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27 Abstract 
28 The growing exposure to occupational chemicals and HIV infection are both major global 
29 health issues. However, there is little data on the carcinogenic risk profile of HIV-infected 
30 individuals who have been occupationally exposed to chemical mixtures. This study therefore 
31 investigated the levels of cancer risk biomarkers in HIV-infected individuals exposed to 
32 occupational chemicals, exploring the relationship between apoptotic regulatory markers and 
33 DNA oxidative response markers as a measure of cancer risk. 
34 Apparently healthy adults (mean age 38.35±0.72years) were divided into four groups according 
35 to their HIV status and occupational chemical exposure: 62 HIV positive exposed (HPE), 66 
36 HIV positive unexposed (HPU), 60 HIV negative exposed (HNE), and 60 HIV negative 
37 unexposed (HNU). Serum p53, bcl2, 8-hydroxydeoxyguanosine (8-OHdG), superoxide 
38 dismutase (SOD), and malondialdehyde (MDA) were estimated by standard methods. Blood 
39 samples were analysed for CD4 cell count by flow cytometry. 
40 Serum p53 and bcl2 levels in HPE (0.91±0.11ng/ml and 122.37±15.77ng/ml) were 
41 significantly lower than HNU (1.49±0.15ng/ml and 225.52±33.67ng/ml) (p < 0.05), 
42 respectively. Wildtype p53 and bcl2 were positively and significantly correlated with 8-OHdG 
43 (r=0.35, p<0.001; r=0.36, p<0.001) and SOD (r=0.38, p<0.001; r=0.39, p<0.001). After 
44 controlling for gender, age, BMI, and cigarette smoking, both HIV status and SOD activity 
45 were significantly associated with wildtype p53 and bcl2 (p < 0.05). Malondialdehyde was 
46 significantly higher in the HPE (0.72 ± 0.01 mg/ml) than in the HNE (0.68 ± 0.01 mg/ml) and 
47 HNU (0.67 ± 0.01 mg/ml) groups (p < 0.05). Additionally, the HPE group (578.87±33.64 
48 cells/µL) exhibited significantly lower CD4 counts than the HNE (785.35±36.8 cells/µL) and 
49 HNU (862.15±43.29 cells/µL) groups. Individuals infected with HIV and occupationally 
50 exposed to chemical substances exhibit compromised immunity, elevated oxidative stress, and 
51 depressed p53 (loss of tumour suppressive capacity) and bcl2; a convergence promoting the 
52 carcinogenic pathway and elevated cancer risk. These findings provide a mechanistic basis of 
53 cancer risk and scientific justification for preventive strategies against carcinogenesis in 
54 individuals who are HIV-infected.
55  
56 Keywords: Cancer risk, HIV, Occupational exposure, Oxidative stress, p53

57

58 Introduction
59 Epidemiological studies have demonstrated that patients with compromised immune systems, 
60 such as those seen with HIV infections, have a higher cancer incidence rate [1–3]. In addition, 
61 patients with AIDS-defining cancers had a poor prognosis prior to the introduction of Highly 
62 Active Antiretroviral Therapy (HAART), with a median survival of 5 to 6 months [4]. The 
63 increased availability of HAART has largely contributed to the reduction in the risk of AIDS-
64 defining cancers, allowing HIV-infected individuals to live longer [5]. This has resulted to 
65 reduced incidence of malignancies linked to AIDS and weakened immunity, such as Kaposi 
66 sarcoma and non-Hodgkin's lymphoma [6]. However, the occurrence of non-AIDS defining 
67 malignancies is increasing among people infected with HIV [7].

68 Although the mechanisms underlying the increased risk of cancer among HIV-infected 
69 individuals remain poorly understood, it may be associated with non-HIV factors such as 
70 occupational exposure to toxic metals. Thus, HIV infection and occupational exposure to 
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71 hazardous chemicals are two risk factors that may be associated with the disruption of 
72 immunological and/or non-immune surveillance systems against cancer, especially the p53 
73 dependent metabolic cascade. The tumour suppressor p53 and the anti-apoptotic protein bcl2 
74 were two of the first cancer genes identified, and their interaction is critical for cancer biology 
75 [8].

