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Abstract  
Non-invasive, high-density electromyography (HD-EMG) has emerged as a useful tool to collect 
a range of neurophysiological motor information. Recent studies have demonstrated changes in 
EMG features that occur after stroke, which correlate with functional ability, highlighting their 
potential use as biomarkers. However, previous studies have largely explored these EMG 
features in isolation with individual electrodes to assess gross movements, limiting their 
potential clinical utility. Here, able-bodied (N=7) and chronic stroke subjects (N=7) performed 12 
functional hand and wrist movements while HD-EMG was recorded using a wearable sleeve. 
We demonstrate that a variety of HD-EMG features, or views, can be decomposed from the 
wearable sleeve. Stroke subjects, on average, had higher co-contraction and reduced muscle 
coupling when attempting to open their hand and actuate their thumb. In an expanded dataset 
consisting of 37 movements, we characterized muscle synergies in the forearm of able-bodied 
individuals. We found that the high-density array provides additional resolution over manually 
placed electrodes, which may help dissociate finer nuances in motor control. Additionally, 
muscle synergies decomposed in the stroke population were relatively preserved, with a large 
spatial overlap in composition of matched synergies. Alterations in synergy composition 
demonstrated reduced coupling between digit extensors and muscles that actuate the thumb, as 
well as an increase in flexor activity in the stroke group. Average synergy activations during 
movements revealed differences in coordination, highlighting overactivation of antagonist 
muscles and compensatory strategies. When combining co-contraction and muscle synergy 
features, the first principal component was correlated with upper-extremity Fugl Meyer hand 
sub-score of stroke participants (R2=0.86). Principal component embeddings of individual 
features revealed interpretable measures of motor coordination and muscle coupling alterations. 
These results demonstrate the feasibility of predicting motor function through features 
decomposed from a wearable HD-EMG sleeve, which could be leveraged to improve stroke 
research and clinical care. 

Introduction 
Successful execution of voluntary movement relies on a complex, dynamic relationship between 
the motor cortex, spinal cord, and skeletal muscles. This relationship is altered following a 
stroke, leading to impairment of various neural pathways responsible for healthy motor function. 
As a result, individuals recovering from stroke struggle with activities of daily living, including 
manipulation of objects such as doors, utensils, and clothing due to decreased upper extremity 
muscle coordination and weakness [1]. The heterogeneity in functional motor deficits among 
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stroke survivors poses significant challenges for recovery and treatment, including the ability to 
assess treatment efficacy [2]. This variety in responses among individuals post-stroke creates 
the need for more sensitive measures of motor function. 

Surface electromyography (EMG) provides a simple, non-invasive method to directly measure 
changes in muscle activation post-stroke. Simultaneous EMG recording from multiple muscles 
can reveal altered recruitment and coordination strategies across various movements. For 
example, co-contraction of the upper limb, which is characterized by overactivity in the 
antagonist muscles, is a common motor symptom following a stroke that is quantifiable using 
EMG sensors placed on the flexors and extensors of the forearm [3]. Some level of co-
contraction during attempted movements can help stabilize the joint. However, excessive co-
contraction of antagonist muscles can impair motor coordination, increase duration of 
movement, limit range of motion [4], lead to early onset fatigue [29], [30], and has been linked to 
the level of spasticity in stroke survivors [30]. Consequently, greater muscle spasticity is 
associated with greater motor impairment [5]. 

Similarly, muscle synergies, time-invariant patterns of muscle activations that produce controlled 
movement, and time-varying muscle synergy activations [6] provide a unique view into changes 
of muscle coordination after stroke. Compared to the non-paretic arm, the paretic arm often has 
a different number of active muscle synergies for a particular movement and a modified 
composition of muscle activation comprising those synergies [7]–[11]. Additionally, the ‘merging’ 
of synergies was observed after stroke, with the extent of merging reflective of the degree of 
residual motor functionality [12]. 

To date, collection of these and other EMG features have mainly been performed during gross 
movements using low-density bipolar EMG electrodes on a limited number of muscles. While 
this technology can capture data across several muscles, the electrodes are relatively large, 
preventing measurement of smaller hand muscles critical to properly perform functional tasks. In 
contrast, high-density EMG (HD-EMG) technology, which utilizes an array of densely packed 
electrodes, can provide a high-resolution view of motor control. The various features that can be 
extracted from HD-EMG may each capture unique aspects of motor control, and combinations 
could reveal new motor-related biomarkers after stroke. However, current HD-EMG systems are 
cumbersome and difficult to use, limiting their use to expert researchers.  

