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Abstract
To inform public health interventions, researchers have developed models to forecast
opioid-related overdose mortality. However, these efforts often have limited overlap in the
models and datasets employed, presenting challenges to assessing progress in this field.
Furthermore, common error-based performance metrics, such as root mean squared error, are not
directly suitable to assess a key modeling purpose: the identification of priority areas for public
health interventions. We recommend a new intervention-aware performance metric and establish
a set of baseline models with competitive performance. To show how model and metric choice
vary across locations, we explore two distinct geographies: Cook County, Illinois and the state of
Massachusetts. We introduce a new, intervention-aware evaluation metric: the Percentage of Best
Possible Reach (%BPR). The top-performing models based on error-based metrics recommend
fixed-budget interventions in areas that do not always reach the most possible overdose events.
In Massachusetts the top models, as ranked by our proposed %BPR metric, could have reached
18 additional fatal overdoses per year in our 2020-2021 test period compared to models favored
by error-based metrics, assuming the ability to intervene in 100 census tracts out of the 1620 in
Massachusetts. We release open code and data for others to build upon.

Repository for code and data: https://github.com/tufts-ml/opioid-overdose-models

Introduction

The opioid overdose epidemic in the United States has resulted in over 450,000 deaths during the
past eight years, with more than 80,000 fatal opioid-related overdoses during 2022, the highest
yet in a single year.1 Managing the opioid overdose epidemic requires a constellation of efforts
ranging from substance use treatment programs offering medications for opioid use disorder
(e.g., methadone, buprenorphine),2,3 harm reduction programs with provisions for overdose
education and naloxone distribution, and comprehensive mental health and social support
services.4–6 Beyond the provision of harm reduction and healthcare services, it is critical for
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policymaking to address the ever-evolving substance use environment and plan for targeted
interventions.

There has been considerable variation in the availability of different types of opioids and the
consequent increase in opioid use disorder and opioid-related fatal overdoses in the past two
decades. The current fatal opioid overdose epidemic has been characterized by four waves.7,8 In
the early 2000s, prescription opioids drove overdoses. Then, heroin-related deaths surged
post-2010, followed by a fentanyl spike in 2013.9 This culminated with the fourth wave of
combined stimulant and fentanyl-related overdoses.8 These shifts in supply accompanied changes
in social and ecological conditions, impacting substance use behaviors in varying ways across
geographic regions.10,11 Hence, it is critical to examine local spatiotemporal variation in opioid
overdose outcomes, identifying the most-impacted areas and predicting future outcomes to
inform preemptive public health responses.

A growing body of research12 has explored spatiotemporal variations in the opioid overdose
landscape. Yet forecasting approaches are in a nascent stage and there are few prediction studies
at the population level13. Other research focuses on patient-specific risk prediction 14–16, assuming
access to detailed, person-level demographic and medical history data. However, there are
immense challenges in compiling rich datasets for person-level analysis. Most state-level public
health authorities may not have access to the data and technical resources to conduct individual
predictive modeling. Analyses focused on population-level predictions that solely depend on
more readily-available aggregated data have the potential to be more easily adopted by public
health authorities with limited resources.

While a number of prior studies have identified historical overdose “hotspots”17–19, fewer studies
have forecasted future spatiotemporal overdose spikes. Research that focuses on hotspots often
assumes that identified clusters represent the locations where the highest needs will exist in the
future. In our analyses, we show that this assumption does not always hold. Intervention and
policies that rely on such findings may be acting on lagged measures of opioid burden, thereby
limiting the effectiveness of interventions. Existing research also spans a broad range of spatial
and temporal resolutions. In geographic space, studies range from coarser county-level
analysis17, to finer analyses based on ZIP Codes, census tracts, or census block groups20.
Temporally, studies range in focus across yearly aggregated17 data, quarterly21, or weekly data22.

The overarching goal of our study is to help public health departments make short-term forecasts
of future overdose events to enable planning of geographically and temporally targeted
interventions that are cognizant of limited resources and needed intervention efficiencies. We
focus specifically on development of forecasts at a fine spatial scale (census tracts) at annual
intervals, which we selected to match the decision-making needs of public health agencies. In
order to understand the role of different forecasting models and evaluation metrics on different
communities, our evaluations cover two distinct catchment areas. First, we study Cook County,
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Illinois, covering over 5 million residents of Chicago and its surroundings, where we forecast
death events across 1328 populated census tracts from years 2015-2022 through analysis of
publicly available data. Second, we study the state of Massachusetts, where we forecast fatal
overdose events across 1620 census tracts representing over 6 million residents from 2001-2021.
These locations were selected based on data availability, and to demonstrate the impact of model
and metric choice at multiple locations.

