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Abstract 

Disentangling brain ageing from disease-related neurodegeneration in patients with multiple 

sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this 

problem but may miss disease-specific effects. Here, we statistically modelled disease 

duration (DD) in PwMS as a function of brain MRI scans and evaluated whether the brain-

predicted DD gap (i.e., the difference between predicted and actual duration) could 

complement the brain-age gap as a DD-adjusted global measure of multiple sclerosis-specific 

brain damage. 

In this retrospective study, we used 3D T1-weighted brain MRI scans of PwMS (i) from a 

large multicentric dataset (n = 4,392) for age and DD modelling, and (ii) from a monocentric 

longitudinal cohort of patients with early multiple sclerosis (n = 252 patients, 749 sessions) 

for clinical validation. We trained and tested a deep learning model based on a 3D DenseNet 

architecture to predict DD from minimally pre-processed brain MRI scans, while age 

predictions were obtained with the previously validated DeepBrainNet algorithm. Model 

predictions were scrutinised to assess the influence of lesions and brain volumes, while the 

DD gap metric was biologically and clinically validated within a linear model framework 
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assessing its relationship with brain-age gap values and with physical disability measured 

with the Expanded Disability Status Scale (EDSS). 

Our model predicted DD better than chance (mean absolute error = 5.63 years, R2 = 0.34) and 

was nearly orthogonal to the brain-age model, as suggested by the very weak correlation 

between DD gap and brain-age gap values (r = 0.06). DD predictions were influenced by 

spatially distributed variations in brain volume, and, unlike brain-predicted age, were 

sensitive to the presence of lesions (mean difference between unfilled and filled scans:  0.55 

± 0.57 years, p < 0.001). The DD gap metric significantly explained EDSS scores (β = 0.060, 

p < 0.001), adding to brain-age gap values (ΔR2 = 0.012, p < 0.001). Longitudinally, 

increasing annualised DD gap was associated with greater annualised EDSS changes (r = 

0.50, p < 0.001), with a significant incremental contribution in explaining disability 

worsening compared to changes of the brain-age gap alone (ΔR2 = 0.064, p < 0.001). 

The brain-predicted DD gap metric appears to be sensitive to multiple sclerosis-related 

lesions and brain atrophy, adding to the brain-age paradigm in explaining physical disability 

both cross-sectionally and longitudinally. Potentially, it may be used as a multiple sclerosis-

specific biomarker of disease severity and progression. 
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Introduction 

In multiple sclerosis, a complex interplay exists between brain ageing and disease-related 

tissue damage accumulation.1 Untangling the shared and unique aspects of ageing and 

multiple sclerosis-related neurodegeneration is important to accurately assess disease severity 

and progression over time, and is increasingly relevant as both life expectancy and the 

average age of patients with multiple sclerosis (PwMS) are increasing.2 However, measuring 

the two processes independently is an open challenge due to their substantial overlap and 

dynamic interaction.3 

The brain-age paradigm has emerged as a promising data reduction strategy, summarizing 

complex neuroimaging information into a simple yet clinically relevant biomarker of ageing 

and neurodegeneration.4 Briefly, machine learning methods are used to model chronological 

age as a function of brain MRI scans in healthy subjects (HS), and the resulting model of 

normal brain ageing is used for neuroimaging-based age prediction in unseen subjects.4 The 

extent to which a subject deviates from healthy brain ageing, expressed as the difference 

between predicted and chronological age (the brain-age gap, BAG), has been proposed as an 

age-adjusted global index of brain health, capturing variations associated with a wide 

spectrum of neurological and psychiatric disorders, including multiple sclerosis.5–7  

However, the BAG metric is designed to be sensitive to those aspects of brain pathology that 

most resemble healthy ageing processes, potentially failing to capture disease-specific effects. 

Indeed, conceptualizing brain involvement in multiple sclerosis solely as a form of 

premature/accelerated ageing might be reductive since it differs from healthy brain ageing not 

only in grade but also in nature. Brain volume loss, for instance, is known to occur with 

different spatio-temporal patterns in healthy ageing and multiple sclerosis8, while white 

matter (WM) lesions are characteristic of multiple sclerosis but do not substantially determine 

brain-age prediction7. Furthermore, BAG is influenced by early-life genetic and 

environmental factors which may not be intrinsically related to ageing processes, nor to the 

development of brain pathology.9 

While there is increasing attention to the prodromal and pre-clinical aspects of multiple 

sclerosis, a discrete clinical onset date is almost always identifiable in PwMS which, although 

inherently ambiguous, might represent an acceptable proxy for disease start and enable the 

estimation of disease duration (DD).10 Interestingly, this has been previously used to 
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contextualize individual disease severity in PwMS by referencing a clinical indicator (e.g., 

the Expanded Disability Status Scale - EDSS - score) to its distribution in patients with 

comparable DD (i.e., the Multiple Sclerosis Severity Score - MSSS).11 

Here, we proposed a quantitative neuroimaging measure of brain structural damage, assessed 

through conventional MRI and referenced to DD. We hypothesised that modelling DD in 