In this work, we characterize movement coordination from the extrinsic hand muscles across a 
wide range of functional movements in both able-bodied and chronic stroke groups using an 
easy-to-use HD-EMG wearable sleeve that spans the forearm. First, we evaluate isolated 
control and muscle coupling via co-contraction index (CCI) and muscle correlation metrics, 
respectively. Next, we evaluate sub-muscle coupling to provide more detailed characterization 
of movement coordination via muscle synergy analysis across the forearm HD-EMG array. We 
compare muscle synergies decomposed from both groups to assess alterations in synergy 
composition that reflect functional differences. Lastly, we demonstrate the feasibility of 
combining HD-EMG features that correlate with functional movement ability in individuals with 
stroke. This work provides an initial demonstration of the wealth of information that can be 
extracted from a HD-EMG wearable sleeve, and preliminary identification of motor-related 
biomarkers that could be leveraged to improve stroke rehabilitation, movement disorders 
research, and clinical care. 
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Materials and Methods 
Study Participants 
Seven individuals (3 female, 4 male; 60±5 years) with a history of stroke and hemiparesis 
participated in the study. EMG was recorded from their affected arm using the NeuroLife® EMG 
sleeve [13] as they attempted various hand movements. An additional dataset of various 
movements and grasps was recorded from seven able-bodied (4 female, 3 male; 27±1 years) 
individuals to serve as a benchmark for comparison of HD-EMG features.  

Both datasets were collected as part of an ongoing clinical study at Battelle Memorial Institute 
that was approved by the Battelle Memorial Institute Institutional Review Board (IRB0779 and 
IRB0773). All participants were informed of the study protocol and provided written consent prior 
to data collection in accordance with the Declaration of Helsinki. Participants with chronic stroke 
were eligible if they could follow three step commands, respond and communicate verbally, and 
their hemiparesis affected their arm and hand. Full inclusion/exclusion criteria are provided in 
the Supplementary Information.  

Prior to EMG data collection, standardized clinical assessments were evaluated in participants 
with stroke and scored by a licensed occupational therapist. Assessments included the upper 
extremity section of the Fugl-Meyer (UEFM) evaluating gross arm movements and hand 
coordination sub-score (UEFM-HS), the Box and Blocks test to assess fine grip dexterity, and 
the Modified Ashworth Scale (MAS) test to assess finger and wrist spasticity. For some sub-
analyses, participants were split into mild (UEFM-HS ≥ 3) and severe (UEFM-HS < 3) groups 
based on clinical assessments for group comparisons. Full participant demographics and 
clinical assessment data are contained in Supplementary Tables 1 and 2. 

Experimental Setup and Paradigm 
The methods used in this experiment are similar to those previously described by Meyers et al. 
[13]. Participants were seated comfortably at a table with a computer monitor in front of them 
and both arms resting (Figure 1). Prior to donning the sleeve, the forearm was sprayed with an 
electrode solution spray (Signaspray, Parker Laboratories, Fairfield, NJ) to enhance signal 
quality. The NeuroLife EMG sleeve was then donned on the affected arm for individuals with 
stroke and on the right arm for able-bodied individuals. The sleeve consists of a stretchable 
lightweight fabric with embedded electrodes that record bipolar EMG. The sleeve comes in 
three different sizes:  small: 128 electrodes (59 channels), medium: 142 electrodes (70 
channels), and large: 150 electrodes (75 channels). Each subject’s sleeve size was determined 
based on forearm size and comfortability once donned (Supplementary Tables 1 and 2). 
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Figure 1. Illustration of experimental data collection procedure. Participants were seated across from a computer monitor that
displayed sequential cues (e.g., Hand Open, Hand Close, Wrist Supination) to follow. The HD-EMG sleeve was donned on the
affected arm for participants with stroke and on the right arm of able-bodied participants. Participants attempted the cued
movements to the best of their ability at approximately 25-50% MVC effort. An operator monitored the data collection to ensure
adequate signal and participant engagement. 

 

Pictorial cues of various hand, wrist, and forearm movements were displayed on the monitor for
participants to follow. Participants were instructed to attempt movements to the best of their
ability at approximately 25-50% of their maximal effort level regardless of their ability to
physically perform the cued movement. Based on participant preference, an optional foam
cushion was used to prop up the arm used to attempt the movements. 

Both stroke and able-bodied participants attempted the following 12 movements: Hand Close,
Hand Open, Pointing Index, Thumb Flexion, Thumb Extension, Thumb Abduction, Wrist
Supination, Wrist Pronation, Wrist Flexion, Wrist Extension, Thumb Two Point Pinch, and Key
Pinch. These movements have been used in previous studies [13], [14] due to their relevance
for dexterous hand use in functional tasks. An additional 25 different movements and fine
grasps (for a combined total of 37 movements) were performed by able-bodied participants to
fully characterize coordination across a wide range of movements and grasps (Supplementary
Figure 9). These 25 movements were not collected in stroke participants because they
consisted of highly dexterous movements that stroke participants could not perform. 

We recorded HD-EMG in blocks that consisted of individual movements repeated, as well as
mixed blocks with up to three different movements repeated. Both block types began with an 8-
second “Get Ready” period prior to showing any cues, and a rest period was always interleaved
between all cued movements. Each cue was prompted for 4-6 seconds for individuals with
stroke to account for slower reaction times, and 2-3 seconds for able-bodied participants. Cue
duration was selected randomly from a uniform distribution within each group’s respective cue
duration ranges. The stroke movement dataset was collected in a single session lasting no
more than two hours. Each participant attempted each movement at least 15 times. For the
able-bodied dataset, EMG was recorded in a single session in which each movement and grasp
was performed at least 10 times. 