76 Many people, including those living with HIV, work in a variety of occupations. Some of these 
77 jobs are well-known to expose workers to toxic metals like lead, mercury, chromium, and 
78 cadmium, volatile organic compounds (VOCs) like benzene particularly from sources like 
79 motor-vehicle exhaust and gasoline-vapor emissions, and skin-irritating substances including 
80 oils, greases, solvents, and detergent [9–12]. Exposure to chemical mixtures, including toxic 
81 metals, is a common risk factor for cancer, especially among certain occupational groups, 
82 because various substances prevalent in industrial and agricultural environments have been 
83 identified as carcinogenic [13–17]. These chemicals can cause DNA damage, resulting in 
84 mutations and abnormal cellular behaviour. Additionally, genetic and epigenetic alterations are 
85 known to predispose a cell clone to malignancy [18]. Multiple defence mechanisms, both 
86 immunological and non-immune surveillance system, may be employed to ward off this threat 
87 [19]. The best-known form of genetic surveillance against cancer acts through the p53-
88 dependent pathway, with the p53 tumour suppressor gene dubbed the "Guardian of the 
89 Genome" [20]. It prevents genomic instability and suppresses tumourigenesis through 
90 regulation of diverse cellular processes including cell proliferation, DNA repair, and cell death 
91 [21]. 

92 The wildtype p53 protein binds to DNA, specifically the promoter region of p21, which is a 
93 cyclin-dependent kinase inhibitor, halting the cell cycle in the G1 phase. [22]. This cell cycle 
94 arrest allows time for cells to repair DNA damage caused by cytotoxic stressors [23]. 
95 According to Leroy et al. [24], more than 50% of all human tumours carry p53 mutations. 
96 These mutations impair the DNA-binding capacity of the p53 protein. Consequently, cells with 
97 damaged DNA but with maintained mitotic capacity go on dividing and increasing the risk of 
98 cancer. However, there is a paucity of studies that evaluate the p53 protein in HIV patients who 
99 are occupationally exposed to chemical mixtures. The present study aimed to evaluate whether 

100 levels of apoptotic regulatory markers p53 and bcl2 are associated with HIV infection, 
101 occupational exposure, oxidative damage, and antioxidant protection. 

102

103 Materials and Methods
104 Study population
105 This was a cross-sectional study conducted in Nigeria involving 128 HIV positive and 120 HIV 
106 negative consenting adults, with a mean age of 38.35 ± 0.72 years. Apparently healthy HIV-
107 positive and HIV-negative adults were recruited from both the community and a health facility 
108 between April 2017 and October 2017. Individuals who tested HIV negative in the community 
109 and those who visited the HIV Testing and Counselling units at the health facility for a 
110 voluntary HIV testing service and tested negative were matched for age, sex, and similarity in 
111 environmental as well as occupational characteristics with HIV positive cases, all recruited into 
112 the study.

113  A structured questionnaire was administered to elicit relevant information, including 
114 occupational exposure data. Thus, based on HIV status and occupational chemical exposure, 
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115 the study population (N = 248) was divided into 4 groups: HIV positive exposed (HPE; n = 
116 62), HIV positive unexposed (HPU; n = 66), HIV negative exposed (HNE; n = 60), and HIV 
117 negative unexposed (HNU; n = 60). The study specifically examined two distinct groups: 
118 individuals who were occupationally exposed to chemicals and an unexposed category. The 
119 occupationally exposed cohort, consistent with previous studies, had worked in professions 
120 associated with toxic metals and hazardous chemicals. These occupations included Cement 
121 factory worker [25,26], Electrician [27,28], Bars & Night clubs worker [29,30], Mechanic 
122 [9,31], Painter & Printing press worker [9,10], Weed sprayer & Pesticides worker [11,32,33], 
123 Welder [12], and Petrol Station Dispenser [34]. Furthermore, the unexposed category includes 
124 those who work in vocations that are considered low risk for toxic metal exposure, such as 
125 teachers, students, and administrative personnel in both the commercial and public sectors (data 
126 entry clerks, customer service clerks, receptionists).