To establish best practices for modeling and evaluation, we carefully compare different modeling
approaches and performance metrics in each catchment area. We implement a comprehensive set
of existing models – including heuristic baselines, statistical models,12,20,22,23 and neural
networks22. We then assess the opioid-related fatal overdose forecasts they produce for both
Cook County and Massachusetts at the census-tract-level at annual timeframes. We compute
widely-used error-based performance metrics and introduce a new intervention-focused
performance metric. Our Python-based software is available for other researchers to reuse and
build upon: https://github.com/tufts-ml/opioid-overdose-models.

Methods

Data Sources and Preparation
To assess models, we assembled two datasets suitable for forecasting opioid-related fatal
overdoses annually at the census tract level. Our relatively coarse annual temporal scale was
chosen to match the frequency at which decision-makers might set new priorities and at which
new reliable data become available. We chose the census tract spatial scale due to its potential for
targeted interventions at a sub-municipality level. Each census tract by design contains a mean
count of 4000 people (with a range of 1200-800024) . For many (but not all) interventions, costs
scale with population size, and thus the cost of deploying an intervention in any tract is roughly
uniform.

Data source 1: Cook County, Illinois

We obtained fully de-identified data from the Cook County Government Medical Examiner Case
Archive25 for opioid-involved overdose deaths from August 2014 (the first date records are
available) to May 2023. These data contained every fatal incident under the medical examiner’s
jurisdiction that was determined to have any opioid as a primary cause. We used the provided
incident latitude and longitude to map each overdose fatality to one of 1328 census tracts.
Because the underlying data is in the public domain, we make our processed Cook County data
available in our shared repository.
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Data source 2: Massachusetts

We obtained death certificate data from the Massachusetts Registry of Vital Records and
Statistics for opioid-involved overdose deaths between 2001 and 2019. These deaths were
defined as unintentional, intentional, and undetermined drug poisonings containing an opioid
code (ICD-10 codes T.40.0-T40.4, or T40.6) as a “multiple cause of death”. Each fatal overdose
is linked to a calendar date as well as a residential street address. Decedent addresses for the
place of residence at the time of the fatal overdose were geocoded, assigning latitude and
longitude measures to each event that was then mapped to one of 1620 census tracts using the
2020 census tract boundaries.

Dataset Preparation

For each dataset, we computed the observed number of fatal overdose events at time unit𝑦
𝑠,𝑡

𝑡

for individuals residing in spatial tract . We employed open tools26 that utilize the US Census𝑠
Geocoding API to map locations (street address or latitude/longitude) to its corresponding census
tract, using the tract boundaries for the states of Massachusetts and Illinois defined by the U.S.
Census Bureau in 2020.

In each dataset, a uniform set of covariates is available as input for prediction models. At each
time period t and spatial region s, we provide the history of fatal overdose counts from previous
times in that region, as well as the spatial location (numerical latitude and longitude of the tract),
and timestamp (numerical time, measured in years since the first available year for that dataset).
Further, for each census tract s at time t, an optional covariate vector represents social
vulnerability across socioeconomic status, age-related demographics, minority status, housing,
and composite dimensions using percentile ranking across all census tracts in that state. These
features stem from the five dimensions of the Social Vulnerability Index (SVI)27 published
between 2000 and 2018 for every U.S. state. Published tract values are updated every five years;
we selected the closest value to each time period t. These SVI features were chosen for their
simplicity and portability, mirroring the role of higher-dimensional socioeconomic covariates in
previous studies 23,28.

Metrics
To evaluate model forecasting accuracy against observed mortality in a test period, suitable
performance metrics were essential. Our study considered both commonly-used error-based
metrics and a new intervention-focused metric.

Error-based metrics

Model performance is often assessed via summary statistics of the errors between predicted and
observed mortality across all S spatial regions in the test period. Within this category, two
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common metrics are Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), both
defined in Equation 1 below. RMSE calculates the square root of the average squared errors,
while MAE computes the average of absolute errors.

