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Regression with race-modifiers: towards equity
and interpretability
Daniel R. Kowala,1
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The pervasive effects of structural racism and racial discrimination are well-established and offer strong evidence that the
effects of many important variables on health and life outcomes vary by race. Alarmingly, standard practices for statistical
regression analysis introduce racial biases into the estimation and presentation of these race-modified effects. We advocate
abundance-based constraints (ABCs) to eliminate these racial biases. ABCs offer a remarkable invariance property:
estimates and inference for main effects are nearly unchanged by the inclusion of race-modifiers. Thus, quantitative
researchers can estimate race-specific effects “for free”—without sacrificing parameter interpretability, equitability, or
statistical efficiency. The benefits extend to prominent statistical learning techniques, especially regularization and selection.
We leverage these tools to estimate the joint effects of environmental, social, and other factors on 4th end-of-grade readings
scores for students in North Carolina (n = 27, 638) and identify race-modified effects for racial (residential) isolation, PM2.5

exposure, and mother’s age at birth.

Health and life outcomes are inextricably linked to race (1, 2). Racial disparities exist in birth
outcomes, mortality, disease onset and progression, socioeconomic status, and police-involved deaths,
along with many other health and life outcomes (2–4). These disparities persist even after adjusting
for socioeconomic status and occur through multiple pathways (1). Structural racism contributes to
significant differences in the quality of education, housing, employment opportunities, accumulation
of wealth, access to medical care, and treatment in the criminal justice system (1, 2, 5–7). Perceived
racial discrimination impacts both mental and physical health through heightened stress responses,
health behaviors, and traumatic experiences (8, 9). Thus, rigorous studies of health and life outcomes
must carefully consider race as a primary factor.

That race permeates so many aspects of an individual’s life course is a strong indicator that
the effects of important factors (X) on health and life outcomes (Y ) may be race-specific (10).
Regression analysis—the primary statistical tool to quantify how these covariates X determine,
predict, or associate with an outcome Y —must therefore consider race-modifiers for X. Indeed,
there is abundant and growing evidence for race-specific effects, including the effects of red-lining,
PM2.5 exposure, and cigarette use on mortality risks (11–13); maternal age, poverty, education, and
hypertension on infant birthweight, infant mortality, and maternal stroke risk (14–16); education
level on multiple health outcomes (17); mood/anxiety disorder on chronic physical health conditions
(18); perceived racism on mental health (9); age on allostatic load scores, known as “racial weathering”
(19); and the timing of hypertension, insulin resistance, or diabetes onset (20, 21), among many others
(22–26). The identification and quantification of race-modified effects are essential to understand
and eliminate harmful race disparities in health and life outcomes (27).
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Fig. 1. Linear regression models for an outcome variable Y with a continuous covariate X and a categorical (or nominal) covariate
race. The models parameterize the expected outcome, E(Y | X = x, race = r) = µ(x, r), with corresponding x-effect (or slope)
µ′

x(r) := µ(x + 1, r) − µ(x, r). (a) The main-only model assumes a global (race-invariant) x-effect. (b) The race-modified model
allows for race-specific x-effects. Fit to 4th end-of-grade reading scores in North Carolina, the main-only model obscures important
race-specific differences in the effects of racial isolation (RI) that are uncovered by the race-modified model. The negative RI effect
observed globally in (a) is driven by the negative RI effect for non-Hispanic Black (NHB) students, which does not persist for Hispanic
(Hisp) or non-Hispanic White (NHW) students in (b).

To provide context for race-modified effects, we present a regression of 4th end-of-grade reading
scores on racial (residential) isolation (RI) and race (Figure 1). The dataset, detailed and reanalyzed
subsequently, includes n = 27, 638 students in North Carolina (58% non-Hispanic (NH) White,
36% NH Black, 6% Hispanic). RI measures the geographic separation of NH Black individuals
and communities from other race groups, and thus is an important measure of structural racism
(5, 6, 28–30). The main-only (or ANCOVA) model (Figure 1a) includes race only as an additive
effect, which restricts the RI effect to be common across race groups. This widely-used model
reports the same adverse effect of RI on reading scores for all students. However, the race-modified
model (Figure 1b) provides the essential context: the RI effect is significantly negative for NH Black
students, but not for other race groups. Thus, a race-modified model is necessary to uncover and
quantify these racial discrepancies in the effects of structural racism on educational outcomes.

Despite these benefits, there are significant racial biases that occur in commonplace estimation,
inference, and presentation of results for regression analysis with race as a covariate. It is well-known
that both the main-only and race-modified models (Figure 1) are overparametrized: neither {α0, βr}r

nor {α1, γr}r are identifiable without further constraints. Any constant could be added to α0 and
subtracted from each {βr}, and similarly for α1 and {γr}, which alters each parameter but leaves the
model unchanged. This nonidentifiability is often called the “dummy variable trap” in reference to
the use of “dummy variables” to encode categorical variables (Figure 1). Critically, neither the main
nor the race-specific parameters can be estimated or interpreted without additional constraints.
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Undoubtedly, the most common approach is reference group encoding (RGE): a reference group
is selected, typically NH White, and removed (βNHW = γNHW = 0). This is the default for all major
statistical software implementations of (generalized) linear regression, including R, SAS, Python,
MATLAB, and Stata, as well as textbook treatments of linear regression (31–33). However, RGE
output is racially biased (34), difficult to interpret, and obscures important main and race-modified
effects. We categorize these significant limitations into presentation bias and statistical bias.

Presentation bias. Table 1 (left) displays standard output for a race-modified model. Under RGE, the
RI effect (red) actually refers to the RI effect only for NH White individuals, α1 = α1+γNHW = µ′

x(NHW).
Similarly, Intercept refers to the NH White intercept, α0 = α0 + βNHW = µ(0, NHW). We emphasize
that the presentation format in Table 1 (left) is predominant in scientific journals. Among recent
publications in social science journals, it was found that 92% of such tables used NH White as the
reference group, while less than half explicitly stated the reference group (34).

First, this output is inequitable: it elevates a single race group above others. Further, all other
race-specific effects are presented relative to the NH White group. For instance, RI:NH Black
refers to the difference between the RI effects for NH Black students and NH White students:
γNHB = µ′

x(NHB) − α1 = µ′
x(NHB) − µ′

x(NHW). This framing presents NH White as “normal” and other
race groups as “deviations from normal”, which is known to bias interpretations of results (35).
Second, this output is unclear : it is nowhere indicated that the intercept and RI effects are specific to
NH White students. A cursory inspection of this output might result in a mistaken interpretation of
the RI effect as a global effect, rather than a NH White effect. Finally, this output is misleading: the
RI effect is reported to be small and insignificant, despite clear evidence to the contrary (Figure 1).
Under RGE, the addition of the race-modifier substantially alters the estimates and reduces the
statistical power for the RI main effect (α1).