127 The exclusion criteria for participation in the project were any history of hereditary immune 
128 deficiency, primary immune deficiency, autoimmune disease, or immunosuppressive drug use; 
129 previous cancer diagnosis; supplement use at the time of the study or within the month 
130 preceding it; prospective participants' refusal to consent or inability to give consent to 
131 participate in this study; age <18 years. Participants were consecutively identified and recruited 
132 into the study. The HIV status of participants in this study was confirmed using the national 
133 HIV testing algorithm [35]. 

134 Ethics statement
135 The study was approved by the Ethics Committee of the University of Ibadan/University 
136 College Hospital (UI/EC/16/0226) after a review process. Additionally, a written formal 
137 informed consent was obtained from all the participants selected.

138 Anthropometric measurements
139 Body weight (kg) was measured using an electronic scale with an accuracy of 0.1 kg, and height 
140 was measured using a stadiometer with an accuracy of 0.1 cm. Each participant's body mass 
141 index (BMI) was calculated as weight in kilograms divided by the square of the height in meters 
142 (kg/m2). 

143 Sample collection 
144 Blood samples were aseptically obtained from each participant using disposable, pyrogen-free, 
145 vacutainer needles. Whole blood (5ml) was collected into serum separator tubes (SST) and 
146 2mls into k3-EDTA vacutainers. Samples collected into SST were allowed to clot in an upright 
147 position for at least 30 minutes but not longer than 1 hour before centrifugation at 2200-2500-
148 RPM for 15 minutes. The serum was aliquoted into cryogenic vials while other samples not 
149 immediately required were stored at -86°C until ready for analysis. 

150 Quantification of CD4+ lymphocytes
151 The identification and the enumeration of CD4+ T lymphocytes were determined using the 
152 Becton Dickinson (BD) FASCount system (Becton, Dickinson and Company, California, 
153 USA); a flow cytometry method that uses a specific monoclonal antibody and fluorescence-
154 activated cell-sorter (FACS) analysis [36]. Samples were analyzed within 6 hours of collection. 
155 The Centers for Disease Control and Prevention (CDC) classification system of HIV-infected 
156 individuals were used to further categorize the study population into three groups: CD4 counts 
157 (a) ≥ 500 cells/µL; (b) 200-499 cells/µL and (c) <200 cells/µL [37].
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158 Determination p53, bcl2, SOD and 8OHdG
159 The serum levels of p53, bcl2, SOD and 8OHdG were determined using the ELISA method in 
160 accordance with the manufacturer's procedure (Melsin Medical Co., Limited, China). These 
161 kits are based on the principle of a one-step double-antibody sandwich enzyme-linked 
162 immunosorbent assay (Voller et al., 1978). In this approach, standard or test sample or control 
163 specimen and monoclonal antibodies specific for the analyte of interest conjugated to 
164 Horseradish Peroxidase (HRP-Conjugate) were introduced to polystyrene microwell strips pre-
165 coated with monoclonal antibodies specific for the analyte of interest (p53 or bcl2 or SOD or 
166 8OHdG). Chromogen solutions were added after incubation and washing, and the reaction 
167 stopped within a pre-specified time. The ELx808 Absorbance Microplate Reader (BioTek 
168 Instruments Inc., Winooski, Vermont USA) was used to determine the optical density at 450 
169 nm.  The concentrations of analytes of interest in the samples were then extrapolated from 
170 standard curves using the optical density of each sample. Internal quality control was 
171 performed by analysing external reference samples together with the test samples. Human p53 
172 ELISA kit (Catalogue No: EKHU-0309), Human bcl2 ELISA kit (Catalogue No: EKHU-
173 0302), Human SOD ELISA kit (Catalogue No: EKHU-1058), and Human 8OHdG ELISA kit 
174 (Catalogue No: EKHU-1276) acquired from Melsin Medical Co., Limited, China were of the 
175 highest commercially analytical grade and had an intra-assay CV (%) < 10% and Inter-assay 
176 CV (%) < 15%. 