(1)𝑅𝑀𝑆𝐸 = 1
𝑆

𝑠=1

𝑆

∑ ( 𝑦
𝑠

− 𝑦
𝑠
)2 ,      𝑀𝐴𝐸 = 1

𝑆
𝑠=1

𝑆

∑ |𝑦
𝑠

− 𝑦
𝑠
|

Both RMSE and MAE have been concretely used as the primary metrics to assess opioid
overdose forecasting22,23,29. RMSE can be more sensitive to large errors due to its use of
squaring.

Intervention-focused metric

In our intended use case of mitigating the opioid crisis, stakeholders at a public health agency
could use a forecasting model to select a targeted subset of all possible census tracts in which to
deploy an intervention in the near future. We assume these actors have a limited budget, allowing
intervention deployment in a maximum of K of the S regions in their jurisdiction. For a given
model, we can obtain its recommended set of K regions, which we refer to as the intervention set
I, in two steps. Step 1: predict mortality counts for all S regions in the test period. Step 2:
identify the K regions with the K highest predictions (breaking ties at random), and store these as
the recommended set I.

To evaluate such intervention recommendations, we need new metrics. The error-based metrics
defined earlier (RMSE or MAE) aggregate error for all S regions equally. They do not directly
measure if a forecast’s guess of the K highest-risk areas specifically aligns with the actual areas
with highest mortality. We thus wish to design a metric better aligned with how stakeholders will
determine and assess intervention priorities. We suggest a model is favorable if, during the test
period, the total count of fatal overdose events in its recommended set I of K tracts is as large as
possible. This would indicate the model is good at identifying where adverse events will occur,
and thus increase the possibility that stakeholders could “reach” and hopefully mitigate these
events via interventions targeted at the model’s recommended tracts.

Our proposed metric, “best possible reach” (BPR), assesses a model’s recommendations via a
ratio of two numbers. First, the numerator counts how many opioid-related fatalities actually
occurred in the model’s recommended set I of size K. Second, the denominator counts the total
number of opioid-related fatalities in the K regions that would be chosen with perfect hindsight
of the actual count vector y = [y1, …, yS] of fatalities in the test period. Mathematically, we
define BPR as follows
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=𝐵𝑃𝑅 =  𝑘∈𝐼
∑ 𝑦

𝑘

𝑘∈𝑇𝑜𝑝𝐾𝐼𝑛𝑑𝑠(𝑦)
∑ 𝑦

𝑘

 # 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝐾 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑝𝑖𝑐𝑘𝑒𝑑 𝑏𝑦 𝑚𝑜𝑑𝑒𝑙
# 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑎𝑐𝑡𝑢𝑎𝑙 𝐾 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑐𝑜𝑢𝑛𝑡 𝑟𝑒𝑔𝑖𝑜𝑛𝑠

where TopKInds(y) denotes a function that returns the distinct indices of the K largest elements
of vector y.

For public health applications, BPR holds a practical interpretation as the proportion of fatal
overdose events the current model’s interventions would reach, compared to the perfect foresight
of future events. BPR’s numerical value by definition will have a minimum of 0.0 and a
maximum of 1.0. We typically convert the fractional BPR to a percentage ranging from 0-100%,
denoted as %BPR. A higher %BPR value signifies a more effective model at deciding where to
intervene. A value of 100% indicates perfect decision-making given a limited budget: there is no
other set of K regions any model could have recommended that would reach more events.

Although independently developed by our team (see our preliminary workshop paper21), our
proposed BPR metric closely resembles the metric suggested by a recent pre-registered trial30

and a later feasibility study20 to evaluate opioid overdose forecasts in Rhode Island. The primary
distinction lies in the denominator: our BPR sums only the top K indices, while the alternative
includes all S regions. We prefer our definition due to %BPR’s consistent range of 0-100%, with
100% representing a model that could not have made a better decision given the limited budget
of K regions. In contrast, the alternative definition’s maximum value fluctuates based on
observed data in the test period, making it difficult to know if another model could have done
better.

Models
Below we define a range of possible forecasting methods that can be used for our
where-to-intervene prediction task. All methods are trained and evaluated via a common protocol
using the same provided splits (train/validation/test) of the two available datasets (Cook County
and Massachusetts). Thorough details about model fitting and hyperparameter tuning are
provided in the Supplement. This study was reviewed by the Tufts University Health Sciences
Institutional Review Board and deemed to be non-human subjects research.