Statistical bias. The racial inequity in RGE also permeates statistical estimation and inference.
Modern statistical learning commonly features penalized regression, variable selection, and Bayesian
inference (36). Broadly, these regularization strategies seek to stabilize (i.e., reduce the variance of)
estimators, typically by “shrinking” coefficients toward zero. This approach is particularly useful in
the presence of a moderate to large number of covariates that may be correlated. However, under
RGE, shrinking or setting coefficients to zero introduces racial bias to the estimation. Critically,
shrinkage or selection of the race-specific terms, γr → 0, does not innocuously shrink toward a global
slope; rather, it implies that the coefficient on x for race r is pulled toward that of the NH White
group, µ′

x(r) = α1 + γr → α1, and α1 = µ′
x(NHW). Not only is this estimator racially biased, but also

it attenuates the estimated differences between the x-effects for each race and NH White individuals.
Identification and quantification of such race-modified effects are precisely the goals of race-modified
models. Furthermore, RGE cannot distinguish between shrinkage toward a global, race-invariant
x-effect and shrinkage toward the NH White x-effect: both require γr → 0 for all r. A fundamental
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Table 1. Linear regression output under default reference group encoding (RGE; left) and abundance-
based constraints (ABCs; right): race-modified effects of racial isolation (RI) on 4th end-of-grade reading
scores for students in North Carolina (y ∼ 1 + RI + race + RI:race).

Default: reference group encoding (RGE)
Variable Estimate (SE) p-value
Intercept 0.267 (0.009) <0.001
Racial isolation (RI) -0.013 (0.011) 0.220
Mother’s race

NH Black -0.670 (0.014) <0.001
Hispanic -0.191 (0.025) <0.001

RI × Mother’s race
RI:NH Black -0.057 (0.014) <0.001
RI:Hispanic 0.034 (0.027) 0.210

Proposed: abundance-based constraints (ABCs)
Variable Estimate (SE) p-value
Intercept 0.014 (0.007) 0.038
Racial isolation (RI) -0.032 (0.007) <0.001
Mother’s race

NH White 0.253 (0.006) <0.001
NH Black -0.417 (0.009) <0.001
Hispanic 0.062 (0.023) 0.006

RI × Mother’s race
RI:NH White 0.018 (0.006) 0.001
RI:NH Black -0.038 (0.009) <0.001
RI:Hispanic 0.052 (0.024) 0.031

The default regression output (RGE, left) induces presentation bias: the estimated Intercept and RI effect (red) refer to the
NH White group. This is inequitable, unclear, and misleading: it obfuscates the highly significant and detrimental effects of RI
on reading scores (for the main-only model, α̂M

1 = −0.042, SE(α̂M
1 ) = 0.007, p < 0.001). The regression output under ABCs

(right) eliminates presentation bias, confirms the estimated RI effect and standard errors from the main-only model (blue), and
clearly highlights and quantifies the critical result that the adverse RI effect is more than doubled for NH Black students

(µ̂′
RI(NHB) = α̂RI + γ̂RI:NHB = −0.032 + −0.038 = −0.070; Figure 1b).

goal of penalized estimation and selection in this context is to remove unnecessary race-modifiers.
However, with RGE, the cost is racial bias in the shrinkage and selection. Thus, default RGE cannot
fully and equitably leverage the state-of-the-art in statistical learning.

Although RGE is used in the overwhelming majority of regression analyses, there are several
alternatives. Subgroup analysis subsets the data by (race) groups and fits separate regression models
(12, 25, 30, 37). This approach produces race-specific intercepts and slopes, and thus implicitly
acknowledges the importance of race-modifiers. However, subgroup analysis does not estimate
global (race-invariant) x-effect estimates or inference, cannot incorporate information-sharing or
regularization across race groups (often leading to variance inflation and reduced power), and cannot
test for race-modifier effects. Sum-to-zero (STZ) constraints address the inequities in RGE, but
the resulting model parameters are difficult to interpret and the estimators do not offer any of the
appealing statistical properties provided by our preferred approach. Overparametrized estimation
omits any identifying constraints and relies on regularized regression to produce unique estimators.
But the model parameters remain nonidentified, so the estimates remain extremely difficult to
interpret. These estimates also fail to offer the useful statistical properties discussed subsequently.
Finally, marginal means (38) use post-processing to provide useful model summaries, and will
be identical for RGE, STZ, and ABCs under ordinary least squares estimation. Nonetheless, it
remains imperative to choose an identifiable model parametrization that delivers interpretable and
equitable model parameters, appealing properties for estimation and inference, and suitable behavior
for regularized regression and variable selection. Notably, marginal means that are estimated by
regularized regression will depend on the model parametrization (RGE, STZ, ABCs, etc.).
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The primary goal of this paper is to describe and validate alternative statistical methods that
eliminate these racial biases. Our preferred approach ensures equitable and interpretable parameters
with accompanying estimators that offer unique and appealing statistical properties. We apply these
tools to identify and quantify the race-modified effects of multiple environmental, social, and other
factors on 4th end-of-grade readings scores for students in North Carolina. Although we focus on race,
the proposed methods remain applicable for other categorical covariates including sex, national origin,
religion, and other protected groups. This work is accompanied by a companion paper on statistical
theory (39), an R package lmabc that implements our estimation and inference methods, and an
online vignette that provides accessible examples and documentation: https://drkowal.github.io/lmabc/.

Results

Abundance-Based Constraints (ABCs) for Linear Regression. We update the race-modified
model (Figure 1b) for multivariable regression with p covariates X = (X1, . . . , Xp)⊤, where the
effect of each variable may be modified by race:

µ(x, r) = α0 +
p∑

j=1
xjαj + βr +

p∑
j=1

xjγr,j

= α0 + x⊤α + βr + x⊤γr

[1]

where α = (α1, . . . , αp)⊤ are the main x-effects and γr = (γr,1, . . . , γr,p)⊤ are the race-modifier
effects. The main-only version omits all interactions (γr,j = 0). The intercepts are race-specific,
µ(0, r) = α0 + βr, while the race-modified model yields race-specific slopes for each variable
j = 1, . . . , p:

µ′
xj

(r) := µ(xj + 1, x−j, r) − µ(xj, x−j, r)

= αj + γr,j.

The parameters {α0, βr}r and {αj, γr,j}r,j must be further constrained to enable unique estimation
and meaningful inference. Linear constraints of the form ∑

r crβr = 0 and ∑
r crγr,j = 0 are most

common: RGE sets c1 = 1 and cr = 0 for r > 1, while STZ uses cr = 1 for all r. However, the
equitability, interpretability, and statistical properties of the parameters and estimators depend
critically on the choice of {cr}.

We advocate abundance-based constraints (ABCs) that use the race group abundances:

∑
r

π̂rβr = 0,
∑

r

π̂rγr,j = 0 for j = 1, . . . , p

π̂r = proportion in (race) group r

or equivalently, Eπ̂(βR) = 0 and Eπ̂(γR,j) = 0 for all j, where the expectation is taken over a
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categorical random variable R with P(R = r) = π̂r. If known, the population proportions may
be used for {π̂r}; otherwise, we use the sample proportions. ABCs, under various names, have
appeared previously, but only for main-only models (40–42). Critically, motivation for this approach
is severely lacking; even among previous work that mentions ABCs, they are routinely dismissed in
favor of RGE or STZ. Here, we promote ABCs for race-modified models based on new arguments for
equitability, interpretability, and special statistical properties.

To evaluate equitability and interpretability, we consider the meaning of each parameter in the
race-modified model. Under ABCs, the race-modified model satisfies Eπ̂{µ(x, R)} = α0 + x⊤α,
which produces a global (race-invariant) linear regression. As a consequence, each main x-effect may
be expressed as the race-averaged slope for the jth variable:

αj =
∑

r

π̂rµ
′
xj

(r) = Eπ̂{µ′
xj

(R)}.

