- 1 Title: First-in-human trial evaluating safety and pharmacokinetics of AT-752, a novel
- 2 nucleotide prodrug with pan-serotype activity against dengue virus
- 3
- 4 Authors:
- 5 Xiao-Jian Zhou,^{a,#} Jason Lickliter,^b Maureen Montrond,^a Laura Ishak,^a Keith Pietropaolo,^a
- 6 Dayle James, ^a Bruce Belanger, ^a Arantxa Horga, ^a Janet Hammond^a
- 7
- 8 Affiliations:
- ^aAtea Pharmaceuticals, Inc, Boston, Massachusetts, USA
- 10 ^bNucleus Network, Melbourne, Australia
- 11
- 12 Running Head: First-in-human, dose-escalation study of AT-752 [54 characters and spaces]
- 13
- [#]Address correspondence to Xiao-Jian Zhou, zhou.xj@ateapharma.com

15 ABSTRACT

16	AT-752 is a novel guanosine nucleotide prodrug inhibitor of the dengue virus (DENV)
17	polymerase with sub-micromolar, pan-serotype antiviral activity. This Phase 1, double-blind,
18	placebo-controlled, first-in-human study evaluated the safety, tolerability, and
19	pharmacokinetics of ascending single and multiple oral doses of AT-752 in healthy subjects.
20	AT-752 was well tolerated when administered as a single dose up to 1500 mg, or when
21	administered as multiple doses up to 750 mg three times daily (TID). No serious adverse
22	events occurred, and the majority of treatment-emergent adverse events were mild in
23	severity and resolved by the end of the study. In those receiving single ascending doses of
24	AT-752, no pharmacokinetic ethnic sensitivity was observed in Asian subjects and no food
25	effect was observed. Plasma exposure of the guanosine nucleoside metabolite AT-273, the
26	surrogate of the active triphosphate metabolite of the drug, increased with increasing dose
27	levels of AT-752 and exhibited a long half-life of approximately 15–25 h. Administration of
28	AT-752 750 mg TID led to a rapid increase in plasma levels of AT-273 exceeding the target in
29	vitro 90% effective concentration (EC ₉₀) of 0.64 μM in inhibiting DENV replication, and
30	maintained this level over the treatment period. The favorable safety and pharmacokinetic
31	results support evaluation of AT-752 as an antiviral for the treatment of dengue in future
32	clinical studies.

33 INTRODUCTION

34	Dengue is a mosquito-borne illness caused by four serotypes of dengue virus (DENV1–4) (1).
35	DENV belongs to the Flaviviridae family and is a single-stranded positive-sense RNA virus (1).
36	Dengue virus-associated diseases are major causes of illness and death in the tropical and
37	subtropical world, with an estimated 100–400 million people infected yearly
38	(https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue). The
39	incidence of dengue has increased 30-fold globally over the past 50 years, with several
40	recent outbreaks contributing to a sharp increase in the Americas of over 3 million new
41	infections recorded in 2023 (2, 3) (<u>https://www.paho.org/en/news/3-8-2023-dengue-cases-</u>
42	increase-globally-vector-control-community-engagement-key-prevent-spread). Despite its
43	high prevalence, there are no direct-acting antivirals for dengue, and treatment options are
44	primarily centered around supportive care (4-6). There are currently two licensed dengue
45	vaccines available in certain countries: CYD-TDV (chimeric yellow fever-dengue-tetravalent
46	dengue vaccine; Dengvaxia) is licensed in 20 countries and indicated for use in individuals
47	aged 9–45 years depending on country, whereas TAK-003 (Qdenga) is available for children
48	and adults in Europe, Indonesia, Thailand, and Brazil (7-9)
49	(https://www.takeda.com/newsroom/newsreleases/2023/Takeda-Dengue-Vaccine-
50	Recommended-by-World-Health-Organization-Advisory-Group-for-Introduction-in-High-
51	Dengue-Burden-and-Transmission-Areas-in-Children-Ages-Six-to-16-Years/). Critically,
52	however, both vaccines offer imbalanced protection across serotypes, and data indicate low
53	efficacy in younger children (7, 9, 10). Consequently, there are several vaccines and
54	antivirals in development, including repurposed drugs (5-7). To date, clinical trials of
55	repurposed drugs with antiviral activity such as balapiravir, chloroquine, lovastatin, and

56 celgosivir have not demonstrated significant efficacy in reducing viremia and/or improving

- 57 clinical outcomes (11-14). Thus, there remains an unmet need for an effective direct-acting
- antiviral for the treatment of dengue, especially considering that a higher viral burden has
- 59 been linked to severe dengue disease (6, 15).
- 60 AT-752 is an orally available novel guanosine nucleotide prodrug inhibitor of the DENV
- 61 polymerase with sub-micromolar, pan-serotype antiviral activity (16). AT-752 is the
- 62 hemisulfate salt of AT-281, a dual guanosine nucleotide prodrug which undergoes multistep
- 63 metabolic activation to the active 5¹ triphosphate metabolite AT-9010, which selectively
- 64 inhibits the viral RNA-dependent RNA polymerase (16, 17) (Figure 1). Dephosphorylation of
- 65 AT-9010 results in the formation of the guanosine nucleoside metabolite AT-273, which is
- regarded as a surrogate plasma marker for intracellular concentrations of AT-9010 (18).
- 67 Figure 1. Metabolic pathway of AT-752

68

5¹/₂-NTase, 5¹/₂-nucleotidase; ADALP, adenosine deaminase-like protein; CatA, cathepsin A; CES1, carboxylesterase 1; GUK1,
 guanylate kinase; HINT1, histidine triad nucleotide binding protein 1; NDPK, nucleoside-diphosphate kinase.