Simple Baseline Models

We study several easy-to-implement baseline models to highlight their comparative strengths.
Public health practitioners seeking data-driven allocation of scarce intervention resources
without sophisticated modeling could easily use these approaches.
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Our first baseline, dubbed all zeroes, predicts uniformly across all S tracts that zero fatal
overdoses will occur in the test period. This model, by definition, ranks all tracts as equally
high-risk, so for metrics like BPR that require a set of K recommended regions we report an
average over many samples of K distinct regions selected uniformly at random.

Our second baseline, known as last year, predicts that the mortality at the next year in a specific
location will mirror the mortality observed at the most recent recorded year for that location.

The final baseline we consider is a historical average, which predicts the next timestep’s
mortality as an average of all mortality counts observed over the preceding W timesteps. Here,
the appropriate “look back” period length W serves as a model hyperparameter.

Complex Models

Next, we consider several more flexible models with parameters that can be fit to the data. The
first is the weighted historical average: a weighted average of the previous W years of overdose
events. This is more flexible than historical average, because each year’s count is multiplied by a
customized weight coefficient.

The next model we consider is a Generalized Linear Model (GLM) with a Poisson likelihood.
This model assumes that fatal overdose count y for spatial tract s at time t is modeled by a
Poisson distribution where the log of the mean parameter is a linear function of the covariate
vector x for that tract and time:

𝑦| 𝑥, 𝜽 ∼  𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ = 𝑒𝜽𝑇𝑥) 

GLMs have limited flexibility due to the assumption of a monotonic relationship between
covariates and fatal event count. We thus also include a Gradient Boosted Trees31 model, a
popular more flexible ensemble of regression trees. Previous studies of opioid forecasting 20,32

have used similar tree ensembles.

In addition, we include three spatially-sophisticated statistical models used in recent opioid
overdose forecasting applications. First, we include a Gaussian Process model20 for its ability to
flexibly capture spatial and temporal correlations. We use similar covariance functions
(“kernels”) to prior overdose forecasting work (details in the supplement). Next, Bayesian
Spatio-Temporal (BST) models23 use a Markov Random Field to model inherent spatial and
temporal trends. Thirdly, NBSpLag denotes a negative binomial regression model with spatially
lagged features28, where each tract is informed by its spatial neighbors. In a variable selection
experiment28, these spatially lagged covariates were found to be the most predictive features.
Unlike previous evaluations of both BST23 and NBSpLag models, our study compares to the rich
set of baselines described above.
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Finally, we include CASTNet22, a neural network approach custom developed for
opioid-overdose forecasting. Unlike previous methods, CASTNet employs multi-head attentional
networks that allow predictions at a given location to be informed by learned “communities” of
regions.

Experimental Protocol
We applied each of the models described above separately to the Cook County, IL dataset and the
MA dataset. In each case, we sought to use available historical counts of opioid-related fatal
overdoses (together with other covariates described above) to predict future fatal overdose counts
in each census tract. We further assessed how these predictions can be used to recommend where
to intervene in the near future.

For training on a dataset, for all S regions we assemble covariate vector, fatality count pairs
for each year in the training set (t = 2010-2018 for Massachusetts, 2015-2019 for(𝑥

𝑠,𝑡
,  𝑦

𝑠,𝑡
)

Cook County). The historical covariates inside each vector can summarize the recent history𝑥
𝑠,𝑡

of previous years (W=10 for Massachusetts, W=5 for Cook County). Hyperparameters are𝑊
chosen to maximize performance as assessed by BPR on a validation set of data from the year
prior to evaluation (2019 for Massachusetts, 2020 for Cook County. Finally, models are
evaluated on predictions for the final two years (2020-2021 in Massachusetts, 2021-2022 in
Cook County).

From each model, we obtained predictions for each of the S tracts in each test year. We then
computed each evaluation metric (RMSE, MAE, BPR) as well as an interval that quantifies our
uncertainty in its precise value. Inspired by resampling methods for uncertainty quantification33,
for each test year we obtained 50 different without-replacement samples of 1370 of the 1620
locations in MA (1078 of the 1328 in Cook County, IL), and recorded all metrics of interest for
each sample. Our reported intervals quantify the min-max range of these 50 samples. We chose
the number of tracts retained in each catchment area so that each sample on average retains 85%
of all fatal overdose events.