177 Measurement of serum MDA levels
178 The Malondialdehyde (MDA) colorimetric assay previously described by Buege & Aust [38] 
179 was used. In this method, the free MDA present in the sample which was a product of lipid 
180 peroxidation, reacted with Thiobarbituric Acid (TBA) to form an MDA-TBA adduct. The 
181 absorbance of the supernatant was measured on a spectrophotometer at λ = 532 nm. The MDA 
182 concentration was calculated using the regression equation of the standard MDA (standard) 
183 solution curve.

184 Statistical Analysis
185 Statistical Package for Social Scientists (SPSS Inc., USA) version 25.0 software was used for 
186 statistical analyses, including descriptive statistics. Continuous data were presented as mean ± 
187 standard error of mean (SEM), whereas categorical data were expressed as a frequency and 
188 percentage. The Kolmogorov Smirnov test was used to determine the normality of the 
189 variables. Parametric variables were compared using one-way analysis of variance (ANOVA), 
190 while chi-square or Fisher's exact test was used for categorical variables. The Pearson 
191 correlation test was used to examine the relationships between measured parameters. Multiple 
192 linear regression analysis was used to determine independent predictors of the regulators of 
193 apoptosis and cell cycle (p53 and bcl2 proteins) in the entire study population. All p values less 
194 than 0.05 were deemed statistically significant.

195 Results 
196 Demographic Characteristics 
197 The demographic characteristics of study participants are presented in Fig 1 and Table 1. The 
198 proportions of HIV-positive and HIV-negative participants were comparable when divided into 
199 jobs that predispose workers to chemical exposure (Fig 1A) and those that do not (Fig 1B). 
200 Age, gender, place of residence, current employment status, and duration of occupation were 
201 comparable between HIV positive and HIV negative individuals in the occupationally exposed 
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202 and unexposed groups (Table 1). The occupationally exposed group in this study had worked 
203 across different occupations linked to toxic metals and hazardous chemicals. While BMI was 
204 comparable between HIV positive and HIV negative individuals in the occupationally exposed 
205 group, HIV positive individuals had a significantly higher BMI than HIV negative individuals 
206 in the occupationally exposed group. The participants' ages ranged from 18–65 years, with a 
207 mean ± SE of 38.35 ± 0.72, and they were found to have worked for an average of 10.57 ± 0.61 
208 years. The mean duration of HIV exposure in the HIV positive group was 42.67 ± 2.45 months.

209 Fig 1. Comparable HIV status in study group: (A) Chemical-exposed job category and 
210 (B) Unexposed job category 

211 A. HPE (HIV positive exposed) vs HNE (HIV negative exposed)
212 B. HPU (HIV positive unexposed) vs HNU (HIV negative unexposed).
213 χ2 = Chisquare
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214 Table 1. Comparison of demographic characteristics of HIV-positive and HIV-negative participants within occupational categories 

Occupationally Exposed Occupationally Unexposed

Characteristics
HIV Positive 
(n=62)

HIV Negative 
(n=60) χ2

p-
value

HIV Positive 
(n=66)

HIV Negative 
(n=60) χ2

p-
value

abAge (Years) 38.84 ± 1.34 37.80 ± 1.44 0.53 0.60 39.36 ± 1.51 37.27 ± 1.43 1.00 0.32

Gender 0.03 0.88 0.03 0.96
    Female, n(%) 11(17.7%) 10(16.7%) 19(28.8%) 17(28.3%)
    Male, n(%) 51(82.3%) 50(83.3%) 47(71.2%) 43(71.7%)