AT-752 is a potent inhibitor of DENV2 and DENV3, as well as other flaviviruses, in vitro, and

72 demonstrated *in vivo* activity against DENV2 in a mouse model of disease (16). Based on

initial pre-clinical toxicology studies of AT-752 in rats and monkeys, the no observed adverse

- effect level after 14 days of dosing was determined as 1000 mg/kg/day of AT-752 (expressed
- as AT-281 free base), providing at least 40-fold of margin of safety for the starting dose of
- 76 250 mg in humans (Data on file, Atea Pharmaceuticals, Inc).

77	This first-in-human Phase 1 study was designed to evaluate the safety, tolerability, and
78	pharmacokinetics (PK) of oral single ascending doses (SAD) and multiple ascending doses
79	(MAD) of AT-752 (free base AT-281 and metabolites AT-551, AT-229, and AT-273) in healthy
80	male and female subjects. Additionally, the effect of food on the PK of single oral doses of
81	AT-752, and PK ethnic sensitivity of AT-752 were assessed.
82	
83	RESULTS
84	Study enrollment and completion
85	A total of 65 subjects were enrolled into one of six SAD or three MAD cohorts (see Materials
86	and Methods). Among the SAD cohorts, 41 subjects were enrolled, and 40 subjects (97.6%)
87	completed the trial. One subject (2.4%) randomized to receive AT-752 discontinued due to
88	withdrawal of consent after receiving AT-752 500 mg (Cohort B), and was replaced. All 41
89	subjects were included in the safety population, and 31 subjects (75.6%) who received at
90	least one dose of AT-752 were included in the PK population. Among the MAD cohorts, 24
91	subjects were enrolled and all completed the trial. All 24 subjects were included in the
92	safety population, and 18 subjects (75.0%) who received at least one dose of AT-752 were
93	included in the PK population.
94	Patient demographics and baseline characteristics
95	Demographics and baseline characteristics in the SAD cohorts were generally similar across
96	cohorts and treatments (Table 1) . The proportion of male (51.2%) and female (48.8%)
97	subjects in the SAD cohorts were similar, whereas the majority were male (62.5%) in the

SAD cohorts								MAD cohorts						
	Cohort A AT-752 250 mg	Cohort B AT- 752 500 mg	Cohort C AT-752 1000 mg	Cohort D AT-752 1000 mg ethnic	Cohort E AT-752 1500 mg	Placebo	Total	Cohort F AT-752 1000 mg QD × 7 days	Cohort G AT-752 750 mg BID × 4.5 days	Cohort H AT-752 750 mg TID × 4.3 days	Placebo	Total		
Variable	n=6	n=7	n=6	n=6	n=6	n=10	N=41	n=6	n=6	n=6	n=6	N=24		
Mean age, years	28.2	31.1	28.5	28.3	30.8	25.9	28.6	26.5	38.5	39.2	37.2	35.3		
(range)	(19–44)	(16-64)	(25–35)	(21–43)	(21–59)	(20–39)	(19–64)	(20–33)	(20–58)	(21-62)	(18–60)	(18–62)		
Sex , n (%)														
Male	3 (50.0)	4 (57.1)	2 (33.3)	3 (50.0)	3 (50.0)	6 (60.0)	21 (51.2)	6 (100.0)	3 (50.0)	4 (66.7)	2 (33.3)	15 (62.5)		
Female	3 (50.0)	3 (42.9)	4 (66.7)	3 (50.0)	3 (50.0)	4 (40.0)	20 (48.8)	0	3 (50.0)	2 (33.3)	4 (66.7)	9 (37.5)		
Race, n (%)														
Asian	3 (50.0)	3 (42.9)	2 (33.3)	5 (83.3)	3 (50.0)	4 (40.0)	20 (48.8)	0	0	2 (33.3)	0	2 (8.3)		
White	3 (50.0)	4 (57.1)	4 (66.7)	0	3 (50.0)	5 (50.0)	19 (46.3)	5 (83.3)	6 (100.0)	4 (66.7)	6 (100.0)	21 (87.5)		
Other	0	0	0	1 (16.7)	0	1 (10.0)	2 (4.9)	1 (16.7)	0	0	0	1 (4.2)		
Mean height, cm	169.8	170.4	167.7	160.3	175.2	169.1	168.8	183.8	174.8	173.5	166.0	174.5		
(range)	(159–186)	(162–178)	(159–181)	(143–172)	(163–186)	(162–187)	(143–187)	(177–187)	(160–193)	(161–187)	(156–182)	(156–193)		
Mean weight, kg	69.9	64.2	67.0	58.6	76.6	67.5	67.3	77.5	80.2	73.2	68.0	74.7		
(range)	(51.9–79.9)	(51.9–70.9)	(51.9–77.8)	(54.1–65.5)	(59.4–94.0)	(54.6-85.3)	(51.9–94.0)	(67.8–92.0)	(66.3–95.9)	(52.8–100.5)	(60.6–89.0)	(52.8–100.5)		

98 Table 1. Baseline characteristics of study subjects

BID, twice daily; MAD, multiple ascending dose; QD, once daily; SAD, single ascending dose; TID, three times daily.

100 MAD cohorts. Overall, subjects were predominately white except for the SAD ethnic cohort

101 where all participants were Asian.