Results
Results from the experiments conducted on Massachusetts and Cook County data are
summarized in Table 1 and Table 2, respectively. The best model(s) can vary depending on the
chosen evaluation metric.

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.24300803doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.03.24300803
http://creativecommons.org/licenses/by-nd/4.0/


In both catchment areas, we see reasons to prefer our proposed BPR metric to alternatives when
the goal is effectively prioritizing where to intervene. First, in Massachusetts, both the Gaussian
Process (GP) and Bayesian Spatiotemporal model (BST) have top performance as assessed by
MAE and RMSE. However, the BST has higher %BPR than the GP (62.0% compared to 58.2%).
Interventions guided by the BST model would have the potential to preemptively identify 18
additional fatal overdoses per year in the top 100 census tracts. Similarly, in Cook County the
Gradient Boosted Trees model with SVI covariates has superior MAE and RMSE to the GLM
model, yet has worse %BPR (77.1% versus 79.4% for GLM). Interventions guided by the GLM
model (preferred via the %BPR metric) could reach 15 more fatal overdose events annually in
Cook County.

We also observe that while complex models like BST do well in both catchment areas, so does
the simple historical average baseline and its weighted extension. In Massachusetts, historical
average delivers a BPR and MAE that fall within the uncertainty intervals of the best performing
models. The weighted extension’s ultimate %BPR is so close to the top method (NPSpLag) that
the difference amounts to identifying fewer than 2 additional overdose events annually. In Cook
County, the historical average baseline delivers competitive scores (within the intervals of the
best models) as assessed by all three metrics (BPR, MAE, and RMSE); the best model (BST)
here would reach less than 1 additional overdose event annually.
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Table 1. Comparison of fatal opioid-related overdose prediction models trained on Massachusetts
decedent data from 2010-2019, then evaluated on data from 2020 and 2021.

Metric

Model Total overdoses
identified
in top 100 tracts

%BPR (K=100) MAE RMSE

All Zeros 124.1 25.1, (24.8-25.8) 1.24, (1.18-1.30) 1.92, (1.83-2.01)

Last year 254.5 51.8, (49.5-54.4) 1.09, (1.04-1.14) 1.58, (1.50-1.65)

Historical Average
(4 year)

295.4 59.8, (56.8-62.9) 0.92, (0.90-0.94) 1.28, (1.24-1.33)

Weighted
Historical Average

303.5 61.4, (56.1-66.9) 0.94, (0.91-0.98) 1.32, (1.27-1.38)

Poisson GLM 304.7 61.6, (56.4-66.8) 0.95, (0.91-0.98) 1.32, (1.25-1.39)

Poisson GLM +SVI 301.3 61.0, (57.4-65.1) 1.10, (1.04-1.16) 1.38, (1.30-1.47)

Gradient Boosted
Trees +SVI

293.6 59.5, (55.9-63.1) 0.92, (0.89-0.96) 1.24, (1.18-1.30)

GP 287.2 58.2, (55.2-61.2) 0.93, (0.91-0.95) 1.28, (1.23-1.34)

CASTNet +SVI 268.0 54.4, (52.0-56.6) 1.07, (0.99-1.16) 1.47, (1.36-1.58)

BST: Bayesian
spatiotemporal

301.0 61.1, (58.6-63.3) 0.95, (0.93- 0.96) 1.26, (1.24-1.28)

BST + SVI 305.4 62.0, (60.0-63.7) 0.92, (0.91-0.94) 1.23, (1.21-1.25)

NBSpLag + SVI 305.4 62.0, (60.3-64.0) 0.92 (0.89-0.95) 1.31, (1.27-1.35)

Here BPR (higher is better) is our new intervention-aware metric, computed assuming an intervention
budget for K=100 of 1620 possible tracts in Massachusetts. MAE (lower is better) and RMSE (lower is
better) are common error-based metrics. For each metric, the best model mean is bolded, along with any
other model whose uncertainty interval overlaps this mean (intervals are computed via resampling
methods). The column titled “Total Overdoses Identified in top 100 tracts” contains the true number of
observed fatal overdoses in the top 100 locations identified by the corresponding model.
Abbreviations: BPR: Best Possible Reach.MAE: Mean Absolute Error. RMSE: Root Mean Squared
Error. SVI: Social Vulnerability Index covariates. GLM: Generalized Linear Model. GP: Gaussian
Process. NBSpLag: Negative binomial regression with spatially-lagged features. BST: Bayesian
spatiotemporal model
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Table 2. Comparison of fatal opioid-related overdose prediction models trained on Cook County, Illinois
decedent data, from 2015 to 2020, then evaluated on data from 2021 and 2022.