PwMS as a function of structural brain MRI scans would provide a reference standard of 

multiple sclerosis-related brain damage accumulation. The error associated with the 

prediction of DD (the brain-predicted DD gap), quantifying the extent to which a patient 

deviates from the typical disease trajectory, should reflect past and ongoing multiple 

sclerosis-specific processes and encode biologically and clinically relevant information about 

disease-related variability. By evaluating it against BAG and longitudinal clinical and MRI 

data, we aimed to validate the brain-predicted DD gap as a neuroimaging biomarker of 

multiple sclerosis severity and progression. 

Finally, as multiple sclerosis is sometimes theorized as a purely age-dependent disease, with 

natural history driven by age irrespective of the apparent DD,12 we also explored an 

alternative modelling strategy originating from this alternative conceptualization of the 

disease. Specifically, we modelled chronological age in PwMS to estimate a reference 

trajectory of multiple sclerosis-specific brain ageing (MS-age) and tested the corresponding 

prediction error (the brain-predicted MS-age gap) as a biomarker of disease severity and 

progression. 
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Materials and methods 

Participants 

In this retrospective multi-centric study, we collected MRI and clinico-demographic data of 

patients diagnosed with multiple sclerosis according to the 2010 McDonald criteria13 or 

clinically isolated syndrome (CIS)10. Written informed consent was obtained from each 

participant independently at each centre. The final protocol for this study was reviewed and 

approved by the local Ethics Committees and the MAGNIMS Study Group Steering 

Committee for the analysis of pseudonymized data (www.magnims.eu). 

We gathered 3D T1-weighted (T1w) brain MRI scans of patients from 15 European centres 

for modelling age and DD. A T2-weighted fluid-attenuated inversion recovery (FLAIR) scan 

was also required for all subjects to automatically segment T2-hyperintense lesions. For the 

clinical and biological validation of the age and DD models, we used 3D T1w brain images 

of an external longitudinal cohort of patients with a first scan in the early phases of the 

disease (< 5 years from clinical onset). Physical disability was scored using EDSS at the time 

of MRI. 

Deep learning age and disease duration modelling 

A schematic illustration of the conceptual design of the study is shown in Figure 1. 

T1w scans were used as input for age and DD prediction models. Minimal preprocessing was 

performed with ANTsPyNet (https://github.com/ANTsX/ANTsPyNet) and included N4 bias 

field correction, skull-stripping and affine registration to the 1mm-isotropic MNI152 

template. 

For the prediction of age and the estimation of BAG, we used the DeepBrainNet algorithm, 

an external model based on a two-dimensional convolutional neural network architecture that 

has been extensively validated.14 The BAG model was considered as a benchmark in 

subsequent analyses. 

For the prediction of DD, an in-house model was trained, validated, and tested on the age and 

DD modelling cohort, which was randomly split into training (n = 2811, 64%), validation (n 

= 703, 16%) and test (n = 878, 20%) sets. Our model was built on the 3D DenseNet264 

architecture, adapted from the implementation available at Project MONAI 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2024.01.02.23300497doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.02.23300497


8 
 
 

 

(https://docs.monai.io/en/stable/_modules/monai/networks/nets/densenet.html) by adding a 

linear regression layer for the prediction of a continuous variable and a 0.2 dropout rate after 

each dense layer to reduce overfitting. Before being presented to the model, images were 

resampled to 1.5 mm3 voxels to reduce array size and computational burden while retaining 

anatomical details, and online data augmentation was performed, including random spatial 

and intensity transformations, to make the network further invariant to image quality 

variations and site effects. A log(x+1) transformation was applied to the outcome variable to 

account for the highly positively skewed distribution of DD values. Mean absolute error 

(MAE) and coefficient of determination (R2) were used to quantify model performance. 

Modelling was performed with PyTorch 1.12.015 using one NVIDIA Tesla T4 16 GB 

graphics processing unit. 

Finally, to model multiple sclerosis-specific brain-ageing, we trained, validated and tested the 

same network architecture to predict chronological age on the age and DD modelling cohort. A 

conceptual outline of the MS-age modelling strategy is shown in Supplementary Figure 1. 