102 Safety and tolerability of AT-752

- 103 Overall, AT-752 was well tolerated in both the SAD and MAD cohorts, with no serious
- adverse events (SAEs) or discontinuations due to adverse events (AEs). Non-serious
- 105 treatment-emergent adverse events (TEAEs) were mild or moderate in severity and resolved
- 106 by the end of the study. The most frequently reported TEAEs are summarized in **Table 2**.
- 107 Sporadic cases of gastrointestinal-related events, including mild-to-moderate vomiting,
- 108 occurred mostly at higher doses. No treatment-related or dose-related trends in clinical
- 109 laboratory values, vital sign measurements, or 12-lead electrocardiogram (ECG) parameters
- 110 were observed.
- 111 **PK evaluation**

112 (i) SAD cohorts

113 Following single oral administration of AT-752 under fasting conditions, plasma

114 concentrations of the parent prodrug AT-281 increased rapidly and were transient. AT-281

115 was rapidly eliminated with a short plasma half-life $(t_{1/2})$ of approximately 0.5 h regardless

- of dose, resulting in mostly unquantifiable levels 4–6 h post dose. The intermediate L-alanyl
- 117 metabolite AT-551 also exhibited a transient exposure with a mean $t_{1/2}$ of approximately 2–

118 3 h across dose groups. The N⁶-methyl nucleoside metabolite, AT-229, subsequently peaked

- and exhibited a slower elimination phase (Figure 2). Plasma concentrations of AT-273
- 120 (surrogate for the intracellular active triphosphate AT-9010) appeared more gradually than
- 121 AT-281 and other metabolites, and exhibited a long $t_{1/2}$ of approximately 15–25 h across
- doses, reflecting sustained intracellular exposure of the active metabolite AT-9010.

	SAD cohorts									MAD cohorts					
TEAE	Cohort A AT-752 250 mg n=6	Cohort B AT-752 500 mg n=7	Cohort B AT-752 500 mg fed* n=7	Cohort C AT-752 1000 mg n=6	Cohort D AT-752 1000 mg ethnic n=6	Cohort E AT-752 1500 mg n=6	Poole d place bo n=10	Total N=41	Cohort F AT-752 1000 mg QD × 7 days n=6	Cohort G AT-752 750 mg BID × 4.5 days n=6	Cohort H AT-752 750 mg TID × 4.3 days n=6	Pooled placebo n=6	Total N=24	Overall N=65	
Headach <i>e,</i> n (%)	0	2 (28.6)	4 (57.1)	1 (16.7)	0	2 (33.3)	1 (10.0)	8 (19.5)	0	1 (16.7)	0	1 (16.7)	2 (8.3)	10 (15.4)	
Nausea, n (%)	0	0	1 (14.3)	1 (16.7)	0	1 (16.7)	0	3 (7.3)	0	1 (16.7)	0	1 (16.7)	2 (8.3)	5 (7.7)	
Vomiting, n (%)	0	0	0	1 (16.7)	0	2 (33.3)	0	3 (7.3)	0	1 (16.7)	0	0	1 (4.2)	4 (6.2)	

124 Table 2. Summary of most frequent TEAEs reported by >2 subjects

125 *Food effect cohort.