Place of Residence 0.41 0.52 4.22 0.06
    Rural, n(%) 12(19.4%) 9(15%) 7(10.6%) 9(15%)
    Urban, n(%) 50(80.6%) 51(85%) 59(89.4%) 51(85%)

Current Employment Status d 0.03 0.87
    Employed, n(%) 62(100%) 60(100%) 46(69.7%) 41(68.3%)
    Unemployed, n(%) 0(0%) 0(0%)

d
 

 20(30.3%) 19(31.7%)   
abDuration on occupation (years) 9.94 ± 1.14 9.73 ± 1.06 0.13 0.90 12.70 ± 1.38 10.37 ± 1.34 1.21 0.23
abBMI 26.65 ± 0.56 26.12 ± 0.41 0.76 0.45 26.69 ± 0.30 25.62 ± 0.26 2.70 0.01*

215 aValues are Mean ± SEM; bt statistics; * Statistically significant: p<0.05; χ2 = Chi-square
216 d = No statistics were computed because 'Current Employment Status' for the occupationally exposed group is a constant.
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217 Levels of p53 and other biomarkers
218  The levels of apoptotic regulatory biomarkers wild-type p53 and bcl2, genotoxic biomarkers 
219 8OHdG and MDA, as well as the antioxidant enzyme SOD and the immunological marker 
220 CD4, are presented in Fig 2. The molecular markers p53 and bcl2 decreased in the HPE group 
221 compared to the HPU, HNE, and HNU groups, respectively. While the HPE group had 
222 significantly lower p53 and bcl2 levels than the HNU group (p = 0.01 and p = 0.03 
223 respectively), comparisons between the HPE group and the other two groups [HPU (p = 0.99 
224 and p = 0.84 respectively) and HNE (p = 0.18 and p = 0.14 respectively)] were not significant. 
225 In contrast, the HPE group had higher 8OHdG levels than the HPU and HNE groups, although 
226 the difference was not statistically significant (p = 0.19 and p = 0.44 respectively). 
227 Additionally, SOD activity decreased in the HPE group relative to the HPU, HNE, and HNU 
228 groups, but the difference was not significant (p > 0.05). The MDA levels were significantly 
229 higher in the HPE group than in the HNE or HNU groups, respectively (p = 0.04 and p = 0.01 
230 respectively). Additionally, the HPE group had higher MDA levels than the HPU group, but 
231 the difference was not significant (p > 0.05). Moreover, p53 and bcl2 levels were positively 
232 and significantly correlated with 8OHdG (r=0.35, p<0.001; r=0.36, p<0.001), SOD (r=0.38, 
233 p<0.001; r=0.39, p<0.001) whereas p53 and bcl2 levels were negatively but not significantly 
234 correlated with MDA (r=-0.03, p=0.67; r=-0.05, p=0.43) (Table 2).

235 Fig 2. Comparison of the levels of p53 and other markers across study group
236
237  *Overall p-value across the study group (ANOVA results) 
238  bcl2 = β-cell lymphoma; 8-OHdG = 8-Hydroxydeoxyguanosine; SOD = Superoxide Dismutase; MDA = 
239 Malondialdehyde
240  Pairwise comparison (Post hoc analysis): Bars with no superscript letter in common differ significantly (p 
241 < 0.05). The error bars show the standard error of the mean; values are mean ± Standard Error.
242  Study groups: HIV positive exposed (HPE; n = 62), HIV positive unexposed (HPU; n = 66), HIV negative 
243 exposed (HNE; n = 60), and HIV negative unexposed (HNU; n = 60).
244
245 Table 2. Correlations between the evaluated biomarkers in the study population

