our primary aim was to assess the feasibility of automa�c code refinement with a manageable 
number of low-resource models and even with these limited methods, we were able to show a good 
performance for most subcodes. Thirdly, we inten�onally kept our training sets small to reflect the 
prac�cality of supervised code refinement with minimal annota�on efforts. However, the small size in 
combina�on with large class imbalance may have compromised the accuracy of some supervised 
models. Lastly, our work stands out by exploring text classifica�on within a Dutch GP database context 
using three classifica�on approaches, expanding the scope beyond the predominantly English 
language and hospital-based databases that have been the focus of much of the exis�ng literature in 
this field [30]. 
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Future work 
Future research in automa�c code refinement could explore transfer learning with pre-trained deep 
learning models, such as large language models, which have shown promise in various NLP tasks and 
could enhance code refinement performance [9-11]. Addi�onally, integra�ng structured clinical event 
data and exploring other semi-supervised or ensemble methods might prove beneficial. These 
methods could include combining large unlabeled datasets with small labeled training sets within a 
single model or u�lizing predic�ons from supervised models to inform semi-supervised learning. 
Expanding the focus beyond ICPC-1 to other vocabularies and valida�ng models across different 
healthcare databases would be essen�al to assess generalizability. Automa�c refinement could also 
facilitate the mapping of concepts between clinical terminologies, thereby enhancing the 
interoperability of clinical data, such as in the transi�on to different data models like the OMOP CDM. 
Lastly, conduc�ng studies using the refined codes could illustrate their prac�cal value in observa�onal 
research, highligh�ng the benefits of improved data granularity in healthcare databases. 
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Conclusion 
In conclusion, this work successfully demonstrates that refining unspecific ICPC-1 condi�on codes into 
more specific SNOMED codes within a Dutch GP database using clinical text data and low-resource 
methods is feasible. We found that simple search queries were par�cularly effec�ve, outperforming 
(semi-)supervised models when faced with issues such as class imbalance or limited training data. The 
enhanced granularity of coded condi�ons in large-scale healthcare databases could reduce manual 
coding costs and increase the depth and detail of data available to researchers. This improved level of 
detail enriches the interpreta�on of medical informa�on and can benefit observa�onal research and 
pa�ent care. 
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Summary Table 
What was already known on the topic: 

• EHR databases are popular in observa�onal research for providing large-scale data. 
• The accuracy of clinical codes in these databases depends on coding proficiency and the 

available clinical terminologies in the EHR system. 
• Unspecific concepts recorded in the EHR complicate iden�fying pa�ents with specific 

condi�ons in observa�onal research. 
• Previous code classifica�on studies focused primarily on supervised frameworks using labeled 

observa�ons. 

What this study added to our knowledge: 

• This study successfully proved the feasibility of code refinement by classifying unspecific ICPC-
1 codes to more specific SNOMED subcodes in a Dutch GP database, using code descrip�ons 
and resource-efficient classifica�on methods supplemented by limited manual annota�ons. 

• Three classifica�on approaches, including search queries and semi-supervised and supervised 
models, generally achieved comparable results across all subcodes. However, simple search 
queries were especially effec�ve in scenarios with limited training data and class imbalance. 

• When applied to the en�re database, the classifica�on models could improve the specificity 
of more than half of the condi�on occurrences, indica�ng the poten�al benefit to 
observa�onal research. 
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Supplementary material 
Appendix A: Supplementary figures and tables 

Appendix B: Supplementary data 

Appendix C: IJMEDI machine learning checklist   
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Appendix A: Supplementary Tables and Figures 
Supplementary Tables 
 

Table S1. The terms used in the search query for each subcode. The search terms match any text 
containing the substrings, the sequences of characters between bars (|). 

ICPC-1 
code 

Dutch ICPC-1 code description SNOMED CT Subcode Search term 

D01 
 

Gegeneraliseerde 
buikpijn/buikkrampen 

Stomach cramps |pijn| 

  Generalized abdominal pain |kramp| 
D75 Maligniteit colon/rectum Malignant tumor of colon |colon| 
  Malignant tumor of rectum |rectum| 
K70 Infectieziekte hartvaatstelsel Pericarditis |pericarditis| 
  Endocarditis |endocarditis| 
  Myocarditis |myocarditis| 
K78 Boezemfibrilleren/-fladderen Atrial fibrillation |fibrill| 
L72 Fractuur radius/ulna Atrial flutter |flutter|, |fladder| 
  Fracture of ulna |ulna|, |ellepijp| 
  Fracture of radius |radius|, |spaakbeen| 
L73 Fractuur tibia/fibula Fracture of tibia |tibia, |scheenbeen| 
  Fracture of fibula |fibula, |kuitbeen| 
L74 Fractuur hand/voet Fracture of hand |hand| 
 Verlamming/krachtverlies Fracture of foot |voet| 
N18  Paralysis |verlamming|, |uitval|, |paralyse| 
  Muscle weakness |krachtverlies|, |krachtsverlies|, 

|zwakte|, |parese| 
R07 Niezen/neusverstopping/loopneus Sneezing |niezen|, |nies| 
  Nasal congestion |verstop| 
  Nasal discharge |loopneus|, |snotneus| 
S86 Seborroïsch eczeem/roos Seborrheic dermatitis |eczeem| 
  Pityriasis capitis |roos| 

 

Table S2. Overview of the machine learning algorithms, their hyperparameters, and hyperparameter 
values. 

Classification algorithm Hyperparameters Range 
Lasso: L1 regularized logistic regression (LR) Variance 0.01 – 20 
Extreme gradient boosting (XGB) Maximum depth 3, 6, 10 

Learning rate 0.01, 0.1 
Neural network (NN) Hidden layers 1 

Hidden layer size 5, 10, 20 
decay 0.001, 0.01, 0.1 
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Supplementary Figures 
 

 

Figure S1. Visualization of the predictive performance, measured by the AUPRC, for each code-to-
subcode model, developed using the search query and a semi-supervised and supervised model 

(using TFIDF features and regularized logistic regression, LR). 

 

Figure S2. Visualization of the predictive performance, measured by the F1-score, for each code-to-
subcode model, developed using the search query and a semi-supervised and supervised model 

(using TFIDF features and regularized logistic regression, LR). 
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Figure S3. Scatterplots demonstrating the relationship between the number of positive examples in 
the test set in each subcode and the corresponding model performance across all subcodes and 

classification approaches, with the (semi-)supervised models using LR with TFIDF features. The color 
and shape of the points indicate the different subcodes, the grey line illustrates a regression line, and 

its respective adjusted R2 is presented in each graph. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 5, 2024. ; https://doi.org/10.1101/2024.01.04.24300823doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.04.24300823
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure S4. Visualization of the percentage of the code occurrences in the data set (N-200) refined to a 
more specific subcode per ICPC-1 code and classification approach. The semi-supervised and 

supervised models using LR with TFIDF features determined their threshold using the maximum F1 
score. The size of the dataset is given for each ICPC-1 code. 
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Appendix B: Supplementary data 
Evalua�on results 
The AUROC value, AUPRC value, and F1-score for each of the 286 classifica�on models. 

CSV file: Evaluation_results.csv 

Feature importance 
Top 10 important features for all the LR and XGB models using TFIDF features. 

CSV file: Feature_importances.csv 

Appendix C: IJMEDI machine learning checklist 
The IJMEDI checklist for assessment of medical AI. 

PDF file: IJMEDI_ML_checklist.pdf 
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