126 BID, twice daily; QD, once daily; TEAE, treatment-emergent adverse event; TID, three times daily.

127

128 Figure 2. Mean plasma concentration-time profiles of AT-281 and its metabolites AT-551,

129 AT-229, and AT-273 following oral administration of single ascending doses of AT-752

132 Table 3. Summary of plasma PK parameters of AT-281 and metabolites AT-551, AT-229,

Cohort	C _{max}	T _{max}	AUC	t _{1/2}	CL _R
	(ng/mL)	(h)	(ng/mL*h)	(h)	(L/h)
AT-281					
250 mg (Cohort A)	482±131	0.5 (0.5–0.8)	347±64.0	0.5±0.1	7.5±1.5
500 mg (Cohort B)	1230±1110	0.5 (0.5–6.0)	1110±687	0.5±0.1	10.9±5.4
500 mg fed (Cohort B)	488±303	2.0 (0.5–3.0)	980±716	0.7±0.3	6.6±1.6
Food effect*	52.2 (22.1–123.6)		80.2 (38.7–166.2)		
1000 mg (Cohort C)	3040±960	0.5 (0.5–0.6)	1910±508	0.5±0.1	11.4±1.7
1000 mg ethnic (Cohort D)	3670±1260	0.5 (0.5–0.5)	2730±944	0.5±0.1	9.7±4.2
1500 mg (Cohort E)	5050±2080	0.5 (0.5–0.8)	4630±1500	0.6±0.2	8.3±2.2
AT-551					
250 mg (Cohort A)	89.2±35.6	1.0 (0.8–2.0)	302±70.5	2.1±0.3	2.0±0.3
500 mg (Cohort B)	231±155	1.0 (0.8-8.0)	898±437	2.4±0.5	2.1±0.6
500 mg fed (Cohort B)	154±83.6	3.1 (3.0-4.0)	737±289	2.3±0.4	2.1±0.4
Food effect*	70.5 (42.8–116.0)		78.3 (61.8 - 99.2)		
1000 mg (Cohort C)	695±468	0.8 (0.5–2.0)	2330±1060	2.2±0.4	2.1±0.6
1000 mg ethnic (Cohort D)	895±418	0.9 (0.5–2.0)	3320±1630	2.0±0.3	2.1±0.6
1500 mg (Cohort E)	1080±217	1.5 (0.8–2.0)	4100±494	3.2±1.2	1.9±0.4
AT-229					
250 mg (Cohort A)	446±121	2.1 (2.0–3.0)	2890±680	16.9±8.6	13.7±1.6
500 mg (Cohort B)	765±307	1.0 (0.8–4.0)	5480±1630	15.1±6.2	13.6±5.4
500 mg fed (Cohort B)	488±324	4.0 (3.0-6.1)	4310±1400	11.2±4.9	12.5±2.8
Food effect*	64.9 (43.8–96.2)		78.4 (68.4–89.9)		
1000 mg (Cohort C)	1640±474	0.9 (0.8–3.0)	10300±3070	12.4±10.7	14.2±3.8
1000 mg ethnic (Cohort D)	2010±489	1.5 (0.8–2.0)	14000±4210	14.7±10.1	13.4±2.5
1500 mg (Cohort E)	2030±600	2.0 (1.0-2.0)	16700±3780	12.5±3.8	15.0±2.4
AT-273					
250 mg (Cohort A)	90.8±18.9	6.0 (3.0–6.0)	1440±280	19.1±10.2	15.8±2.8
500 mg (Cohort B)	135±24.9	4.0 (3.0-8.0)	2390±478	13.9±5.9	16.8±7.6
500 mg fed (Cohort B)	175±28.8	6.0 (6.0-8.1)	2990±558	17.3±11.0	13.4±3.3
Food effect*	132.0 (109.8–158.6)		125.6 (111.2–141.8)		
1000 mg (Cohort C)	241±71.1	4.1 (4.0-6.3)	4350±1520	26.2±12.2	17.1±6.5
1000 mg ethnic (Cohort D)	240±46.2	5.0 (3.1-6.0)	3830±519	16.3±3.0	18.7±2.1
1500 mg (Cohort E)	283±31.6	6.0 (3.2-6.1)	5460±1190	21.7±6.2	19.5±4.1

and AT-273 following oral administration of single ascending doses of AT-752

134 *Food effect is represented as geometric mean ratio (90% CI).

135 C_{max} , AUC_{inf}, and $t_{1/2}$ are represented as mean ± SD. T_{max} is represented as median (minimum–maximum). CL_R is

136 represented as mean ± SD.

137 AUC_{inf}, area under the curve extrapolated to infinity; Cl, confidence interval; CL_R, renal clearance; C_{max}, maximum plasma

138 concentration; SD, standard deviation; $t_{1/2}$, half-life; T_{max} , time to reach maximum concentration.

139

140 Plasma PK parameters for the SAD cohorts are summarized in **Table 3**. Following single oral

administration of AT-752 at 250–1500 mg, peak concentration (C_{max}) and extent of exposure

142 (AUC) were slightly higher numerically (with, however, largely overlapping ranges) for the

143 ethnic cohort compared with the non-ethnic cohort at the same dose level (AT-752 1000

144	mg) for AT-281, AT-551, and AT-229. For AT-273, the guanosine circulating metabolite
145	representing the intracellular active triphosphate metabolite AT-9010, C_{\max} , and AUC were
146	similar for the ethnic cohort and the non-ethnic cohort at the same dose level. Time to peak
147	concentration (T_{max}) was also similar for the ethnic cohort and the non-ethnic cohort for all
148	metabolites. The comparable PK profiles observed between the Asian and mostly Caucasian
149	subject cohorts suggests an absence of PK ethnic sensitivity. Plasma exposure of AT-281 and
150	its metabolites increased over the studied dose range of 250–1500 mg: AT-229 increased in
151	a dose-proportional manner, and AT-281 and AT-551 increased in a greater than dose-
152	proportional manner, whereas AT-273 was slightly less than dose-proportional (see Figure
153	S1 in the Supplementary Materials). A high-fat/high-calorie meal delayed and decreased
154	peak levels of AT-281, AT-551, and AT-229 but had limited-to-no impact on their total
155	exposure, and slightly increased the plasma exposure of AT-273 in comparison to fasted
156	conditions. This demonstrates that AT-752 can therefore be taken with or without food.
157	The extent of urine elimination was low for AT-281 (up to 2.4%) and AT-551 (up to 0.7%),
158	and moderate for AT-229 (10.7–17.9%) and AT-273 (6.7–8.8%). Total urine recovery ranged
159	from approximately 20–30% of administered doses across cohorts, and renal clearance (CL_R)
160	of AT-229 and AT-273 exceeded estimated glomerular filtration rate (eGFR).
161	(ii) MAD cohorts

162 Following repeat dosing of AT-752 1000 mg once daily (QD), 750 mg twice daily (BID), and

163 750 mg three times daily (TID), plasma AT-281 (the unchanged protide) did not meaningfully

accumulate due to its rapid elimination (Figure 3). Plasma exposure of AT-273 increased by

approximately 25, 60, and 80% with QD, BID, and TID, respectively, due to its long plasma

166 half-life, reflecting rapid accumulation and sustained intracellular exposure of the active

167 metabolite AT-9010. Steady-state plasma PK parameters are summarized in **Table 4**. Based

- 168 on the trough AT-273 concentrations, steady state was essentially achieved by Day 3 in all
- 169 MAD cohorts (Figure 4).
- 170 Figure 3. Mean (+ SD) plasma concentration-time profiles of AT-281 and metabolites AT-
- 171 551, AT-229, and AT-273 following oral administration of multiple ascending doses of AT-
- 172 **752**