EMG Signal Processing 
EMG data were recorded at a sampling rate of 3,000Hz using an Intan Recording Controller
(Intan Technologies, Los Angeles, CA). Pre-processing consisted of notch filtering the data at
60 Hz and bandpass filtering between 20 and 400 Hz with a 10th order Butterworth filter [13],
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[15]. Prior to EMG feature extraction, additional artifact filtering steps were performed to correct
artifacts due to sleeve shift, electrode lifting, and impedance changes over time. A blind source
separation (BSS) technique based on the approximate joint diagonalization of cospectral
(AJDC) covariance matrices adapted from the open-source pyRiemann implementation [16]
based on [17], [18] was used to find spectrally uncorrelated sources. The open-source QNDIAG
algorithm [19] was used to jointly diagonalize the cospectral covariance matrices, as it exploits a
state-of-the-art quasi-Newton strategy for an increase in computation speed and separability
between sources in the spectral domain. Using kurtosis with a threshold of 95%, artifact sources
were automatically detected in the source signal and suppressed from the reconstructed signal.
Figure 2A shows the final filtered EMG signal in three representative channels. Supplementary
Figure 2 gives a stepwise filtering example using the BSS AJDC method for artifact detection
and correction. Following artifact correction, the root mean square (RMS) of 150ms bins with
stride of 40ms was used for subsequent feature decomposition steps (Figure 2B). The full EMG
signal processing pipeline from raw data to feature decomposition from a representative stroke
subject is shown in Figure 2. Refer to Supplementary Figure 1 for a comparable pipeline from
an able-bodied subject. 

Figure 2. Representative pipeline from raw HD-EMG signal to feature decomposition across three cued movements from
an individual with chronic stroke. (A) Filtered EMG from three representative channels recorded using the NeuroLife sleeve. (B)
Time-series heatmap of the globally normalized root mean square (RMS) of 150ms bins with stride of 40ms of EMG activity.
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Highlighted channels during the cued movements correspond to the agonist channels defined in the muscle group masks 
(Supplementary Figure 4 and Supplementary Table 3). (C) Left: Heatmaps of time-invariant muscle synergies decomposed with 
non-negative matrix factorization (NMF) mapped to the flattened HD-EMG sleeve. Active areas correspond to the weighting of 
coupled muscles for each muscle synergy. A compass showing the orientation of the sleeve mapping is shown on the left (flex. = 
flexors, ext. = extensors). Right: Activation of the muscle synergies across time during the different attempted movements. 

 
EMG Sleeve Mapping 
Mapping between sleeve sizes and arms 
To compare decomposed HD-EMG features across subjects with different sleeve sizes and 
arms, a standardized sleeve mapping procedure was conducted (Supplementary Figure 3). 
Once the windowed EMG data were processed into RMS features, all sleeve sizes were 
mapped using linear interpolation to the medium sleeve for a total of 70 feature channels. HD-
EMG data were only recorded from the left arm of one subject (Subject 3, stroke group). In this 
instance, the channel data were mirrored to map to the right arm. The medium sleeve has a 
direct mirroring except for the ground electrode in the bottom left corner. An additional linear 
interpolation was used to account for the ground electrode mirroring. The final output of the 
sleeve mapping procedure ensured all EMG feature data were mapped to the medium sleeve 
as if it was worn on the right arm for consistent comparisons between subjects. This procedure 
was conducted prior to co-contraction and muscle correlation analyses for mapping to muscle 
groups described in the following section. For muscle synergy analysis, muscle synergies were 
first decomposed in the original sleeve arm and size to retain the full signal resolution during 
decomposition, with the sleeve mapping procedure occurring post-decomposition. 

HD-EMG to muscle group mapping 
To map the HD-EMG sleeve to muscle groups for selecting agonist muscles during movements 
for co-contraction analysis and physiological interpretation of EMG feature results, a HD-EMG-
to-muscle group mapping was developed for the medium sleeve worn on the right arm based on 
the able-bodied dataset. We selected movements actuated by a single agonist muscle or 
muscle group (e.g., Hand Close is accomplished through actuation of the digit flexor muscle 
group; Supplementary Table 3). The agonist muscle group, therefore, was the predominant 
source of EMG activity during each selected movement. HD-EMG recordings for these 
movements were averaged within session and across all participants. These averages were 
converted to binary masks across EMG channels with a 95% amplitude threshold for the 
following muscle groups: Digit flexors, Digit extensors, Wrist flexors, Wrist extensors, Thumb 
extensors, and Thumb flexors (Supplementary Figure 4). This HD-EMG channel-to-muscle 
mapping scheme was validated through a leave one out (LOO) cross validation showing that 
86.9 ± 0.84% of single agonist movement activity was captured by the masked data. When 
mapping to muscle groups, the full channel-wise data was multiplied with the muscle masks and 
averaged based on the number of channels that contribute to each mask. This reduced the 
channel data down to the six muscle groups representative of manually placed EMG electrodes 
on the forearm. 