Unlike with RGE, where αj = µ′
xj

(NHW), ABCs do not anchor each main x-effect to the NH White
group and instead provide a global interpretation for these key parameters. The benefits cascade
down to the other parameters:

γr,j = µ′
xj

(r) − αj = µ′
xj

(r) − Eπ̂{µ′
xj

(R)}

which is the difference between the race-specific slope and the race-averaged slope for variable j. The
intercept also retains a convenient, more equitable interpretation. Suppose that each continuous
covariate is centered, x̄j = 0. Then the intercept parameter is a marginal expectation:

α0 = 1
n

n∑
i=1

Eπ̂{µ(xi, R)} = Ep̂xEπ̂{µ(X, R)}

where the expectation is taken (separately) over X ∼ p̂x for p̂x the empirical distribution of {xi}n
i=1

and R ∼ π̂. The race-specific intercept coefficients proceed similarly:

βr = µ(0, r) − α0 = Ep̂x{µ(X, r)} − Ep̂xEπ̂{µ(X, R)}.

Again, unlike for RGE, the parameters α0 and βr no longer elevate the NH White group. Instead,
ABCs define all parameters as 1) global, race-averaged main effects or 2) race-specific deviations.

Estimation and Inference. Given data {yi, xi, ri}n
i=1, the race-modified model with ABCs is

estimated by applying linearly-constrained ordinary least squares (OLS) estimation. Standard errors,
confidence intervals, and hypothesis testing are available as in traditional OLS estimation. Options
for regularized (ridge, lasso, etc.) regression are provided (see Methods). Because the estimators
satisfy ABCs, they retain the same properties and interpretations as the parameters above.
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Statistical Properties. A central obstacle with race-modified models is that, for default approaches
(RGE, STZ, etc.), the inclusion of these interaction terms fundamentally alters the interpretations,
estimates, and standard errors for the main x-effects. We observe this empirically (Table 1, left):
compared to the main-only model, the race-modified model under RGE attenuates the RI main
effect (α̂M

1 = −0.042 vs. α̂1 = −0.013) and inflates the standard error (SE(α̂M
1 ) = 0.007 vs.

SE(α̂1) = 0.011). These results are not contradictory: the RI effect is weaker for the NH White
group (Figure 1b) than for the aggregate (Figure 1a), while NH White students represent a subset
(58%) of the full sample. The broader implication is that analysts may be reluctant to include
race-modifiers. However, omitting race-modifiers can produce misleading results (Figure 1).

ABCs resolve these problems. The first key property of ABCs is estimation invariance: the
OLS estimates of the main x-effects are nearly identical between the main-only model and the
race-modified model, under appropriate conditions. For p = 1 (Figure 1), ABCs uniquely yield the
remarkable result

α̂M
1 ≈ α̂1 whenever σ̂2

x[r] ≈ σ̂2
x[1] for all race groups r [2]

where σ̂2
x[r] = n−1

r s2
r − x̄2

r is the (scaled) sample variance of {xi}n
i=1 within each race group r, with

nr = nπ̂r, s2
r = ∑

ri=r x2
i and x̄r = n−1

r

∑
ri=r xi. Similar results are available for general p > 1 under

suitable modifications of the equal-variance condition (39).
The equal-variance condition in Eq. (2) requires that the scale of x is approximately the same

for each race group. Otherwise, a one-unit change in x is not comparable across race groups. In
that case, race-specific slopes are necessary, and the global slope from the main-only model (αM

1 )
is not a suitable summary. However, the estimation invariance of ABCs is empirically robust to
violations of the equal-variance condition. This condition is strongly violated for RI in Table 1
(σ̂RI[NHW] = 0.688, σ̂RI[NHB] = 1.063, σ̂RI[Hisp] = 0.936), yet the main effect estimates remain similar
(α̂M

1 = −0.042 vs. α̂1 = −0.032) and the standard errors (and p-values) are identical (SE(α̂M
1 ) = 0.007

vs. SE(α̂1) = 0.007). Similar results are observed for simulated data (Figure A.1), which further
show that estimation invariance does not hold for RGE or STZ.

The second key property of ABCs is related to inference: the main x-effect standard errors are
equal or smaller under the race-modified model, SE(α̂1) ≤ SE(α̂M

1 ), whenever 1) the equal-variance
condition in Eq. (2) holds and 2) the estimated residual variance is equal or smaller under the
race-modified model than the main-only model (39). When the race-modifier term (x:race) has
small or moderate impact, then the standard errors for the main x-effect are approximately the
same between the main-only and race-modified models (see Table 1 and Figure 2). However, if the
race-modifier term explains substantial variability in Y , then the race-modified model can actually
increase statistical power for the main x-effect compared to the main-only model. Thus, contrary
to intuition, the race-modified model—with its greater complexity and additional parameters to
estimate—provides superior inference for the main x-effect than in the simpler, main-only model.

With ABCs, the analyst may include race-modifiers “for free”: the estimates and inference for

Kowal August 8, 2024 | 7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 8, 2024. ; https://doi.org/10.1101/2024.01.04.23300033doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.04.23300033
http://creativecommons.org/licenses/by/4.0/


DRAFT

the main x-effects are nearly unchanged by the addition of race-modifiers (x:race). This result is
unique to ABCs and makes no assumptions about the true relationship between Y , X, and race.
Notably, arbitrary dependencies are permitted between X and race—including varying means and
distributions of X by race group—as long as the equal-variance condition holds. Thus, this result is
distinct from classical estimation invariance results with OLS that require uncorrelatedness (43).

Sparsity. Sparsity is often prioritized to remove extraneous parameters, reduce estimation variability,
and simplify interpretations. Regularized regression can produce sparse estimates, but depends
critically on the parametrization. Importantly, sparsity of the race-modifiers, γr,j = 0, is meaningful
under ABCs: it implies that the race-specific slope equals the race-averaged slope, µ′

xj
(r) =

Eπ̂{µ′
xj

(R)} + γr,j = Eπ̂{µ′
xj

(R)}. This eliminates the racial bias and inequity under RGE, where
the same sparsity instead implies that the race-specific slope equals the NH White slope, µ′

xj
(r) =

µ′
xj

(NHW) + γr,j = µ′
xj

(NHW).
An especially concerning case arises when the race-modifier is nonzero (γr,j ̸= 0), but the main

x-effect is zero (αj = 0). Statistical approaches often eschew this scenario, and instead require that
interactions are nonzero only if a main effect is nonzero (44, 45). Such restrictions are not necessary
for ABCs: it is plausible that some race-specific x-effects are nonzero, µ′

xj
(r) = γr,j + αj = γr,j ̸= 0,

while the race-averaged x-effect is zero, αj = Eπ̂{µ′
xj

(R)} = 0. Alarmingly, fitting a main-only
model would produce misleading results. Applying Eq. (2), the estimated x-effect would be near
zero, α̂M

j ≈ 0, when in fact the x-effect is both significant and race-specific. Thus, it is possible that
existing quantitative analyses based on main-only models (i.e., without race-modifiers) obscure both
important and race-specific effects of certain variables (Figures 1 and 2).

NC Education Data Analysis. We apply the proposed methods to study the effects of multiple
environmental, social, and other factors on educational outcomes—and assess whether, and how,
these effects vary by race. Using ABCs, we fit equitable and interpretable race-modified models,
empirically evaluate estimation and inference invariance properties, and study regularized (lasso)
regression solution paths under competing parametrizations.