174 Dashed line: first dose on Day 1; solid line: last dose at steady state.

176 Table 4. Summary of steady-state plasma PK parameters of AT-281 and metabolites AT-

177 551, AT-229, and AT-273 following oral administration of multiple ascending doses of AT-

178 **752**

Cohort	C _{max} (ng/mL)	T _{max} (h)	AUC _{tau} (ng/mL*h)
AT-281			
1000 mg QD (Cohort F)	3810±1670	0.5 (0.5–0.5)	3090±1530
750 mg BID (Cohort G)	3490±1280	0.5 (0.5–0.8)	2690±640
750 mg TID (Cohort H)	3010±754	0.5 (0.5–1.0)	2540±572
AT-551			
1000 mg QD (Cohort F)	392±143	1.0 (0.8–2.0)	1650±498
750 mg BID (Cohort G)	365±159	1.0 (0.8–2.0)	1330±503
750 mg TID (Cohort H)	245±30.2	1.5 (0.8–2.0)	944±173
AT-229			
1000 mg QD (Cohort F)	1200±284	0.9 (0.8–2.0)	8290±2290
750 mg BID (Cohort G)	1470±404	1.5 (0.8–2.2)	7960±2970
750 mg TID (Cohort H)	1600±640	1.5 (1.0-2.0)	8880±3330
AT-273			
1000 mg QD (Cohort F)	241±56.3	4.0 (3.0-4.0)	3120±694
750 mg BID (Cohort G)	288±58.4	3.5 (3.0–4.0)	2680±730
750 mg TID (Cohort H)	330±97.7	3.5 (3.0–6.0)	2370±743

179 C_{max} and AUC_{tau} represented as mean ± SD. T_{max} is represented as median (minimum–maximum).

180 AUC_{tau}, area under plasma concentration-time curve over the dosing interval; BID, twice daily; C_{max}, peak concentration;

181 PK, pharmacokinetic; QD, once daily; TID, three times daily; T_{max}, time to peak concentration.

182

183 As depicted in Figure 4, among the MAD cohorts, only AT-752 750 mg TID led to a rapid

increase in plasma AT-273 levels, with mean trough levels within the first day exceeding the

185 90% effective concentration (EC₉₀) of the drug in inhibiting DENV replication *in vitro* (0.64

 μ M or 200 ng/mL of equivalent AT-273), and maintained these levels over the treatment

187 period.

189 Figure 4. Mean (+ SD) plasma trough concentration-time profiles of AT-273 with following

190 oral administration of multiple ascending doses of AT-752

191

BID, twice daily; EC₉₀, 90% effective concentration; QD, once daily; SD, standard deviation; TID, three times daily.

193

194 **DISCUSSION**

AT-752, when metabolized to the active triphosphate AT-9010, has been demonstrated to target the NS5 RNA-dependent RNA polymerase (RdRp) of DENV1–4 (17). NS5, the largest

and most conserved nonstructural protein encoded by flaviviruses, is a promising target for

antivirals, particularly nucleoside/nucleotide analogs in the treatment of dengue (5).

- 199 This first-in-human Phase 1 study of AT-752 evaluated the safety, tolerability, and PK of
- ascending single and multiple doses in healthy subjects. AT-752 demonstrated a favorable
- safety profile and was well tolerated in healthy subjects when administered as a single oral
- dose up to 1500 mg, or when administered as multiple oral doses up to 750 mg TID. No SAEs

203	were observed, and no subjects experienced AEs that lead to study drug discontinuation.
204	Most TEAEs were mild in severity, and all TEAEs resolved by the end of the study. There
205	were no clinically significant physical examination findings, vital signs, or ECGs observed.
206	In the SAD cohorts, plasma exposure of AT-281 and its metabolites was approximately dose-
207	proportional over the studied dose range of 250–1500 mg AT-752. Fed conditions led to a
208	48% reduction in C_{max} compared with fasted conditions, whereas AUC values were similar.
209	The extent of urinary elimination of AT-281 and its metabolites was low-to-moderate. Renal
210	clearance of the nucleoside metabolites AT-229 and AT-273 exceeded eGFR, suggesting
211	involvement of active secretion in their renal elimination. Furthermore, the similar PK
212	profiles observed between the ethnic and non-ethnic cohorts suggests an absence of PK
213	ethnic sensitivity in Asian participants; therefore, dose adjustment of AT-752 in this
214	population does not appear necessary. In the MAD cohorts, C_{max} of AT-281 were attained
215	approximately 0.5 h post dose (median estimates) for all dose levels. Plasma exposure of
216	AT-273 increased with increasing dose levels due to its long plasma half-life, reflecting rapid
217	accumulation and sustained intracellular exposure of the active metabolite AT-9010. AT-752
218	750 mg TID led to a rapid increase in plasma AT-273 levels, exceeding the target EC_{90} of 0.64
219	μ M, and maintained this level over the treatment period.
220	In summary, the results of this study demonstrate that AT-752 was well tolerated when
221	administered as a single dose up to 1500 mg, or when administered as multiple doses up to
222	750 mg TID. In the SAD cohorts, AT-752 exhibited no PK ethnic sensitivity in
223	South/Southeast/East Asian participants and no food effect was observed, demonstrating
224	that ethnic dose adjustment is not necessary and that AT-752 can be taken with or without
225	food. In the MAD cohorts, AT-752 TID exceeded the target antiviral level for inhibition of
226	DENV replication. The favorable safety and PK results reported here demonstrate AT-752 as

- an attractive antiviral for the treatment of dengue, and support dose selection of AT-752 in
- future clinical studies.
- 229

230 MATERIALS AND METHODS

- 231 The study protocol was approved by the Human Research Ethics Committee before the trial
- began, and written informed consent was obtained from each subject before entering the
- study. This study was conducted according to the principles of the International Council for
- Harmonisation harmonised tripartite guideline E6(R2): Good Clinical Practice, and the
- 235 ethical principles from the Declaration of Helsinki.