 

HD-EMG Feature Decomposition 
Co-contraction index and muscle coupling 
A simple co-contraction index (CCI) based on ref [20] was used to benchmark the amount of co-
contraction of non-agonist muscles during individual movements: 
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 x 100�%,      Equation 1 

where CCI is the co-contraction index, EMGm_ represents EMG data from the non-agonist 
muscle groups, and EMGm+ represents EMG data from the agonist or targeted muscle group 
during movement. Corresponding agonist and non-agonist muscle groups were determined via 
a HD-EMG-to-muscle-group mapping based on average able-bodied muscle masks during cued 
movements (Supplementary Figure 4 and Supplementary Table 3). Muscle coupling was 
assessed using average Pearson correlation between muscle groups. Correlations between 
muscle groups were z-transformed prior to averaging and then reconstructed post-averaging for 
group results. 

Muscle synergies 
For a more comprehensive assessment of movement coordination, non-negative matrix 
factorization (NMF) [21] from the Scikit learn toolbox [22] was used to decompose the globally 
normalized RMS feature data into time-invariant muscle synergies and time-varying synergy 
activations (Figure 2C). This matrix factorization method was chosen due to its robustness 
across datasets [23]. The number of muscle synergies used to describe the data sufficiently was 
based on an 85% variance accounted for (VAF) threshold between the reconstructed data and 
the original signal [7], [24]. Muscle synergy components were ordered according to the average 
across participants’ individual synergy component reconstruction (VAFi). Next, muscle 
synergies by channels were mapped to the medium sleeve as if it were worn on the right arm for 
comparisons between subjects and for the HD-EMG channel-to-muscle mapping. Once mapped 
to the medium-right sleeve setting, muscle synergies were reduced to muscle group weightings 
via the HD-EMG to muscle groups mapping for additional physiological interpretation. Lastly, 
average muscle synergy activation over individual movements was determined to map the 
synergy weighting to the different movements. 

HD-EMG Feature Analysis 
To compare HD-EMG features between subjects with different sleeve sizes and arm recordings, 
all recordings and muscle synergies were mapped to the medium-right sleeve configuration 
using the sleeve mapping procedure previously described. Average CCI and muscle correlation 
by movement were compared between groups with paired t-tests. For muscle synergy analysis, 
a LOO analysis was conducted in which a single subject’s extracted muscle synergy 
components were compared to the remaining group average. Cosine similarity was used as the 
metric for determining muscle synergy similarity between subjects and group averages [25]. 
When decomposing to more than one muscle synergy, the median cosine similarity of each 
mapped muscle synergy comparison was reported. Muscle synergies were mapped across 
individuals by ordering the synergies based on cosine similarity. 

A group principal component analysis (PCA) was conducted on a HD-EMG feature set 
containing CCI by movements and muscle synergies by channels across subjects [26], [27]. 
First, PCA was performed on the concatenated feature set to predict clinical UEFM-HS scores 
from the combined first principal component using linear least squares regression. Next, 
individual projections for each feature were computed with least squares estimation to map 
each feature to the individual reduced subspace principal components. Subsequent individual 
feature embeddings to transform the reduced subspace back to the original feature set were 
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obtained by taking the pseudo-inverse of the individual projections. The feature embeddings 
highlight weightings to each individual feature to help with interpretability of the reduced 
principal components. Lastly, principal components and embeddings were inverted for plotting 
visualization. 

Statistical Analysis 
Comparisons conducted were a priori. Lillifors tests were performed to test normality of 
distributions. Paired t-tests were used to determine significant differences between groups in 
both LOO analysis and between groups analysis. An alpha value of 0.05 was used for single 
comparisons. All statistical analyses were performed using Python 3.8 using SciPy [28]. For all 
figures, * indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001. Error bars in figures 
indicate mean ± standard error of the mean (SEM). 

Results 
Alterations in isolated control of the hand extrinsic muscles after stroke 
Using our HD-EMG sleeve, we found that stroke subjects have more co-contraction relative to 
able-bodied subjects in movements that actuate the thumb, digit extensors, and wrist supinator 
muscles (Figure 3A and Supplementary Figure 5). Specifically, CCI was higher for Hand Open 
(p=0.029), Thumb Flexion (p=0.006), Thumb Extension (p=0.014), Thumb Abduction (p=0.017), 
and Wrist Supination (p=0.010) for individuals with stroke. We then assessed the relationship 
between muscle groups via a muscle coupling network. Able-bodied subjects had greater 
coupling between muscles than stroke subjects based on the grand average Pearson muscle 
correlations (Figure 3B), suggesting decreased motor recruitment during select movements 
after stroke. Full CCI and Pearson correlation results for the remaining movements are shown in 
Supplementary Figure 5. 