 p53 bcl2 MDA 8OHdG SOD
p53 1     

bcl2 0.91** 1

MDA -0.03 -0.05 1

8OHdG 0.35** 0.36** 0.01 1

SOD 0.38** 0.39** -0.07 0.76** 1

CD4 0.11 0.05 -0.14* 0.05 0.03

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

246

247 CD4 cell count - an indicator of immunological function
248 The immunological condition of the occupationally exposed and unexposed research 
249 participants is summarised in Fig 2 and Table 3 using the Centers for Disease Control and 
250 Prevention (CDC) CD4 count classification criteria of 500 cells/L; 200-499 cells/L; and 200 
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251 cells/L. In the occupationally exposed group, a significantly smaller proportion of HIV positive 
252 participants (54.8%) had CD4 cell counts ≥500cells/µL compared with 85% of HIV negative 
253 participants. Similarly, in the occupationally unexposed group, a significantly smaller 
254 proportion of HIV positive participants (50%) had CD4 cell counts ≥500cells/µL compared 
255 with 93.3% of HIV negative participants.

256 A bar chart indicating the possible association between two categorical variables, occupational 
257 chemical exposure and CD4 cell count stratified by HIV status, is depicted in Fig 2. There was 
258 no association between occupational exposure and CD4 count categories in the HIV positive 
259 study participants (χ2 (2) = 4.43, p = 0.11) and in the HIV negative individuals (χ2 (2) = 2.16, 
260 p = 0.14). However, the occupationally exposed HIV positive group (578.87 ± 33.64 cells/µL) 
261 and the HIV positive unexposed group (553.95 ± 36.86 cells/µL) had significantly lower CD4 
262 counts than the HIV negative exposed (785.35 ± 36.8 cells/µL) and HIV negative unexposed 
263 (862.15 ± 43.29 cells/µL) groups (Fig 2). CD4 cell count was negatively and significantly 
264 correlated with MDA (r=-0.14, p=0.03) (Table 2).

265 Table 3. Immunological Status of Study Groups

aImmune Status HIV Positive HIV Negative
Test 
statistics

p-
value

Occupationally Exposed   b13.35 <0.001

    CD4 Count ≥500cells/µL 34(54.8%) 51(85%)

    CD4 Count 200-499cells/µL 26(41.9%) 9(15%)

    CD4 Count <200cells/µL 2(3.2%) 0(0%)

      Total n(%) 62(100%) 60(100%)

Occupationally Unexposed b30.67 <0.001

    CD4 Count ≥500cells/µL 33(50%) 56(93.3%)

    CD4 Count 200-499cells/µL 24(36.4%) 4(6.7%)

    CD4 Count <200cells/µL 9(13.6%) 0(0%)

      Total n(%) 66(100%) 60(100%)
266 aClassification based on 2014 CDC Case Definition for HIV Infection Among Adolescents and 
267 Adults [37].
268 bFisher's Exact Test Value
269

270 Multiple linear regression for indicators of genotoxicity and 
271 apoptosis regulation
272 To examine the relationship between indicators of genotoxicity and apoptosis regulation using 
273 multiple linear regression, occupational chemical exposure, HIV status, CD4, SOD, 8OHdG, 
274 and MDA were used as predictor variables, while apoptosis regulation markers, p53 and bcl2 
275 were used as dependent variables. After adjusting for sex, age, BMI, and cigarette smoking, 
276 both HIV status and SOD activity were significantly associated with wildtype p53 and bcl2 (p 
277 < 0.05) (Table 4).
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278