236 Study design

- 237 This was a Phase 1, first-in-human, randomized, double-blind, placebo-controlled study
- 238 consisting of two sequential parts: SAD and MAD. The SAD cohorts included a food-effect
- cohort and both SAD and MAD cohorts evaluated the safety, tolerability, and PK of AT-752
- 240 (ClinicalTrials.gov registration no. NCT04722627). All subjects were screened up to 28 days

prior to the first study drug administration on Day 1, which included clinical history, physical

examination, 12-lead ECG, vital signs, and laboratory tests of blood and urine.

243 (i) SAD cohorts

244 Subjects in the SAD cohorts were assigned to one of five sequential dose cohorts (eight

- subjects per cohort) on Day 1 prior to the first dose. Subjects were randomized 3:1 within
- each cohort to receive AT-752 or a matching placebo (**Table 5**). Sentinel dosing was
- employed for two subjects in each SAD cohort in a ratio of 1:1 (one active, one placebo),
- and were dosed at least 48 h before the remainder of the cohort was dosed. All treatments
- 249 were administered orally under fasting conditions, except for the food effect cohort. As part
- 250 of the food effect evaluation, subjects in Cohort B (n=7) remained confined to the clinic for

- an additional study drug administration on Day 7 under fed conditions. Subjects fasted
- overnight for at least 8 h and received a high-fat and high-calorie breakfast approximately
- 253 30 minutes (± 5 minutes) before study drug administration. Subjects consumed the meal
- within 30 minutes or less and consumed at least 75% of the meal. The high-fat
- 255 (approximately 50% of total calorific content of the meal) and high-calorie (approximately
- 256 800–1000 calories) breakfast, followed Food and Drug Administration (FDA) guidance
- recommendations and provided approximately 150, 250, and 500–600 calories from
- 258 protein, carbohydrate, and fat, respectively.

259 Table 5. SAD cohorts

260

	Cohort	Dose (mg)	Administration
261	А	250	Day 1 (fasting)
201	B (+ food effect)	500	Day 1 (fasting); Day 7 (fed)
262	С	1000	Day 1 (fasting)
202	D (Ethnic)	1000	Day 1 (fasting)
262	E	1500	Day 1 (fasting)
263			

264 (ii) MAD cohorts

265	Subjects in the MAD cohorts were assigned to a repeat-dose cohort on Day 1 prior to the
266	first dose. Subjects were randomized 3:1 to receive AT-752 or a matching placebo (Table 6).
267	Sentinel dosing was employed for two subjects in each MAD cohort in a ratio of 1:1 (one
268	active, one placebo), and were dosed at least 48 h before the remainder of the cohort was
269	dosed. All treatments were administered orally under fasting conditions. Dose escalation to
270	Cohort G occurred based on review of available safety data (through Day 12) and PK data
271	(through Day 8) of Cohort F. Similarly, dose escalation to Cohort H occurred based on review
272	of available safety data (through Day 10) and PK data (through Day 6) of Cohort G.

274 Table 6. MAD cohorts

275	Cohort	Dose (mg)	Administration
	F	1000	QD × 7 days
276	G	750	BID × 4 days plus one dose on Day 5
2,0	Н	750	TID × 4 days plus one dose on Day 5

277 BID, twice daily; QD, once daily; TID, three times daily.

278 Study subjects

279	Healthy subjects between the ages of 18 and 65 years who met the inclusion and exclusion
280	criteria were considered eligible for this study. All subjects were required to weigh at least
281	50 kg and have a body mass index of between 18 and 29 kg/m ² , inclusive. Subjects in Cohort
282	D (ethnic cohort) must have been of first to third generation South/Southeast/East Asian
283	descent. Exclusion criteria included clinically relevant abnormal medical history, physical
284	findings, ECG, or laboratory values at the pre-trial screening assessment; positive test for
285	hepatitis B surface antigen, hepatitis C virus antibody, human immunodeficiency virus types
286	1 or 2 antibodies, or SARS-CoV-2 at screening; or receipt of a vaccine against COVID-19 in
287	the 14 days before the first dose. Subjects could not have used a prescription medicine,
288	over-the-counter medicine, or herbal or dietary supplements during the 7 days before the
289	first dose.
290	Pharmacokinetic assessments
291	Blood samples for plasma PK analyses were collected pre dose and 0.5, 0.75, 1, 2, 3, 4, 6, 8,
292	12, 16, 24, 36, 48, 72, 96, and 120 h post dose for the SAD cohorts. For the food effect
293	cohort, blood samples were also taken on Day 7 (fed state) at \leq 5 minutes prior to dosing
294	and 0.5, 0.75, 1, 2, 3, 4, 6, 8, 12, 16, 24, 36, 48, 72, 96, and 120 h post dose. For Cohort F,
295	blood samples were collected prior to dosing and 0.5, 0.75, 1, 2, 3, 4, 6, 8, 12, and 16 h post
296	dose on Day 1; ≤5 minutes prior to dosing and 4 h post dose on Days 2–6; ≤5 minutes prior

to dosing and 0.5, 0.75, 1, 2, 3, 4, 6, 8, 12, 16, 24, 36, 48, 72, 96, and 120 h post dose on Day