Data overview. We construct a cohort of n = 27, 638 students in North Carolina (NC) by linking
three administrative datasets:
NC Detailed Birth Records include maternal and infant characteristics for all documented live
births in NC. We compute maternal covariates—mother’s race, age (mAge), education level, marital
status, and smoking status—and child covariates, sex and birthweight percentile for gestational age
(BWTpct). RI is computed using residential addresses at birth.
NC Blood Lead Surveillance includes blood lead level (BLL) measurements for each child. Lead is an
adverse environmental exposure with well-known effects on cognitive development and educational
outcomes (46, 47).
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NC Standardized Testing Data contains 4th end-of-grade standardized reading scores, economic
disadvantage status (determined by participation in the National Lunch Program), and residential
address at time-of-test. The reading scores, standardized by the year of test (2010, 2011, or 2012),
serve as the outcome variable Y . The residential information is used to estimate the average PM2.5

exposure (PM2.5) over the year prior to the test, which is an adverse environmental exposure linked
to educational outcomes (48).

Data characteristics are in Table A.1; additional details are provided elsewhere (30, 49, 50). Data
management, access, and analysis are governed by data use agreements and an Institutional Review
Board–approved research protocol at the University of Illinois Chicago.

Race-modified regression with ABCs. We estimate a multivariable linear regression for 4th end-
of-grade reading scores that includes these environmental, social, and other factors, as well as
race-modifiers (Table 2). Each continuous covariate (BLL, PM2.5, RI, mAge, and BWTpct) is
centered and scaled and each categorical variable (mother’s race, child’s sex, mother’s education level,
mother’s marital status, mother’s smoking status, and economically disadvantaged) is identified
using ABCs (see Methods). Race-modifiers are included for BLL, PM2.5, RI, mAge, and BWTpct.
Standard model diagnostics confirm linearity, homoskedasticity, and Gaussian error assumptions.

ABCs generate output for all main effects, all race-modifier effects, and each group in every
categorical variable, which eliminates the presentation bias that would otherwise accompany each
categorical variable under RGE. There are highly significant (p < 0.01) negative effects for BLL
and RI, where the adverse RI effect doubles for NH Black students (µ̂′

RI(NHB) = α̂RI + γ̂RI:NHB =
−0.020+−0.020 = −0.040). This critical result for RI expands upon the previous model fit (Table 1):
here, the model adjusts for many additional factors, yet the effect persists. Significantly lower test
scores also occur for students who are NH Black, Male, or economically disadvantaged, and whose
mothers who are less educated, unmarried, or smokers at time of birth. Significant positive effects
are observed for the opposite categories—which is a byproduct of ABCs (e.g., the Male and Female
proportions are identical, so the estimated effects must be equal and opposite)—as well as mAge and
BWTpct. Finally, PM2.5 is not identified as a significant main effect (p = 0.403), yet the race-specific
effects are significant. Alarmingly, a fitted main-only model (without race-modifiers) conveys an
insignificant PM2.5 effect (Figure 2), which oversimplifies and misleads.

Estimation invariance with ABCs. Figure 2 presents the estimates and 95% confidence intervals for
the main effects that are modified by race. We compare the main-only model (variables only in the
left column of Table 2) to the race-modified model (all terms in Table 2), including both ABCs and
RGE output for the race-modified models. Remarkably, under ABCs, the estimates and uncertainty
quantification for the simpler, main-only model are nearly indistinguishable from those for the
expanded, race-modified model. Evidently, ABCs allow estimation and inference for numerous
race-specific effects (Table 2, right column) “for free”: the inferential summaries for the main effects
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Table 2. Linear regression output (under ABCs) for the race-modified effects of environmental, social,
and other factors on 4th end-of-grade reading scores for students in North Carolina.

Variable Estimate (SE) p-value
Intercept 0.000 (0.007) 0.976
Blood lead level (BLL) -0.016 (0.006) 0.003
PM2.5 exposure (PM2.5) -0.005 (0.005) 0.403
Racial isolation (RI) -0.020 (0.007) 0.005
Mother’s age (mAge) 0.038 (0.007) <0.001
Birthweight percentile for
gestational age (BWTpct) 0.026 (0.006) <0.001
Mother’s race

NH White 0.173 (0.006) <0.001
NH Black -0.320 (0.010) <0.001
Hispanic 0.258 (0.024) <0.001

Sex
Male -0.064 (0.005) <0.001
Female 0.064 (0.005) <0.001

Mother’s education level
Did not complete high school -0.179 (0.011) <0.001
Completed high school -0.074 (0.007) <0.001
At least some postsecondary 0.181 (0.008) <0.001

Mother’s marital status
Married at time of birth 0.018 (0.006) 0.003
Not married at time of birth -0.024 (0.008) 0.003

Mother’s smoking status
Smoker -0.039 (0.013) 0.003
Non-smoker 0.008 (0.003) 0.003

Economically disadvantaged
Yes -0.109 (0.005) <0.001
No 0.171 (0.009) <0.001

Variable (continued) Estimate (SE) p-value
BLL × Mother’s race

BLL:NH White -0.005 (0.005) 0.240
BLL:NH Black 0.002 (0.007) 0.792
BLL:Hispanic 0.042 (0.022) 0.060

PM2.5 × Mother’s race
PM2.5:NH White -0.011 (0.005) 0.018
PM2.5:NH Black 0.021 (0.007) 0.005
PM2.5:Hispanic -0.017 (0.023) 0.472

RI × Mother’s race
RI:NH White 0.006 (0.006) 0.250
RI:NH Black -0.020 (0.008) 0.016
RI:Hispanic 0.058 (0.023) 0.013

mAge × Mother’s race
mAge:NH White 0.028 (0.005) <0.001
mAge:NH Black -0.040 (0.007) <0.001
mAge:Hispanic -0.032 (0.024) 0.193

BWTpct × Mother’s race
BWTpct:NH White 0.000 (0.005) 0.929
BWTpct:NH Black 0.002 (0.007) 0.766
BWTpct:Hispanic -0.018 (0.022) 0.427

Data restricted to individuals with 37-42 weeks gestation, mother’s age 15-44 years old at birth, BLL ≤ 80µg/dL (and capped
at 10µg/dL), birth order ≤ 4, no current English language learners, and residence in NC at the time of birth and time of 4th

end-of-grade test. “Economically disadvantaged” is determined by participation in the National Lunch Program.

are unchanged by the expansion of the model to include race-modifiers. This result empirically
confirms the multivariable extension of Eq. (2), despite moderate violations of the equal-variance
condition (Table A.2). Unsurprisingly, no such invariance holds for RGE (red): the point and interval
estimates are substantially different, with uniformly wider intervals and conflicting conclusions about
nonzero coefficients (PM2.5, RI). These concerning discrepancies occur because the RGE “main
effects” are exclusively for NH White students.