Muscle correlation networks revealed reduced coupling between digit flexors and wrist 
extensors (p=0.006), digit extensors (p=0.022), thumb flexor (p=0.046), and thumb extensor 
(p=0.041) muscle groups in the stroke group (Figure 3C-E). Similarly, thumb muscles were 
more coupled for able-bodied participants than participants with stroke for Hand Open (p=0.022) 
and Wrist Supination (p=0.047) movements. Digit flexors and wrist extensors, as well as wrist 
extensors and flexors were more coupled in able-bodied individuals for Thumb Flexion 
(p=0.025) and Wrist Supination (p=0.050), respectively. Together, these results highlight the 
ability to extract precise information related to hand extrinsic muscle coupling of individuals with 
stroke using a HD-EMG sleeve.  
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Figure 3. Co-contraction and muscle coupling across muscle groups during four attempted movements. (A) Co-contraction
index (CCI) and (B) average Pearson correlation between muscle groups for able-bodied (blue bars) and stroke (red bars) groups
CCI was greater in the stroke group across all four movements. A higher muscle coupling was observed in able-bodied participants
for Hand Open and Wrist Supination. (C-E) Average correlation matrices between muscle groups across able-bodied, stroke, and
the difference between the two groups show able-bodied subjects have more coupling between certain muscle groups. Coupled
muscle groups determined with paired t-tests are denoted with * (p<0.05) and ** (p<0.01) indicating significant differences between
groups. 

 
HD-EMG sleeve provides high-resolution muscle synergies 
While creating networks of correlated muscles can assess coupling during specific movements,
muscle synergy analysis can provide a more holistic view of synergistic muscles across a wide
range of movements. To benchmark coordination of hand movements in the able-bodied group,
we decomposed the HD-EMG signals to time-invariant muscle synergies by channels (Figure
4A) and by muscle groups (Figure 4B), as well as time-averaged synergy activations across
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movements (Figure 4C). Across the seven able-bodied subjects, seven muscle synergies were 
able to reconstruct the data with at least 85% explained variance (Figure 4D). Synergies were 
ordered based on the average individual explained variance when reconstructing the original 
signal (Figure 4E). 

The first muscle synergy (Figure 4A – MS 1) was composed of digit extensors and muscles that 
actuate the thumb. This synergy was prominently activated during Hand Open, as well as 
various thumb movements and grips. Aside from the coupling with muscles that actuate the 
thumb in the first synergy, digit extensors were not a prominent component in any of the other 
synergies decomposed. The second muscle synergy consisted largely of the wrist extensors 
with some coupling to the digit flexors as well for stabilization during Wrist Extension 
movements. Interestingly, the third synergy consisted largely of muscles that actuate the thumb 
only. This synergy was also activated during Wrist Extension movements. Visually, the fourth 
and sixth synergies appear similar based on the heatmap representation, though the fourth 
synergy weighted muscles slightly more in the medial-distal region of the sleeve. However, 
while both were composed of digit flexor muscles and were activated during Hand Close, 
contrary to the fourth synergy, the sixth synergy was activated more during Ulnar Deviation. The 
fifth synergy was similar to the second synergy, albeit with a nearly equal weighting of wrist 
extensors and digit flexors. It also appears to have been activated during similar movements to 
the second synergy. Finally, the seventh synergy largely consisted of wrist flexors and was 
subsequently activated during Wrist Flexion and Wrist Pronation movements. 

To compare synergies between subjects, a LOO analysis was conducted in which each 
subject’s synergies were compared with the remaining group average. Each synergy was 
mapped to the group average based on highest degree of similarity across all seven synergies. 
The median cosine similarity between matched synergies is shown as an individual subject data 
point in Figure 4F for both the channel (Figure 4A) and muscle group (Figure 4B) synergy 
representations. Muscle synergies mapped to muscle groups, representative of individually 
placed electrodes on forearm muscle groups, were more similar between subjects with an 
average cosine similarity of 0.938 ± 0.005, with the full channel representation at 0.784 ± 0.017 
similarity across subjects (p < 0.001). This supports the notion that a high-density array provides 
additional resolution over manually placed electrodes, which may help dissociate finer nuances 
in movement coordination. 
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Figure 4. Muscle synergies decomposed in the forearm of able-bodied (N=7) subjects that performed 37 different
movements and grasps. (A) Average time-invariant muscle synergy (MS) representations by EMG channels across all subjects
mapped to the flattened NeuroLife sleeve. Active regions highlight coupled forearm muscles. (B) Average time-invariant muscle
synergy representations mapped to muscle groups across all subjects. (C) Average activation of muscle synergies during the cued
movements. (D) Average variance accounted for (VAF) between the original and reconstructed signals ± standard error of the
mean. Seven muscle synergies were sufficient to reconstruct the data with at least 85% of the explained variance. (E) Individual
VAF for each synergy component. Note: synergy components are ranked in order of explained variance of the data. (F) Leave one
out (LOO) analysis comparing each subject’s muscle synergies with the remaining group average. Each point represents the
median cosine similarity between each muscle synergy pair of the seven muscle synergies. The average cosine similarity across the
seven muscle synergies is shown for both the channels (A) and muscle groups (B) muscle synergy representations. Using the
reduced muscle synergy representation via muscle groups, similar to using single electrodes, the cosine similarity is significantly
higher among individuals indicating that the HD-EMG array provides additional resolution to dissociate movement coordination (p <
0.001). 