279 Table 4. Effect of occupational exposure, HIV status and other biomarkers on p53 and 

280 bcl2

 B SE Beta t sig.
Adjusted 
R2  ap-value

p53 0.17 <0.001*
       Exposure 94.30 118.91 0.05 0.79 0.43

       HIV status 369.87 131.28 0.19 2.82 0.01*

       CD4 0.09 0.20 0.03 0.48 0.63

       SOD 9.48 3.05 0.29 3.11 0.00*

       8OHdG 51.92 47.32 0.10 1.10 0.27

       MDA 608.31 828.96 0.04 0.73 0.46

bcl2 0.18 <0.001*

       Exposure 22.48 22.92 0.06 0.98 0.33

       HIV status 69.00 25.31 0.18 2.73 0.01*

       CD4 -0.03 0.04 -0.05 -0.72 0.47

       SOD 1.63 0.59 0.25 2.77 0.01*

       8OHdG 15.61 9.12 0.16 1.71 0.09

       MDA 15.55 159.79 0.01 0.10 0.92   
281 Dependent Variables: p53 and bcl2

282 Predictors: Occupational chemical exposure, HIV status, CD4, SOD, 8OHdG, MDA

283 B = Unstandardized Coefficients; Beta = Standardized Coefficients; aRegression model p-value

284 * Statistically significant at p < 0.05

285

286 DISCUSSION: 
287 The co-occurrence of HIV infection and occupational exposure to hazardous chemicals poses 
288 a major concern in public health, as both factors may facilitate the concurrent degradation of 
289 both immunological and non-immune surveillance mechanisms against cancer. This study 
290 investigated the complex association between apoptotic regulatory markers and DNA oxidative 
291 response markers in the context of cancer susceptibility among individuals infected with HIV, 
292 who were also exposed to a cocktail of hazardous substances, including metals. The findings 
293 of this study indicate that p53 and bcl2 levels, which control apoptosis, were associated with 
294 HIV infection, oxidative damage, and a tendency for antioxidant depletion. Additionally, the 
295 decrease in wildtype p53 and bcl2 levels, as well as the increase in malondialdehyde levels, 
296 among HIV-positive individuals who had occupational exposure to chemical mixtures provides 
297 insight into the potential role of oxidative stress in viral and chemical carcinogenesis.
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298 Individuals who were HIV-positive and had been exposed to chemical mixtures at work 
299 demonstrated notably reduced levels of p53 and bcl2 in comparison to HIV-negative persons 
300 who had not been exposed. This observation implies a plausible association between the co-
301 occurrence of HIV infection and exposure to occupational chemicals, and a disruption in the 
302 apoptotic pathways. The proteins p53 and bcl2 are crucial in maintaining the equilibrium 
303 between cell survival and cell death [39]. Hence, the observed decrease in p53 and bcl2 levels 
304 could indicate an imbalance between cell proliferation and apoptosis in individuals infected by 
305 HIV and exposed to hazardous chemical agents, suggestive of a potential predisposition to 
306 malignancy. In a study that shares some similarities, Gruevska et al. [40] found that HIV 
307 patients had significantly lower levels of the tumour suppressor gene p53 than uninfected 
308 matched individuals, and that this decreased expression of p53 was also observed at the protein 
309 level.

310 Malondialdehyde functions as a reliable marker for assessing lipid peroxidation and oxidative 
311 damage. In this study, occupationally exposed HIV positive individuals had increased MDA 
312 levels, indicating that individuals infected with HIV and exposed to occupational chemicals 
313 experience elevated levels of oxidative stress. This finding is consistent with the literature 
314 suggesting that exposure to certain chemicals in the workplace, such as toxic metals, may cause 
315 oxidative stress, leading to further damage to cellular constituents, including DNA [41,42]. 
316 Indeed, the presence of HIV infection may create an enabling environment favourable for 
317 cancer development, owing to immune suppression as well as processes such as DNA 
318 mutations and defective DNA repair, which can be attributed to mitochondrial dysfunction and 
319 elevated oxidative stress [43]. 

320 Oxidative stress in occupationally exposed HIV-infected individuals, may contribute to the 
321 impairment of p53 function, potentially leading to the initiation or progression of 
322 carcinogenesis. Although p53 is generally activated in response to DNA damage, chronic 
323 exposure to occupational carcinogens may result in prolonged activation and ultimately 
324 depletion of p53. Therefore, the decreased wildtype p53 in response to chronic occupational 
325 chemical exposure and HIV infection observed in this study may compromise the critical role 
326 of p53 in preserving DNA integrity and preventing cancer. This agrees with studies 
327 demonstrating that people living with HIV or exposed to chemical carcinogens showed 
328 increased genomic instability [16,44]. Oxidative stress plays a critical role in chemical and 
329 viral carcinogenesis [45,46]. 