298	7. For Cohort G, blood samples were collected prior to dosing and 0.5, 0.75, 1, 2, 3, 4, 6, and
299	8 h post dose on Day 1 (AM); \leq 5 minutes prior to dosing on Day 1 (PM); \leq 5 minutes prior to
300	AM and PM dosing on Days 2–4; \leq 5 minutes prior to AM dosing and 0.5, 0.75, 1, 2, 3, 4, 6, 8,
301	12, 16, 24, 36, 48, 72, 96, and 120 h post dose on Day 5. For Cohort H, blood samples were
302	collected prior to dosing and 0.5, 0.75, 1, 2, 3, 4, and 6 h post dose on Day 1 (AM); \leq 5
303	minutes prior to PM dosing on Day 1; \leq 5 minutes prior to AM and PM dosing on Days 2 and
304	3; ≤5 minutes prior to AM dosing (Day 4); ≤5 minutes prior to PM dosing and 0.5, 0.75, 1, 2,
305	3, 4, and 6 h post dose on Day 4 (PM); ≤5 minutes prior to AM dosing and 0.5, 0.75, 1, 2, 3,
306	4, 6, 8, 12, 16, 24, 48, 72, 96, and 120 h post dose on Day 5. Urine samples for PK analysis
307	were collected prior to dosing and $0-4$, $4-8$, $8-12$,
308	12–24, 24–48, 48–72, 72–96, and 96–120 h post dose on Day 1 for the SAD cohorts, as well
309	as on Day 7 (fed state) for the food effect cohort. For Cohort F, urine samples were collected
310	prior to dosing on Day 1, and a pooled sample taken over 0–24 h post dose on Day 7. The
311	collected plasma and urine samples underwent quantitation for AT-281 and its metabolites
312	AT-551, AT-229, and AT-273 using validated liquid chromatography/tandem mass
313	spectrometry (LC-MS/MS) methodologies. Plasma assay ranges were 5–5000 ng/mL for AT-
314	281 and AT-551, and 2-2000 ng/mL for AT-229 and AT-273; urine assay ranges were 5-5000
315	ng/mL for AT-281 and AT-551, and 10–10000 ng/mL for AT-229 and AT-273.
316	Statistical analysis
317	Plasma concentration-time data were analyzed by non-compartmental approach
318	using Phoenix® WinNonlin® Version 8.3 (Certara USA Inc., Princeton, New Jersey) or SAS®
319	Version 9.4 (SAS Institute Inc., Cary, North Carolina), as appropriate. For the SAD cohorts,

- dose proportionality was assessed on Day 1 for AT-281, AT-551, AT-229, and AT-273 in the
- 321 plasma using the power regression model for the AUCs and C_{max} PK parameters (19).

322	To assess the im	pact of a high-fa	at meal on exp	posure to AT-	-281, AT-551,	AT-229, and AT-273,
					, , ,	, , ,

- 323 the log transformed values of AUC_{inf} and C_{max} were analyzed in Cohort B for AT-281, AT-551,
- AT-229, and AT-273 using a linear mixed effect model with fed/fasted status as a fixed effect
- 325 and subject as a random effect.
- 326 Ethnic sensitivity analysis for analyte AT-752 PK was performed by visual inspection of mean
- 327 concentration vs time profiles and assessment of PK parameters in summary tables.
- 328 Laboratory and safety assessment
- 329 Safety assessments included monitoring of AEs, clinical laboratory tests (hematology, serum
- 330 chemistry, urinalysis, coagulation tests, and cardiac biomarkers), vital sign measurements,
- 331 12-lead ECGs, and physical examination. All AEs were coded using Medical Dictionary for

332 Regulatory Activities (MedDRA) Version 24.1.

333

334 ACKNOWLEDGEMENTS

335 This study was funded by Atea Pharmaceuticals, Inc. Medical writing support was provided

by Samantha Brick, Elements Communications Ltd, UK, and funded by Atea Pharmaceuticals,

337 Inc.

338 Xiao-Jian Zhou, Maureen Montrond, Laura Ishak, Keith Pietropaolo, Dayle James, Bruce

- Belanger, Arantxa Horga, Janet Hammond are employees of and may own stock in Atea
- 340 Pharmaceuticals, Inc, Boston, MA, USA; Jason Lickliter is an employee of Nucleus Network,
- 341 Melbourne, Australia, which was contracted by Atea Pharmaceuticals, Inc to help perform
- 342 this research.