Muscle synergies are relatively preserved following stroke, with alterations 
highlighting specific movement coordination differences 
In the 12-movement dataset, muscle synergies and synergy activations were decomposed from
both able-bodied and stroke populations to investigate potential changes in movement
coordination post-stroke (Figure 5). With the downselected dataset, only five synergies were
required to reconstruct the original signal in both groups (Figure 5D). Overall, muscle synergies
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decomposed from the channel data match closely between the stroke and able-bodied groups,
though the spatial activation of the stroke group’s synergies are slightly more distributed across
the sleeve (Figure 5A). Average group synergies by channels and synergy activations by
movements over time can be seen in Supplementary Figures 6 and 7. When looking specifically
at muscle groups, the coupling between stroke subjects’ digit extensors and muscles that
actuate the thumb was affected in the first synergy (Figure 5B – MS 1). This synergy was still
activated during Hand Open in both groups, but it was also largely activated during Hand Close,
Key Pinch, Pointing Index, Wrist Pronation, and Wrist Supination for the stroke group and not in
the able-bodied group (Figure 5C). Instead, the second synergy, which favored wrist extensors
in both groups, had the highest activation for Hand Open in the stroke group, with the able-
bodied group only having a moderate activation. This demonstrates a compensatory strategy in
which stroke individuals favored wrist extensors over digit extensors when attempting to open
their hands. Interestingly, synergy 5, which was composed of wrist flexors in both groups, had a
more dominant weighting for stroke subjects compared to the able-bodied group. This synergy
was also highly activated in both Wrist Flexion and Extension, as well as some other
movements, in the stroke group only. This demonstrates an excessive co-contraction of the
wrist flexor muscles during attempted movements that is not present in the able-bodied group.
This can also be seen in the activation of synergy 4, which favored the digit flexors strongly in
both groups. 

Figure 5. Muscle synergies decomposed in the forearm of able-bodied (N=7) and chronic stroke (N=7) subjects from
various functional movements. Muscle synergies are ordered based on the individual variance accounted for (VAFi) when
reconstructing the original signal. (A) Average time-invariant muscle synergy (MS) representations by EMG channels across all
subjects within groups mapped to the flattened NeuroLife sleeve. On average, muscle synergies in the stroke group are similar to
the average able-bodied muscle synergies, indicating that muscle synergies are relatively preserved following a stroke. (B) Average
time-invariant muscle synergy representations mapped to muscle groups across all subjects within groups. On average, able-bodied
subjects had a higher weighting to digit extensors and thumb muscles in the first muscle synergy. (C) Average synergy activations
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during the attempted movements. (D) Average variance accounted for (VAF) between the original and reconstructed signals ± 
standard error of the mean. Five muscle synergies were sufficient to reconstruct the data with at least 85% of the explained variance 
for both groups. (E) Leave one out (LOO) analysis of muscle synergy similarity. Each point represents the median cosine similarity 
between a subject’s muscle synergies and the remaining group average. On average, muscle synergies in their channel 
representation (A) were more similar within able-bodied subjects than within stroke subjects (p < 0.01), whereas there was no 
significant difference when mapped to muscle groups analogous to manually placed EMG electrodes. 

To assess muscle synergy similarity between groups, a LOO analysis was conducted (Figure 
5E). When decomposed in their full HD-EMG channel representation (Figure 5A), muscle 
synergies were more similar within able-bodied subjects than within stroke subjects (p < 0.01). 
This demonstrates the variability between participants with stroke, which may be associated 
with differing functional abilities. However, when reducing muscle synergies to muscle groups, 
analogous to individually placed EMG electrodes, there was no significant difference between 
groups. As the spatial resolution decreased, the synergies matched more closely between 
subjects and between subject groups, indicating there may be some additional sub-muscle 
coupling [29]. Supplementary Figure 8 shows individual subject comparisons to the average 
able-bodied control group’s synergies by channels. 

Interpretable, combined measures of movement coordination can predict 
functional clinical metrics  
To demonstrate the potential for HD-EMG features to predict motor function, we used a 
combinatorial approach in which multiple feature views were assessed. Taking into 
consideration both co-contraction by movement and time-invariant muscle synergies can help 
assess motor control from two related perspectives. A concatenated HD-EMG feature vector 
was created consisting of CCI by movement (12 movements) and stacked muscle synergies by 
channels (5 synergies x 70 channels) for a total of 362 features per subject. This feature vector 
was reduced using PCA to its first two combined principal components explaining 47.0% (PC1) 
and 16.5% (PC2) of the data, respectively. Individual feature projections were determined using 
least squares estimation [26] to map the features to individual principal components (Figure 6A). 
Based on these two components, three groups of distinct functional ability emerged (able-
bodied, UEFM-HS > 3 – mild, UEFM-HS ≤ 3 – severe). Additionally, the first principal 
component was able to predict UEFM-HS in stroke subjects with R2=0.86 (p=2.53 x 10-3) 
(Figure 6B). 