Regularized regression with ABCs. We assess regularized regression and variable selection with ABCs
using lasso regression, including all variables from Table 2. We report estimates across tuning
parameter values λ for the model coefficients {α̂j, γ̂r,j}r,j and the race-specific slopes {µ̂′

xj
(r) =

α̂j + γ̂r,j}r,j ; λ → 0 yields OLS estimates, while λ → ∞ yields sparse estimates. Since the penalized
estimates depend critically on the parameterization, we compare ABCs and RGE. The estimated
λ-paths for RI are in Figure 3; results for the remaining race-modified effects (BLL, PM2.5, mAge,
and BWTpct) are in Figures A.2–A.5. RGE fixes γ̂r,j = 0 for all λ, which results in 1) racially-biased
shrinkage of the race-specific effects toward the NH White-specific effect and 2) attenuation of the
RI effect α̂j (Figure 3, top right). ABCs resolve these issues. First, the model parameters are
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Fig. 2. Estimates and 95% confidence intervals for the main effects in the multivariable regression without race-modifiers (black) and the
multivariable regression with race-modifiers under ABCs (blue) and RGE (red). Results are presented for blood lead level (BLL), PM2.5
exposure (PM2.5), racial isolation (RI), mother’s age (mAge), and birthweight percentile for gestational age (BWTpct), each of which is
interacted with race in the expanded model (blue, red); additional covariates include sex, mother’s education level, mother’s marital
status, mother’s smoking status, and economically disadvantaged (Table 2). ABCs exhibit invariance: despite the additional race-modifier
parameters, the point and interval estimates for the main effects (blue) are nearly indistinguishable from those in the main effects-only
model (black), thus effectively allowing the inclusion of race-modifiers “for free”. In contrast, the RGE terms (red) correspond to the
x-effects for the NH White group and deviate substantially for PM2.5, RI, and mAge, including shifts in location and much wider intervals.

separately and equitably pulled toward zero (Figure 3, top left). Second, the RI effect α̂RI is not
attenuated, and preserves its magnitude until log λ ≈ 5 (Figure 3, top left). Finally, the race-specific
RI effects merge at a global, and negative, RI effect estimate, and this variable is selected by the
one-standard-error rule (36) for choosing λ (Figure 3, bottom left).

These themes persist for the remaining race-modified effects (Figures A.2–A.5). We supplement
the ABC and RGE lasso paths by including the lasso paths for overparametrized estimation (Over),
which does not include any identifiability constraints. The parameters cannot be estimated uniquely
by OLS, but can be estimated by lasso regression with λ > 0. In most cases, Over sets one of
the coefficients {αj, γr,j}r to zero immediately (small λ) for each variable j. This effect reproduces
RGE and thus Over inherits the same racial biases in estimation and selection. When this implicit
selection sets γ̂j:NHW = 0, then the Over paths resemble those for RGE (RI, not shown; BWTpct,
Figure A.5); when the selection corresponds to the smallest |γ̂r,j| among race groups r from ABCs,
then the Over and ABC paths are similar (BLL, Figure A.2; BWTpct, Figure A.5). However,
when this selection sets the main effect to zero, α̂j = 0 (PM2.5, Figure A.3) or overshrinks multiple
coefficients toward zero (mAge, Figure A.4), then the Over paths differ substantially from both the
RGE and ABC paths and demonstrate erratic behavior (Figure A.4).

Estimation and predictive accuracy for simulated data. We evaluate estimation and prediction
for ABCs, RGE, and Over across several estimation methods: OLS, ridge, and lasso regression
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Fig. 3. Estimated lasso paths for RI across varying sparsity levels (log λ) for the model coefficients α̂RI, γ̂RI:r (top) and the race-specific
slopes µ̂′

RI(r) = α̂RI + γ̂RI:r (bottom) under ABCs (left) or RGE (right); vertical lines identify λ for the minimum cross-validated error
(solid) and one-standard-error rule (dot-dashed). The outcome is 4th end-of-grade reading score and the covariates include all variables
in Table 2. Small λ approximately corresponds to OLS, while increasing λ yields sparsity. Under RGE, the estimates are pulled toward
the reference (NH White) estimate—inducing statistical bias by race—and the RI effect is attenuated. By comparison, ABCs offer more
equitable shrinkage toward a global RI effect, which is nonzero and detrimental for 4th end-of-grade reading scores.
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Fig. 4. Estimation and prediction accuracy for the regression coefficients (left), the race-specific slopes (center), and the fitted values
(right) for n = 250 (top) and n = 10,000 (bottom) across 500 simulated datasets; nonoverlapping notches indicate significant differences
between medians. Data are generated from a Gaussian main-only model with p = 10 covariates and a categorical variable with
symmetric proportions π = (0.15, 0.35, 0.15, 0.35)⊤; both RGE and ABCs are satisfied in the true data-generating process. All fitted
models use the race-modified model Eq. (1) and thus contain extraneous race-modifiers. ABCs (gold) outperform both RGE (light gray)
and Over (dark gray) within each estimation method (ridge, lasso, OLS). By definition, the OLS race-specific slopes and fitted values are
invariant to the constraints (ABCs or RGE), and Over cannot be computed for OLS.

(Figure 4). Data are simulated from a Gaussian main-only model with p = 10 covariates and a
categorical variable with four levels. For fair comparisons, the data-generating process satisfies both
RGE and ABCs. To mimic the challenges of real data analysis, the fitted models are misspecified as
Eq. (1), and thus contain extraneous race-modifiers. Root mean squared errors are computed for
the regression coefficients {α0, αj, βr, γr,j}r,j, the race-specific slopes {αj + γr,j}r,j, and the model
expectations µ(x, r) across 500 simulated datasets. In each case, ABCs are substantially more
accurate within each estimation method (OLS, ridge, lasso). The estimation invariance of ABCs offers
a plausible explanation: whereas each fitted model includes extraneous variables (the race-modifiers),
only ABCs reproduce the main effect estimates from the main-only model, which here is the ground
truth. This unique statistical property of ABCs is not only convenient for interpreting race-modified
models, but also provides more accurate estimates and predictions under both OLS and regularized
regression.

Discussion

The path to more equitable decision-making and policy requires a precise and comprehensive
understanding of the links between race and health and life outcomes. Alarmingly, the primary
statistical tool for this task—regression analysis with race as a covariate and a modifier—in its
current form propagates racial bias in both the presentation of results and the estimation of model
parameters. We advocated an alternative approach, abundance-based constraints (ABCs), with
several unique benefits. First, ABCs eliminate these racial biases in both presentation and statistical
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estimation of linear regression models. Second, ABCs produce more interpretable parameters for
race-modified models. Third, estimation with ABCs features an appealing invariance property:
the estimated main effects are approximately unchanged by the inclusion of race-modifiers. Thus,
analysts can include and estimate race-specific effects “for free”—without sacrificing parameter
interpretability, equitability, or statistical efficiency. Finally, ABCs are especially convenient for
regularized regression and variable selection, with meaningful and equitable notions of parameter
sparsity and efficient computational algorithms.

Using this new approach, we estimated the effects of multiple environmental, social, and other
factors on 4th end-of-grade readings scores for a large cohort of students (n = 27, 638) in North
Carolina. In aggregate, this analysis 1) identified significant race-specific effects for racial (resi-
dential) isolation, PM2.5 exposure, and mother’s age at birth; 2) showcased the racial biases and
potentially misleading results obtained under default approaches; and 3) provided more equitable
and interpretable estimates, uncertainty quantification, and selection, both for main effects and
race-modified effects. Simulation studies demonstrated substantially more accurate estimates and
predictions with OLS, ridge, and lasso regression compared to alternative approaches.

We acknowledge that the interpretation of any “race” effect requires great care (51). Race
encompasses a vast array of social and cultural factors and life experiences, with effects that vary
across time and geography (27, 52). In some settings, race data are unreliable or partially missing
(53, 54). These overarching challenges are not addressed in this paper.

Methods

Abundance-Based Constraints (ABCs) with Multiple Categorical Covariates. Regression analysis
often features multiple continuous covariates X = (X1, . . . , Xp)⊤ and multiple categorical covariates
R = (R1, . . . , RL)⊤ such as race, sex, education level, etc.:

µ(x, r) = α0 + x⊤α +
L∑

ℓ=1
βℓ,rℓ

+
L∑

ℓ=1
x⊤γℓ,rℓ

[3]

where α = (α1, . . . , αp)⊤ and γℓ,rℓ
= (γℓ,rℓ,1, . . . , γℓ,rℓ,p)⊤ are p-dimensional and rℓ denotes the level

of the ℓth categorical variable, ℓ = 1, . . . , L. Eq. (3) includes all continuous-categorical interactions
and requires L(1 + p) constraints for identification; RGE sets βℓ,1 = 0 for all ℓ and γℓ,1,j = 0 for all
ℓ, j.