330 Multiple factors could potentially influence the susceptibility of cells to cancer. The observed 
331 association between HIV status, 8OHdG and SOD, with levels of wildtype p53 and bcl2 
332 suggest that these indicators are influenced not only by individual exposures but also by the 
333 combined factors altering cellular responses to oxidative stress and apoptosis. The complex 
334 relationship between these factors highlights the diverse and intricate mechanisms that 
335 contribute to the risk of cancer in people living with HIV but also exposed to chemical toxins. 
336 This observation is consistent with previous studies that proposed a relationship between HIV 
337 infection and oxidative stress, which can result in changes to cellular mechanisms, such as 
338 apoptotic pathways [43,47].  Darbinian et al. [48] demonstrated the initiation of apoptotic 
339 responses following elevated mtDNA damage in cells treated with HIV-1 proteins or infected 
340 with HIV-1. Conversely, the accumulation of damaged DNA can result from abnormal or 
341 failure of apoptosis which may lead to cancer [49]. 
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342 A decreased CD4 cell count was observed in HIV-infected individuals regardless of 
343 occupational chemical exposure. This aligns with the prevailing consensus that HIV infection 
344 impairs the immune system by preferentially destroying CD4-positive T cells. Indeed, the 
345 altered immunological profiles of the HIV-positive study population are consistent with 
346 previous research on the detrimental effect of HIV infection on immune system functionality 
347 [50,51]. Moreover, the observation of a negative correlation between CD4 count and MDA 
348 concentrations provides further evidence for the probable influence of both HIV infection and 
349 chemical exposures on cellular pathways associated with oxidative stress and apoptosis. Our 
350 findings suggest that impaired immune surveillance indicated by low CD4 cell count may 
351 impede the body's capacity to identify and eradicate malignant or pre-malignant cells, therefore 
352 play a role in increased cancer risk among HIV-infected workers. Furthermore, these findings 
353 are consistent with evidence indicating that oxidative stress plays a pivotal role in the 
354 interconnection between viral infections, hazardous exposures, and the development of cancer 
355 [52–54]. This may potentially interact with chemical exposures, leading to an increased 
356 vulnerability to cancer. Kang et al. [55] demonstrated that an intact CD4(+) T-cell-mediated 
357 adaptive immune response is important for tumour immune surveillance. 

358 The present study highlights the complex relationships among apoptotic regulatory indicators, 
359 DNA oxidative response markers, and the risk of cancer in a distinct population of HIV-
360 infected individuals who have been occupationally exposed to hazardous chemicals. Notably, 
361 the current study underscored the influence of both HIV infection and chemical exposures on 
362 cellular pathways associated with oxidative stress and apoptosis. The majority of prior studies 
363 focused on the influence of HIV infection or occupational exposure on oxidative stress 
364 indicators in isolation [54,56]. However, it is imperative to acknowledge the study's limitations. 
365 The cross-sectional design makes it difficult to establish causal relationships between 
366 occupational chemical exposure, HIV infection, and changes in levels of cancer risk 
367 biomarkers studied. Secondly, the study did not investigate specific cancer types or long-term 
368 cancer outcomes, which could have provided valuable insight into the clinical implications of 
369 these findings. Longitudinal studies are advocated to provide more robust evidence.

370 Conclusion
371 Immune deficiency, antioxidant deficits, oxidative stress, and dysregulation of apoptosis 
372 contribute to increased genomic instability and elevated cancer risk in HIV infected individuals 
373 occupationally exposed to chemical mixtures. In addition, our findings suggest that optimal 
374 levels of the enzymatic antioxidant SOD may be essential for p53 to play its protective role in 
375 maintaining genomic stability. These findings highlight the need of designing and 
376 implementing preventive interventions to reduce the risk of viral and chemical carcinogenesis 
377 among the vulnerable population of HIV-infected individuals exposed to occupational 
378 chemical hazards.
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