Interpretability of alterations in biomarker features is important to understand deficiencies, which 
may reveal mechanisms of recovery and potentially new therapies. By looking at the first 
principal component embeddings of individual features, it is possible to see affected movements 
and alterations in muscle coupling. Individual principal component embeddings mapped to CCI 
by movement show a strong negative weighting for Hand Open, Thumb movements, Wrist 
Extension, and Wrist Supination indicating that as CCI decreases, functional ability improves 
(Figure 6C). Embeddings mapped to muscle synergies show a positive weighting to the digit 
extensors and muscles that actuate the thumb in the first muscle synergy (Figure 6D & E). This 
demonstrates that an increase in functional ability based on clinical score can be explained by 
an increase in coupling between digit extensors and muscles that actuate the thumb. On the 
other hand, a negative weighting in digit flexors and wrist flexors in synergies 4 and 5, 
respectively, demonstrates increased flexor activation for more severe subjects. 
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Figure 6. Combining average co-contraction by movement and muscle synergies by channels to predict groups of
functional ability based on the Upper Extremity Fugl-Meyer – Hand Subscore (UEFM-HS) clinical assessment. (A) Scatter
plot of the first two principal components of the HD-EMG features highlighting three distinct populations (Able-bodied, mild: UEFM-
HS > 3, and severe: UEFM-HS ≤ 3). The diamonds indicate the population average. (B) The shared first principal component is
correlated with UEFM-HS in stroke participants R2=0.86 (p=2.53 x 10-3). (C) Individual embeddings of the average co-contraction by
movement show that a negative weighting, or a reduction in CCI, for Hand Open, Thumb movements, Wrist Extension, and Wrist
Supination explains a positive increase in functional ability. (D, E) Individual embeddings of muscle synergies by channels mapped
to the flattened sleeve (D) and muscle groups (E). An increase in coupling between the digit extensor and muscles that actuate the
thumb in the first synergy explains an increase in functional ability by clinical score. Alternatively, a negative weighting in digit flexors
and wrist flexors in synergies 4 and 5, respectively, demonstrates increased flexor activation for more severe subjects. 

 

Discussion 
In this study, we demonstrated the ability to characterize movement coordination across a wide
range of hand movements using a HD-EMG sleeve that spans the forearm muscles. Our results
build upon previous studies that assessed gross arm movements by showing that synergies of
the forearm during dexterous movements are also relatively preserved in composition following
cortical stroke [7], with changes in composition related to affected muscle coupling that hinders
functional ability [30]. We show that activation of synergies during movements revealed
differences in coordination, highlighting overactivation of antagonist muscles and compensatory
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strategies. By developing a mapping between sleeve sizes, we were able to compare subjects 
of varying functional ability and arm sizes with a streamlined sleeve system that can be easily 
adopted by both research and clinical communities.  

To provide physiological interpretation of the extracted HD-EMG features, we developed a HD-
EMG-to-muscle group mapping. This mapping highlighted reduced coupling between digit 
extensors and muscles that actuate the thumb in the chronic stroke population in both muscle 
correlation and muscle synergy analyses. This reduction in muscle coupling was associated 
with a reduction in functional movement ability (Figure 6B). Despite the reduced coupling 
between these muscle groups, stroke subjects had greater overall co-contraction than able-
bodied subjects during select movements (Figure 3A). Muscle synergies represented in their 
reduced spatial mapping to muscle groups showed a higher similarity between subjects than the 
channel-wise muscle synergy representation (Figure 4F). This suggests that manually placed 
electrodes on a small number of prominent muscles may not fully characterize differences 
between synergies across a wide range of dexterous movements. Improved spatial coverage 
provided by the sleeve’s HD-EMG array spans multiple muscles and can extract common 
synaptic input to muscles that contribute to multiple synergies [31], [32]. In a similar study, 
researchers used HD-EMG to account for subtle variation of neuromuscular activities via muscle 
synergies across channels during two wrist movements under isometric and isotonic training 
modes [29]. Our results further support the finding that whole-muscle components of synergies 
can be broadened to include sub-muscle components represented by HD-EMG. Furthermore, 
our work expands this finding to account for a full range of functional hand movements, as well 
as fine grasps, in both an able-bodied and stroke population to characterize hand movement 
coordination. By evaluating both the full and reduced muscle synergy representations, subtle 
changes in muscle activation can be assessed and muscle groups with reduced coupling can be 
targeted for further investigation. 