We extend the definition of ABCs based on the joint distribution of the categorical variables R.
Specifically, let π̂ = π̂r1,...rL

= P(R1 = r1, . . . , RL = rL). If known, the population proportions may
be used for π̂; otherwise, we use the sample proportions based on the observed data {ri}n

i=1, i.e.,
π̂r1,...,rL

= n−1 ∑n
i=1 I{ri,1 = r1, . . . , ri,L = rL}. Concisely, the generalized ABCs are

Eπ̂(βR) = 0L, Eπ̂(γR,j) = 0L, j = 1, . . . , p [4]
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where βR = (β1,R1 , . . . , βL,RL
)⊤, γR,j = (γ1,R1,j, . . . , γL,RL,j)⊤, and 0L is an L-dimensional vector of

zeros. Eq. (4) may be equivalently represented via separate marginal expectations for the L sets of
categorical covariate parameters: for instance, Eπ̂(βℓ,Rℓ

) = Eπ̂ℓ
(βℓ,Rℓ

) = ∑
rℓ

π̂ℓ,rℓ
βℓ,rℓ

= 0 for each
categorical covariate ℓ.

ABCs in Eq. (4) provide interpretable parameter identifications with equitable presentation and
estimation. These interpretations are unchanged if some or all interaction terms are omitted from
Eq. (3), which may occur if multiple categorical variables (e.g., sex, education level) are included as
covariates, but only race is included as a modifier. ABCs imply that Eπ̂{µ(x, R)} = α0 + x⊤α, so
that averaging the regression Eq. (3) over all categorical variables (jointly) yields a multivariate
regression with only continuous variables. Individually, each xj-effect satisfies

αj = Eπ̂{µ′
xj

(R)} [5]

where µ′
xj

(r) = µ(xj+1, x−j, r)−µ(xj, x−j, r) is the slope in the jth direction. To further simplify the
interpretation, the expectation under π̂ in Eq. (5) need only be taken with respect to the categorical
variables that are interacted with xj (e.g., race). By comparison, the RGE parametrization yields
αj = µ′

xj
(r1 = 1, . . . , rL = 1), which is the group-specific slope for xj with each group set to its

reference category (e.g., NH White, Male, etc.). Clearly, this representation compounds inequity
across each categorical variable and fails to deliver a global interpretation of the xj-effect.

Interpretation of group-specific slopes and the parameters γℓ,rℓ,j proceeds by considering partial
expectations π̂−ℓ, which is analogous to the joint distribution π̂ but omits the ℓth categorical
variable. Here, as with Eq. (5), this expectation need only consider the categorical variables that are
interacted with xj ; if the ℓth categorical variable is the only interaction term, then no expectation is
needed at all. Then the xj-effect when the ℓth categorical variable has level rℓ, averaged over the
remaining categorical variables, is

Eπ̂−ℓ
{µ′

xj
(rℓ, R−ℓ)} = αj + γℓ,rℓ,j [6]

or equivalently, γℓ,rℓ,j = Eπ̂−ℓ
{µ′

xj
(rℓ, R−ℓ)} − Eπ̂{µ′

xj
(R)}. The interpretation is simpler than the

notation: Eq. (6) directly extends the usual notion of race-specific slopes to average over any other
categorical variables that modify xj.

Estimation. Statistical estimation with ABCs requires solving a linearly-constrained least squares
problem given data {xi, ri, yi}n

i=1. Define θ to be the model parameters {α0, α, βℓ,rℓ
, γℓ,rℓ

}rℓ,ℓ and
x̃i to include the intercept, covariates, race variable indicators (i.e., “dummy variables”), and
covariate-race interactions such that Eq. (3) may be written µ(xi, ri) = x̃⊤

i θ. Let C encode ABCs
such that Cθ = 0 enforces Eq. (4), so C has m = L(1 + p) rows corresponding to the number of
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constraints. The OLS estimator under ABCs is

θ̂ = arg min
θ

n∑
i=1

(yi − x̃⊤
i θ)2 subject to Cθ = 0. [7]

To compute θ̂—and subsequently provide inference and penalized estimation—we reparametrize
the problem into an unconstrained space with m fewer parameters. Let C⊤ = QR be the QR-
decomposition of the transposed constraint matrix with columnwise partitioning of the orthogonal
matrix Q = (Q1:m : Q−(1:m)) with R⊤ = (R1:m,1:m : 0), since C⊤ has rank m. It is straightforward
to verify that θ = Q−(1:m)ζ satisfies Cθ = 0 for any ζ. Then, using the adjusted covariate
matrix Z̃ = X̃Q−(1:m) with X̃ = (x̃1, . . . , x̃n)⊤, the solution to Eq. (7) is equivalently solved using
unconstrained OLS:

θ̂ = Q−(1:m)ζ̂, ζ̂ = arg min
ζ

n∑
i=1

(yi − z̃⊤
i ζ)2. [8]

The QR-decomposition has minimal cost due to the efficiency of Householder rotations and the low
dimensionality of C (55).

Although alternative computing strategies are available, the reparametrization in Eq. (8) is
especially convenient for generalizations to regularized (lasso, ridge, etc.) estimation. Let P(θ)
denote a complexity penalty on the regression coefficients. The penalized least squares estimator
under ABCs is

θ̂(λ) = arg min
θ

n∑
i=1

(yi − x̃⊤
i θ)2 + λP(θ) subject to Cθ = 0 [9]

where λ ≥ 0 controls the tradeoff between goodness-of-fit and complexity (measured via P). Following
Eq. (8), we instead compute

θ̂(λ) = Q−(1:m)ζ̂(λ), ζ̂(λ) = arg min
ζ

n∑
i=1

(yi − z̃⊤
i ζ)2 + λP(Q−(1:m)ζ)

which requires the solution to an unconstrained penalized least squares problem.
We focus on complexity penalties of the form

P(θ) =
∑

j

ωj|θj|δ

where ωj > 0 are known weights, δ = 1 produces sparse coefficients (adaptive lasso regression) and
δ = 2 guards against collinearity (adaptive ridge regression). Under ridge regression (δ = 2), the
solution is

θ̂(λ) = Q−(1:m)(Z̃⊤Z̃ + λD⊤D)−1Z̃⊤y

where D = diag{ω
1/2
j }p

j=1Q−(1:m). The lasso version (δ = 1) can be solved efficiently using the
genlasso package in R (56).
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For practical use, we set ωj to be the sample standard deviation of the jth column of X̃ (with
ω1 = 1 for the intercept). This strategy applies a standardized penalty to each covariate, which
is especially important for ABCs. In particular, the magnitudes of the race-specific coefficients
vary according to the abundance of the group: by construction, low abundances in group r will
correspond to larger group r-specific coefficients. The standardized penalty adjusts for this effect to
avoid overpenalization of group-specific coefficients for groups with low abundance.