Metric

Model Total overdoses
identified in top
100 tracts

%BPR (K=100) MAE RMSE

All Zeros 137.0 21.7, (21.1- 22.4) 1.37, (1.30- 1.44) 2.46, (2.34- 2.56)

Last year 466.0 73.9, (70.7- 77.0) 1.07, (1.03- 1.10) 1.66, (1.59- 1.71)

Historical Average (4
year)

505.3 80.1, (76.2- 84.3) 0.94, (0.90- 0.97) 1.44, (1.38- 1.50)

Weighted
Historical Average

495.4 78.6, (75.7- 81.8) 1.15, (1.11- 1.19) 1.87, (1.76- 1.96)

Poisson GLM 496.8 78.8, (75.9- 82.3) 1.22, (1.08- 1.29) 4.64, (1.65- 5.92)

Poisson GLM + SVI 500.7 79.4, (76.0- 82.8) 1.16, (1.11- 1.20) 1.86, (1.77- 1.94)

Gradient Boosted
Trees +SVI

485.7 77.1, (72.2- 81.9) 0.99, (0.95- 1.05) 1.55, (1.42- 1.68)

GP 477.2 75.7, (69.9- 80.5) 1.03, (0.97- 1.09) 1.63, (1.50- 1.74)

CASTNet +SVI 472.6 75.2, (73.2- 76.8) 1.01, (0.98-1.04) 1.53, (1.39-1.67)

BST: Bayesian
spatiotemporal

505.9 80.5, (78.9- 82.1) 1.00, (0.98- 1.01) 1.40, (1.36- 1.43)

BST + SVI 504.1 80.2, (78.7- 82.0) 0.97, (0.95- 0.98) 1.47, (1.43- 1.51)

NBSpLag + SVI 502.2 79.9, (78.1- 81.6) 0.96, (0.93-0.98) 1.42, (1.37-1.48)

Here %BPR (higher is better) is our new intervention-aware metric, computed assuming an intervention
budget for K=100 of 1328 possible tracts in Cook County. MAE (lower is better) and RMSE (lower is
better) are common error-based metrics. For each metric, the best model mean is bolded, along with any
other model whose uncertainty interval overlaps this mean (intervals are computed via resampling
methods). The column titled “Total Overdoses Identified in top 100 tracts” contains the true number of
observed fatal overdoses in the top 100 locations identified by the corresponding model.
Abbreviations: BPR: Best Possible Reach.MAE: Mean Absolute Error. RMSE: Root Mean Squared
Error. SV: Social Vulnerability covariates. GLM: Generalized Linear Model. GP: Gaussian Process.
NBSpLag: Negative binomial regression with spatially-lagged features. BST: Bayesian spatiotemporal
model
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Discussion
Our study’s first contribution to the science of spatiotemporal forecasting of opioid-related
overdose deaths is highlighting the need for extensive comparisons to a robust suite of simple
baselines. This lesson matches reports34,35 from across the sciences, especially efforts in
health36,37 and the social sciences38, that suggest advanced modeling techniques may not
substantially outperform simpler baselines on some difficult prediction tasks. Our findings are
similar in both the large state of MA and the far denser Cook County. In each catchment area,
across both intervention-aware and error-based metrics, we found that a historical average
baseline performed competitively (within the uncertainty bounds of top-ranked statistical
models). The key to success here is careful selection of the number of recent years in the
look-back period, following standard best practices for hyperparameter tuning.39,40 If this simple
baseline model yields such high performance, it raises questions about the rationale for adopting
more complex counterparts that require specialized expertise. Many prior overdose forecasting
studies20,23 completely omit such baselines, or often include only the poor performing ones such
as the last-year28 model or a too-long historical average22. For all future studies of opioid
overdose forecasting, we recommend including historical averages with tuned look-back periods.