Singular features of HD-EMG may not be able to fully characterize an individual’s level of motor 
function. As a result, we assessed a combination of HD-EMG features (CCI and muscle 
synergies) to predict functional ability measured with standard clinical assessment metrics. We 
showed that a single principal component from the combined feature vector is correlated with 
UEFM-HS in stroke subjects with varying levels of motor ability. These results demonstrate that 
features decomposed from HD-EMG can dissociate varying abilities to perform functional hand 
movements.  

By characterizing alterations in HD-EMG features post-stroke, we may be able to identify 
candidate biomarkers of motor function across several categories that can be leveraged to 
ultimately improve functional outcomes. Evaluation of new therapies remains difficult due to 
unpredictable, “spontaneous” recovery experienced by stroke, thus creating a challenge for 
clinical trials evaluating restorative and rehabilitation interventions because it introduces 
significant variance [33]. To this end, a prognostic biomarker to predict recovery potential could 
be used to stratify participants to reduce inter-group variability, thereby increasing statistical 
power and reducing sample size, cost, and study durations. Assessment of upper limb function 
and recovery progress is typically measured using validated clinical measurement tools, 
including the Action Research Arm Test (ARAT) and UEFM scale. While these tests provide 
sensitive measures of function [34], [35], they can take anywhere from 10-20 minutes to 
administer, decreasing their clinical feasibility. A monitoring biomarker comprised of real-time 
HD-EMG features, such as changes in muscle synergies across task practice during 
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rehabilitation, could lead to more informed treatment plans that target specific motor 
deficiencies. Finally, several neurological disorders present with overlapping motor symptoms 
that pose challenges for early diagnosis [36]. Comprehensive assessment of features derived 
from HD-EMG may be able to produce a diagnostic biomarker that can differentiate between 
these disorders. 

We demonstrated that HD-EMG features were correlated with motor function in chronic stroke 
survivors, but the methods described have the potential to be broadly applied across a wide 
range of applications. Our analysis focused on movement coordination of the hand, but lower 
limb EMG patterns post-stroke further demonstrate the heterogeneity across individuals [37], 
presenting an opportunity to leverage the spatiotemporal advantages of HD-EMG to classify 
motor function across patients. HD-EMG features may also be able to provide insights into 
altered motor function of other neurological disorders, including Parkinson’s disease, dystonia, 
and amyotrophic lateral sclerosis (ALS). Our preliminary analyses suggest that combining HD-
EMG features into an interpretable metric is useful for predicting motor function. It is likely that 
different sets of HD-EMG features and clinical information may provide unique prediction 
capabilities for each disorder.  

While we successfully demonstrated the ability to characterize hand movement coordination in 
both able-bodied and stroke populations, we extracted HD-EMG features across simple 
movements. Future studies should consider compound movements to better approximate 
activities of daily living (e.g., grasping with supination in a bottle pour task). Despite focusing on 
simple movements, co-contraction and muscle synergies were able to dissociate functional 
ability between varying levels of stroke survivors. It is possible that over the course of therapy, 
however, minor changes in HD-EMG features may not directly correlate with functional 
improvement.  To uncover subtle changes, in future studies, we should further leverage the HD-
EMG array signal resolution to assess the neural drive to muscles via motor unit decomposition 
to assess the common input to motor neurons for modular control [31], [32], [38]–[40]. Using a 
compound movement dataset and combining different aspects of motor control through a single 
system can help assess motor function with a more holistic framework. Additionally, while we 
were successfully able to compare features extracted between subjects with different arm sizes 
and anatomy, it would be beneficial to record EMG from the unaffected arm of hemi-paretic 
stroke participants for a more direct comparison of recovery. This could also refine a synergy-
based functional electrical stimulation (FES) pattern focused on alterations in synergy 
composition, which has shown promise to promote recovery in stroke individuals’ upper-limb 
motor performance [41]–[45]. Incorporating FES within the same HD-EMG recording electrodes 
in a single sleeve formfactor may help to personalize FES based on EMG features. Our group is 
actively developing an EMG-FES sleeve system to provide targeted stimulation based on motor 
intention to drive neuroplasticity. 

Conclusion 
 
In this study, we successfully demonstrated that HD-EMG features decomposed from the 
paretic arm of chronic stroke survivors show changes in movement coordination that correlate 
with motor function. We demonstrated the ability to compare sub-muscle synergies across 
individuals and groups to highlight alterations that reflect differences in muscle coupling during 
hand movements. Muscle synergies that coordinate hand movements were relatively preserved 
following cortical stroke, with reduced coupling observed in the digit extensors and muscles that 
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actuate the thumb, as well as an overactivation of flexors. Importantly, we introduced the 
concept of combining different HD-EMG features of motor control for a more holistic view of 
movement coordination and functional ability. We found that there was an interpretable 
combination of HD-EMG features that was correlated with clinical scores of motor function. 
Overall, these findings suggest that non-invasive HD-EMG features can describe altered motor 
control post-stroke, providing an opportunity to leverage these features for improved functional 
outcomes. 

Disclaimer 
This device has not been approved or cleared as safe or effective by FDA. This device is limited 
by U.S. federal law to investigational use. 
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