Inference. The reparametrization strategy in Eq. (8) allows direct application of classical inference
theory to the ABC OLS estimator: θ̂ is a known, linear function of the (unconstrained) OLS
estimator ζ̂. Thus, it is straightforward to derive the (Gaussian) sampling distribution of the ABC
OLS estimator, which can be used to compute standard errors, hypothesis tests, and confidence
intervals, and to establish unbiasedness and efficiency of the estimator. Under minimal assumptions,
the (unconstrained) OLS estimator satisfies

√
n(ζ̂ − ζ) d→ N(0, I(ζ)−1) and thus the ABC OLS

estimator satisfies
√

n(θ̂ − θ) d→ N(0, Q−(1:m)I(ζ)−1Q⊤
−(1:m))

where I is the Fisher information and ζ, θ are the true parameter values. When the regression
model is paired with independent and identically distributed Gaussian errors ϵi := yi − µ(xi, ri)
with variance σ2, the unconstrained OLS estimator satisfies ζ̂ ∼ N{ζ, σ2(Z̃⊤Z̃)−1} and thus

θ̂ ∼ N{θ, σ2Q−(1:m)(Z̃⊤Z̃)−1Q⊤
−(1:m)}

even in finite samples. This sampling distribution for the OLS estimator under ABCs ensures
unbiasedness and efficiency, and provides the means to compute standard errors, hypothesis tests,
and confidence intervals.

Simulation design. Each simulated dataset is constructed from a Gaussian multivariable main-only
model

µ(x, r) = αM
0 + x⊤αM + βM

r [10]

with p = 10 continuous covariates and one categorical (race) covariate with four levels. The p = 10
continuous covariates include six independent covariates, Xj ∼ N(0, 1) for j = 1, 2, 3, 6, 7, 8, and four
covariates that depend on the categorical variable, [Xj | R = r] ∼ N(r, 1), i.e., mean one for group
one, mean two for group two, etc., for j = 4, 5, 9, 10. The categorical variable is generated based on
population proportions π, which we describe below. In addition to the intercept α0 = 1, the true
coefficients for the continuous covariates are α1 = · · · = α5 = 1 (signals) and α6 = · · · = α10 = 0
(noise). Only main effects (i.e., no race-modifiers or interactions) are included in the data-generating
process. We vary the sample size, n ∈ {250, 10,000}, and use a signal-to-noise ratio of one.

The categorical covariate and accompanying coefficients are constructed carefully to ensure fair
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comparisons. Different identifications correspond to different parameterizations, which may lead to
unfair evaluations. Thus, we use a data-generating model that satisfies both RGE and ABCs. We
consider two designs for the categorical proportions: symmetric weights π = (0.15, 0.35, 0.15, 0.35)⊤

(Figure 4) and uniform weights π = (0.25, 0.25, 0.25, 0.25)⊤ (Figure A.6). The true categorical
variable coefficients are β = (0, 1, 0, −1)⊤, so RGE is satisfied, β1 = 0. ABCs are satisfied for the
true population proportions, ∑

r πrβr = 0, but we use the sample proportions π̂ for estimation. The
omission of race-modifiers from the data-generating process satisfies both RGE and ABCs. Finally,
we require at least p+1 observations for each categorical level, which is necessary for OLS estimation
of the interaction effects. We simulate 500 such datasets for each (n, π) design.

All competing methods follow Eq. (1), which includes all continuous covariates, race, and all
race-modifiers. Thus, all competing models are overparametrized relative to the ground truth,
with 55 columns of the unconstrained designed matrix X̃ and 44 identifiable model parameters to
estimate. The estimation approaches are OLS, ridge regression, and lasso regression. The tuning
parameter for ridge and lasso regression is selected using the one-standard-error rule (36). The
parametrizations determine the identification constraints on βr and γr,j: we consider ABCs, RGE,
and Over. Over is not identified for OLS, and thus is presented only for ridge and lasso regression.

Empirical verification of estimation invariance with ABCs. To empirically verify estimation
invariance with ABCs, we generate 500 synthetic datasets that mildly violate the equal-variance
condition. Iteratively, we sample a categorical variable R with groups {A, B, C, D} and respective
probabilities π = (0.55, 0.20, 0.10, 0.15)⊤ and then sample a continuous variable with the distribution
determined by the group:

[X | R = r] ∼



5 + N(0, 1) r = A
√

12 Uniform(0, 1) r = B

5 + t4(0, 1) r = C

Gamma(1, 1) r = D

[11]

By design, X depends on R in both mean and distribution. The R-specific population variances
of X are each one, but Eq. (2) requires that the R-specific sample variances are identical, which
will not be satisfied for any simulated dataset. Thus, Eq. (11) includes a mild deviation from the
equal-variance condition Eq. (2).

The response variable Y is simulated with expectation

µ(x, r) = 1 + x + γxI{r = A} − γxI{r = B}

plus t4(0, 1)-distributed errors, i.e., standard t-distributions with 4 degrees of freedom. The coefficient
γ determines the strength of the race-modifier effect: we consider γ = 0 (no race-modifier effect),
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γ = 0.5 (50% of the main x-effect), and γ = 1.5 (150% of the main x-effect). This data-generating
process includes a R-modifier (when γ ≠ 0) but does not satisfy ABCs or traditional Gaussian error
assumptions. Repeating this process 500 times, each simulated dataset contains {xi, ri, yi}n

i=1. We
consider n ∈ {100, 500}.

We fit the main-only and race-modified models and record the estimated x-effects α̂M
1 and α̂1,

respectively, for each simulated dataset. These estimated coefficients depend on the constraints:
we compare ABCs, RGE (with reference group A), and STZ constraints for {βr, γr} (Figure A.1).
Although the conditions in Eq. (2) are not satisfied, the ABC estimates lie along the 45 degree
line with α̂1 = α̂M ; the estimated x-effect is nearly unchanged by the addition of the race-modifier.
This invariance is not satisfied for RGE or STZ. The estimated x-effects under RGE or STZ vary
considerably between the main-only and race-modified models, with greater discrepancies as the
magnitude of the race-modifier effect increases. By comparison, the estimation invariance of ABCs
is robust to the magnitude of the race-modifier effect. The mild deviations from the equal-variance
condition Eq. (2) are most impactful when γ = 1.5, which represents the unusual setting in which
the interaction effect is much larger than the main effect. Even in this challenging case, the ABC
estimates remain nearly invariant between the main-only and race-modified models, especially when
compared to the RGE and STZ counterparts.

Contrast coding. For OLS estimation, identifiability constraints may be imposed using contrasts.
In this approach, the linear model is fit under any minimally sufficient identification (RGE, STZ,
ABCs, etc.) and the categorical variable coefficients are post-processed using linear contrast matrices.
Examples include dummy coding (akin to RGE), effects coding (akin to STZ), weighted effects
coding (WEC; akin to ABCs), and Helmert coding (for ordered categories). However, contrasts are
typically reserved for main-only models and are difficult to combine with regularized regression and
variable selection. Further, these previous approaches do not consider or resolve the inequities of
reporting or estimating race-specific effects. In particular, WEC has been advocated only in cases
when “a categorical variable has categories of different sizes, and if these differences are considered
relevant” (57) or “certain types of unbalanced data that are missing not at random” (58), with
regression output that suffers from the same presentation bias that afflicts RGE (59). We do not
agree with such restrictions for ABCs, and instead argue that this approach offers an equitable
and interpretable parametrization with unique and appealing statistical properties, including both
estimation invariance and regularized regression. These estimation invariance results and regularized
regression analyses are notably absent from previous contrast coding approaches.