Our second contribution, developed in parallel to contemporary work30, is a new metric –
percentage of best possible reach (%BPR) – which evaluates predictions based on their utility for
informing decisions about where to intervene. In both Massachusetts and Cook County, we
demonstrate that using %BPR as an evaluation metric can lead to different model rankings and
different recommendations of where to intervene than error-based metrics like RMSE, improving
the total number of annual fatal overdose events that could be preemptively identified by 15 in IL
and 18 in MA. This is an important finding, as we believe that intervention-aware metrics like
%BPR more closely reflect how public health agencies wish to use forecasting models to inform
their intervention strategies.20

Lastly, we emphasize that our study is designed to be reproducible and open to extensions by
other researchers. We released the software for fitting all models and computing all metrics under
a permissive open-source license (link in Introduction). We also released our cleaned version of
the public-domain Cook County dataset as well as all preprocessing code. Historically, overdose
forecasting studies have not often shared code and have focused on private bespoke datasets,
often reasonably due to privacy issues around decedent data. Enabling diverse researchers to
pursue a common prediction task, especially via the availability of a public dataset for
evaluation, has been a key driver of progress in predictive modeling41.

Limitations
This study has several limitations. First, our findings come from only two places (Massachusetts
and Cook County), and may not be generalizable to other counties, states, or public health
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jurisdictions. Cook County is predominantly urban, while Massachusetts is a large state with
substantial urban, rural and suburban areas. The spatiotemporal trends in opioid-related mortality
could thus be dramatically different in these two locations, necessitating different model rankings
and intervention strategies. Furthermore, we acknowledge that not all Cook County deaths are
reported to the Medical Examiner. The Medical Examiner's jurisdiction only covers specific
fatalities for cause-of-death determination.

Second, there are limitations to our analysis of the proposed BPR metric. For simplicity, all
results here assumed an intervention budget of K=100 census tracts. Different K values may lead
to different method rankings. Our suggested BPR metric is intended for identifying where to
intervene to relieve high overall burden. However, it does not directly prioritize the rate of
change. Interventions aimed to reduce risk in communities that are at very high risk but do not
already have a high burden may not be correctly identified using BPR.

Finally, other choices of covariates are possible. Our focus on a limited set of covariates, derived
from the SVI of the American Community Survey, was an intentional choice to ensure the
nationwide availability of these covariates. Certain jurisdictions may possess useful alternate
data sources, such as emergency medical service (EMS) calls, insurance claims data, and
measures for a mix of linked administrative datasets42, necessitating additional covariate
consideration for enhanced model performance.

Conclusion
In an effort to better predict future fatal opioid-related overdose spikes and inform future
harm-reducing interventions, we compared overdose forecasting options. Our study reinforces
the value of intervention-aware metrics like %BPR in evaluating models for opioid overdose
mortality forecasting. Our study also suggests that simple baselines like (weighted) historical
averages should be included in future analyses, as more sophisticated and expensive-to-train
models may not substantially outperform these baselines. As the opioid crisis continues to
evolve, we hope our findings and our open-source resources enable improved model
comparisons and better data-informed public health interventions that ultimately reduce the harm
caused by overdose events.
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Supplementary Material

Additional Model details
Model hyperparameters are selected using the year prior to the test years as a validation year: 2019 for
Massachusetts and 2020 for Cook County. When validating, models are trained through the year prior to
the validation year. For evaluation on the test years, models are retrained through the validation year.
Hyperparameters are selected by selecting the model with the highest BPR. In Massachusetts, we consider
using up to 10 years of historical data when training (2010-2019). In Cook County there are fewer years
of available historical data, and so training is limited to 2016-2020.

All-Zeroes
The All-Zeroes model is presented to highlight two things: the BPR of a naive policy, and the RMSE and
MAE of a naive model. This model is very simple: every prediction is always 0 fatal overdoses. However,
this presents a challenge for calculating BPR: what are the top K locations if every location is tied? In this
case, we take 10,000 samples, and randomly pick the K locations to serve as the numerator for BPR. We
then calculate the BPR for each of 10,000 samples, and report the average.

Last Year
For this model, the prediction is simply the previous year’s fatal overdose count. When predicting for the
second evaluation year (2021 in Massachusetts and 2022 in Cook County), the fatal overdose count from
the first evaluation year is used. This is subtly different from the behavior of the regression models, where
the models are trained using no data from the evaluation years.

Historical Average
In this model, the output is an un-weighted average of historical mortality. For both Massachusetts and
Cook County 4 years are selected. These are both selected via the validation year. When predicting for the
second evaluation year (2021 in Massachusetts and 2022 in Cook County), the fatal overdose count from
the first evaluation year is used. This is subtly different from the behavior of the regression models, where
the models are trained using no data from the evaluation years.