343 **REFERENCES**

- 1. Murugesan A, Manoharan M. Dengue Virus. Emerging and Reemerging Viral Pathogens.
- 345 2020:281-359. doi: 10.1016/B978-0-12-819400-3.00016-8. Epub 2019 Sep 20.
- 2. Ebi KL, Nealon J. 2016. Dengue in a changing climate. Environmental Research 151:115-
- 347 123.
- 348 3. Harapan H, Michie A, Sasmono RT, Imrie A. 2020. Dengue: A Minireview. Viruses 12.
- Chan CY, Ooi EE. 2015. Dengue: an update on treatment options. Future Microbiology
 10:2017-2031.
- 351 5. Obi JO, Gutiérrez-Barbosa H, Chua JV, Deredge DJ. 2021. Current Trends and Limitations
- in Dengue Antiviral Research. Trop Med Infect Dis 6.
- 6. Palanichamy Kala M, St John AL, Rathore APS. 2023. Dengue: Update on Clinically
- Relevant Therapeutic Strategies and Vaccines. Curr Treat Options Infect Dis 15:27-52.
- 355 7. Pintado Silva J, Fernandez-Sesma A. 2023. Challenges on the development of a dengue
- vaccine: a comprehensive review of the state of the art. Journal of General Virology 104.
- 8. Thomas SJ, Yoon IK. 2019. A review of Dengvaxia®: development to deployment. Hum
- 358 Vaccin Immunother 15:2295-2314.
- 359 9. Angelin M, Sjölin J, Kahn F, Ljunghill Hedberg A, Rosdahl A, Skorup P, Werner S,
- 360 Woxenius S, Askling HH. 2023. Qdenga[®] A promising dengue fever vaccine; can it be
- 361 recommended to non-immune travelers? Travel Medicine and Infectious Disease
- 362 54:102598.
- 10. Shukla R, Ramasamy V, Shanmugam RK, Ahuja R, Khanna N. 2020. Antibody-Dependent
- 364 Enhancement: A Challenge for Developing a Safe Dengue Vaccine. Front Cell Infect
- 365 Microbiol 10:572681.

366	11. Nguyen NM, Tran CN, Phung LK, Duong KT, Huynh Hle A, Farrar J, Nguyen QT, Tran HT,	
367	Nguyen CV, Merson L, Hoang LT, Hibberd ML, Aw PP, Wilm A, Nagarajan N, Nguyen DT	,
368	Pham MP, Nguyen TT, Javanbakht H, Klumpp K, Hammond J, Petric R, Wolbers M,	
369	Nguyen CT, Simmons CP. 2013. A randomized, double-blind placebo controlled trial of	
370	balapiravir, a polymerase inhibitor, in adult dengue patients. J Infect Dis 207:1442-50.	
371	12. Tricou V, Minh NN, Van TP, Lee SJ, Farrar J, Wills B, Tran HT, Simmons CP. 2010. A	
372	randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese	
373	adults. PLoS Negl Trop Dis 4:e785.	
374	13. Whitehorn J, Nguyen CVV, Khanh LP, Kien DTH, Quyen NTH, Tran NTT, Hang NT, Truon	g
375	NT, Hue Tai LT, Cam Huong NT, Nhon VT, Van Tram T, Farrar J, Wolbers M, Simmons CF	р,
376	Wills B. 2016. Lovastatin for the Treatment of Adult Patients With Dengue: A	
377	Randomized, Double-Blind, Placebo-Controlled Trial. Clin Infect Dis 62:468-476.	
378	14. Low JG, Sung C, Wijaya L, Wei Y, Rathore APS, Watanabe S, Tan BH, Toh L, Chua LT, Ho	u
379	Y, Chow A, Howe S, Chan WK, Tan KH, Chung JS, Cherng BP, Lye DC, Tambayah PA, Ng	
380	LC, Connolly J, Hibberd ML, Leo YS, Cheung YB, Ooi EE, Vasudevan SG. 2014. Efficacy ar	nd
381	safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised,	
382	double-blind, placebo-controlled, proof-of-concept trial. Lancet Infect Dis 14:706-715.	
383	15. Pozo-Aguilar JO, Monroy-Martínez V, Díaz D, Barrios-Palacios J, Ramos C, Ulloa-García	A,
384	García-Pillado J, Ruiz-Ordaz BH. 2014. Evaluation of host and viral factors associated	
385	with severe dengue based on the 2009 WHO classification. Parasites & Vectors 7:590.	
386	16. Good SS, Shannon A, Lin K, Moussa A, Julander JG, La Colla P, Collu G, Canard B,	
387	Sommadossi JP. 2021. Evaluation of AT-752, a Double Prodrug of a Guanosine	
388	Nucleotide Analog with In Vitro and In Vivo Activity against Dengue and Other	
389	Flaviviruses. Antimicrob Agents Chemother 65:e0098821.	

- 390 17. Feracci M, Eydoux C, Fattorini V, Lo Bello L, Gauffre P, Selisko B, Sutto-Ortiz P, Shannon
- 391 A, Xia H, Shi PY, Noel M, Debart F, Vasseur JJ, Good S, Lin K, Moussa A, Sommadossi JP,
- 392 Chazot A, Alvarez K, Guillemot JC, Decroly E, Ferron F, Canard B. 2023. AT-752 targets
- 393 multiple sites and activities on the Dengue virus replication enzyme NS5. Antiviral Res
- 394 212:105574.
- 18. Good SS, Westover J, Jung KH, Zhou XJ, Moussa A, La Colla P, Collu G, Canard B,
- 396 Sommadossi JP. 2021. AT-527, a Double Prodrug of a Guanosine Nucleotide Analog, Is a
- 397 Potent Inhibitor of SARS-CoV-2 In Vitro and a Promising Oral Antiviral for Treatment of
- 398 COVID-19. Antimicrob Agents Chemother 65.
- 19. Smith BP, Vandenhende FR, DeSante KA, Farid NA, Welch PA, Callaghan JT, Forgue ST.
- 400 2000. Confidence interval criteria for assessment of dose proportionality. Pharm Res
- 401 17:1278-83.

a 1000 mg QD × 7 days (Cohort F) medRxiv preprint doi: https://doi.org/10.1101/2024.01.03.24300771; this version posted January 4, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/winder, who has grantee the display the preprint in perpetuity. All rights reserved of the displayed with the revision.