Data Availability

The North Carolina dataset cannot be released due to privacy protections. However, access to the
data can occur through establishing affiliation with the Children’s Environmental Health Initiative
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(contact cehi@nd.edu). Additional data documentation is available at https://www.cehidatahub.org.

Code Availability

The proposed methods are implemented in the statistical software package lmabc in R. This package,
along with detailed documentation and examples, is available on GitHub.
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A. Supporting Information

Table A.1. Characteristics of the North Carolina data (n = 27, 638).

Variable Proportion
Mother’s race

NH White 57.9%
NH Black 36.1%
Hispanic 6.0%

Sex
Male 50.0%
Female 50.0%

Mother’s education level
Did not complete high school 24.2%
Completed high school 36.8%
At least some postsecondary 39.0%

Mother’s marital status
Married at time of birth 56.2%
Not married at time of birth 43.8%

Mother’s smoking status
Smoker 16.9%
Non-smoker 83.1%

Economically disadvantaged
Yes 61.0%
No 39.0%

Sample proportions by group for each categorical variable. These sample proportions are used for ABCs with each categorical
variable. “Economically disadvantaged” is determined by participation in the National Lunch Program.

Table A.2. The (scaled) sample standard deviations σ̂x[r](j) by race r for each covariate j = 1, . . . , p.

Variable j σ̂x[NHW](j) σ̂x[NHB](j) σ̂x[Hisp](j)
Blood lead level 0.949 1.043 0.976
PM2.5 exposure 0.999 1.004 0.924
Racial isolation (RI) 0.688 1.063 0.936
Mother’s age 0.998 0.974 0.886
Birthweight percentile for gestational age 0.998 0.955 0.984

The invariance result for estimators with and without race-modifiers requires σ̂x[NHW](j) = σ̂x[NHB](j) = σ̂x[Hisp](j) for each
covariate j (and similarly for the cross-covariances). Although this condition is clearly violated, the estimates and SEs

maintain invariance (Figure 2), which suggests strong empirical robustness for the desirable invariance property of ABCs.
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Fig. A.1. Estimated x-effects (α̂M
1 , α̂1) under different categorical encodings across 500 simulated datasets for n = 100 (left) and

n = 500 (right) and varying race-modifier effects γ ∈ {0, 0.5, 1.5} (top to bottom). Uniquely, ABCs produce nearly identical x-effect
estimates with and without the race-modifier (45◦ line), which preserves the interpretations from the simpler (main-only) model.
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Fig. A.2. Estimated lasso paths for blood lead level (BLL) across varying sparsity levels (log λ) for the model coefficients α̂BLL, γ̂BLL:r (top)
and the race-specific slopes µ̂′

BLL(r) = α̂BLL + γ̂BLL:r (bottom) under ABCs (left), overparametrized estimation (center), and RGE (right);
vertical lines identify λ for the minimum CV error (solid) and one-standard-error rule (dot-dashed). The outcome is 4th end-of-grade
reading score and the covariates include all variables in Table 2. Small λ approximately corresponds to OLS, while increasing λ yields
sparsity. Under RGE, the race-specific effects are pulled toward the NH White estimate (bottom right). For overparametrized estimation,
the paths are similar to the ABC versions (center and left), but estimate γ̂BLL:NHB = 0 for all λ and thus implicitly selects NH Black as
the reference group. This explains the differences from RGE, which uses a NH White reference group (γ̂BLL:NHW = 0). Under ABCs, the
race-specific effects are pulled toward a global BLL effect (bottom left), which is is nonzero and detrimental for 4th end-of-grade reading
scores.
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Fig. A.3. Estimated lasso paths for PM2.5 exposure (PM2.5) across varying sparsity levels (log λ) for the model coefficients α̂PM2.5, γ̂PM2.5:r
(top) and the race-specific slopes µ̂′

PM(r) = α̂PM2.5 + γ̂PM2.5:r (bottom) under ABCs (left) overparametrized estimation (center), and
RGE (right); vertical lines identify λ for the minimum CV error (solid) and one-standard-error rule (dot-dashed). The outcome is 4th
end-of-grade reading score and the covariates include all variables in Table 2. Small λ approximately corresponds to OLS, while
increasing λ yields sparsity. The ABC paths confirm the OLS output: the global PM2.5 effect is pulled toward zero in advance of the
race-specific deviations (top left), so the race-specific slopes merge at a global estimate of zero (bottom left). The RGE estimates
demonstrate the shrinkage of race-specific effects toward the NH White estimate. The overparameterized paths for the race-specific
effects resemble those for ABCs (bottom center and bottom left), but the overparametrized version sets the main effect to zero, α̂PM2.5 = 0
and thus results in different coefficients compared to either ABCs or RGE (top).
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Fig. A.4. Estimated lasso paths for mother’s age (mAge) across varying sparsity levels (log λ) for the model coefficients α̂mAge, γ̂mAge:r (top)
and the race-specific slopes µ̂′

PM(r) = α̂mAge + γ̂mAge:r (bottom) under ABCs (left) overparametrized estimation (center), and RGE (right);
vertical lines identify λ for the minimum CV error (solid) and one-standard-error rule (dot-dashed). The outcome is 4th end-of-grade
reading score and the covariates include all variables in Table 2. Small λ approximately corresponds to OLS, while increasing λ yields
sparsity. The racial bias of RGE is clear (bottom right): the race-specific effects are each pulled toward the NH White estimate. By
comparison, under ABCs, the race-specific effects are pulled toward a global mAge effect (bottom left), which is nonzero and positive for
4th end-of-grade reading scores. The overparametrized estimation cannot determine a reference group, and exhibits erratic behavior
that does not resemble either alternative.
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Fig. A.5. Estimated lasso paths for birthweight percentile for gestational age (BWTpct) across varying sparsity levels (log λ) for the model
coefficients α̂BWTpct, γ̂BWTpct:r (top) and the race-specific slopes µ̂′

PM(r) = α̂BWTpct + γ̂BWTpct:r (bottom) under ABCs (left) overparametrized
estimation (center), and RGE (right); vertical lines identify λ for the minimum CV error (solid) and one-standard-error rule (dot-dashed).
The outcome is 4th end-of-grade reading score and the covariates include all variables in Table 2. Small λ approximately corresponds
to OLS, while increasing λ yields sparsity. Under ABCs, the race-specific effects are all positive, and merge at a positive global effect
of BWTpct. Because the race-specific deviations for NH White individuals are near zero (top left), the RGE paths—which fix these
coefficients at zero by design—are very similar to the ABC paths. This effect is similar for overparametrized estimation.
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Fig. A.6. Estimation and prediction accuracy for the regression coefficients (left), the race-specific slopes (center), and the fitted values
(right) for n = 250 (top) and n = 10,000 (bottom) across 500 simulated datasets; nonoverlapping notches indicate significant differences
between medians. Data are generated from a Gaussian main-only model with p = 10 covariates and a categorical variable with uniform
proportions π = (0.25, 0.25, 0.25, 0.25)⊤; both RGE and ABCs are satisfied in the true data-generating process. All fitted models use
the race-modified model Eq. (1). ABCs (gold) outperform both RGE (light gray) and Over (dark gray) within each estimation method
(ridge, lasso, OLS). By definition, the OLS race-specific slopes and fitted values are invariant to the constraints (ABCs or RGE), and
Over cannot be computed for OLS.

Kowal August 8, 2024 | 27

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 8, 2024. ; https://doi.org/10.1101/2024.01.04.23300033doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.04.23300033
http://creativecommons.org/licenses/by/4.0/

	Supporting Information