Weighted Historical Average
This model is a linear regression on historical fatal overdose count using only past years mortality as a
predictor. Scikit-learn’s43 ridge regression is used, which performs L2-regularized regression. The
regularization strength α is selected via hyperparameter search by trying 29 evenly spaced values on a log
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scale between 10-6 and 108. For Massachusetts, 10 years of historical data and an α of 104.5 is used. For
Cook County, 3 years of historical data are used and an α of 104.5 is selected.

Linear Poisson GLM
This uses Scikit-learn’s43 Generalized Linear Model with a Poisson Likelihood and a log link. The
hyperparameters explored are the number of prior years of mortality to include in the model and the L2
regularization strength α. Up to 10 years of previous mortality were considered for Massachusetts and 6
years for Cook County. The model is run with and without social vulnerability covariates.
Without social vulnerability covariates: In Massachusetts 10 years of prior mortality are used in the
model with an α of 1. In Cook County, 5 years of historical data are used with an α of 100.5.
With social vulnerability covariates: In Massachusetts 6 years of prior mortality are used in the model
with an α of 1. In Cook County, 5 years of historical data are used with an α of 10.

Gradient Boosted Trees
This uses Scikit-learn’s43 Histogram-basedGradient Boosted Trees model. We considered both
squared-error and Poisson loss functions. We tested using both 32 and 128 maximum iterations. For the
minimum samples per leaf we used 9 equally spaced values between 20 and 28 on a log-2 scale. The
maximum number of leaf nodes tested were 5 equally spaced values between 24 and 28 on a log-2 scale.
Up to 10 years of previous mortality were considered for Massachusetts and 6 years for Cook County.

Gaussian Process Models
Here we use Scikit-learn’s43 Gaussian Process (GP) implementation. Due to the high computational cost
of GP models, and following prior work20, we only consider up to 5 years of historical data for both
Massachusetts and Cook County, and we omit social vulnerability covariates. As in the prior work,we use
a kernel that additively combines a Radial-Basis Function (RBF) kernel with a white noise kernel. The
initial length scale of the RBF kernel is set to 0.5, and the noise level bounds on the white noise are set to
(10-5, 101). The outcomes are normalized to 0-mean and unit variance. Up to 9 restarts of the optimizer are
used.

CASTNet
While we attempted to follow the original implementation of CASTNet22 as closely as possible, there are
some significant modifications. The original CASTNet was concerned with predictions at a fine
temporal-resolution, weekly. However, our initial experiments found little benefit at this scale, and we
consider a much coarser scale: annual predictions. We lack the high-resolution crime data that the original
CASTNet project uses as dynamic covariates. Furthermore, while we do have demographic and economic
variables (the 5-dimensional Social Vulnerability index), these are not static at the annual scale but
dynamic, accordingly these are used as the only dynamic covariates. For static covariates, only the
latitude and longitude of the census tract are used. We use the hyperparameters selected by the original
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work: the LSTMs have a hidden unit size of 32 with a dropout value of 0.1, the group-level regularization
coefficient is 0.0025, and the optimizer used was Adam with a learning rate of 0.5. Given that we have 2
evaluation years, we train the model twice, once with a lag time of 1-year and again with a lag time of
2-years. The 1-year lag model is used to predict for the first evaluation year (2020 in MA and 2021 in
Cook County) and the 2-year lag model is used to predict for the second. This way no training data leaks
into the model.

Bayesian Spatiotemporal Models
In the original work23 on Bayesian Spatiotemporal models for opioid overdose forecasting, three separate
models are proposed. All three models use an Autoregressive-1 term to model temporal dependence, and
two of the models use spatial correlations. Because all three models are reported to behave similarly, we
use what is called “Model 1”, lacking spatial correlations. Furthermore, the authors state that any number
of temporal terms could be used, but do not specify which. Here, we choose a linear temporal term.This
model is implemented using R-INLA44. Linear coefficients are used when adding the social vulnerability
covariates.

Negative Binomial Regression with Spatially Lagged Covariates
The authors of this method28 helpfully provide code to run this model which we were able to use with
little modification. Census tract level population estimates are taken from the same survey data as the
social vulnerability covariates. The carrying capacity is initialized to 5% of the population in the first year
of training data (2010 for MA, 2015 for Cook County).
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