Model interpretability 

To scrutinise model predictions on the test set, we used guided backpropagation to obtain 

saliency maps highlighting regions of the input image that are most influential for the model's 

predictions.16 

Furthermore, to better understand the imaging patterns underlying the predictions, we 

conducted a post-hoc correlational analysis: we segmented T1w and FLAIR scans of the test 

set with SAMSEG17 and FastSurfer18 to obtain volumes of lesions and gray matter regions, 

respectively, which were then correlated with age and DD gaps while correcting for age, 

age2, DD, sex, and estimated total intracranial volume (eTIV). 

Finally, we investigated the impact of MS lesions on age and DD predictions: lesions were 

artificially removed from T1w images of the test set using FSL lesion-filling algorithm19, 

both “lesion-filled” and “unfilled” scans were run through the prediction procedures, and 

resulting values were compared with paired sample t-tests and Bland-Altman plots. 

Statistical analysis 

Statistical analyses were carried out using R (version 4.1.2), with a statistical significance 

level set at p < 0.05. Cross-sectional associations between age and DD gaps and EDSS were 
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investigated in the test set using linear models including also age, age2 (to account for the 

non-linear effect of age), DD, and sex. To assess the additional values of the DD and MS-age 

gap metrics over the “classical” BAG in explaining EDSS variance, the corresponding 

models were compared using F tests. 

In the early multiple sclerosis cohort, the longitudinal evolutions of EDSS, BAG, DD and 

MS-age gaps were analysed using a multilevel linear model framework, with timepoints 

nested within subjects and random intercept and slope of follow-up time per subject, 

including also the fixed effects of age, age2, and sex. When modelling the DD gap, the fixed 

effect of DD was also included in the model to correct for DD-related bias (i.e., the 

underestimation of DD in long-standing PwMS and vice versa). From these growth models, 

individualized changes per year (i.e., annualised) were extracted as the individual-level 

coefficients of the follow-up time term, corresponding to the sum of the fixed and random 

effects. Then, we explored how longitudinal changes in brain MRI-derived measures related 

to changes in physical disability (i.e., EDSS) by correlating the corresponding annualised 

changes in patients with at least two visits (n = 200). Similar to the cross-sectional analysis, 

the value of adding the longitudinal evolution of DD or MS-age gap to BAG change over 

time for explaining EDSS worsening was assessed by comparing the corresponding models 

with F tests. 

Data availability 

Data from patients are controlled by the respective centres (listed in Table 1) and are 

therefore not publicly available. Request to access the data should be forwarded to data 

controllers via the corresponding author. The trained DD and MS-age models will be made 

available at https://github.com/giupontillo. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2024.01.02.23300497doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.02.23300497


10 
 
 

 

Results 

Participants 

A total of 4,392 patients were selected for the Age and DD modelling cohort. The Early 

multiple sclerosis longitudinal validation cohort was composed of 252 patients and 749 

sessions, with a mean follow-up time of 4.5 years (range: 0.2 - 19.1). Demographic and 

clinical characteristics of the studied population are reported in Table 1, while the details of 

the different acquisition protocols are provided in Supplementary Table 1. 

Age and disease duration models 

The DeepBrainNet model predictions on the test set showed that multiple sclerosis was 

associated with older appearing brains (mean BAG: 7.81 ± 9.35 years). As for the prediction 

of DD, the out-of-sample performance of the model was well above chance level (test set 

MAE = 5.63 years, R2 = 0.34) (Figure 2A). To help contextualize the performance of the DD 

prediction model, we computed R2 values for the association of DD with established MRI 

biomarkers in the test set for comparison: total lesion (R2 = 0.10) and thalamic (R2 = 0.14) 

volumes. As for the MS-age model, predictions on the test set were highly accurate (MAE = 

3.78 years, R2 = 0.80) (Supplementary Figure 2A).  

When looking at the relationship between these metrics, DD gap and BAG values were 

nearly orthogonal to each other (r = 0.06, p = 0.07), suggesting that the models’ predictions 

were largely independent (Figure 2B). On the other hand, MS-age gap still moderately 

correlated with BAG (r = 0.35, p < 0.001), revealing a higher degree of entanglement 

between the two models (Supplementary Figure 2B). 

The interpretability analysis showed that both the DD and MS-age models focused on regions 

that appear to be primarily related to (the widening of) the cerebrospinal fluid spaces (Figure 

3 and Supplementary Figure 3). Also, all age and DD gap measures correlated diffusely with 

regional brain atrophy and lesion burden, with the greatest effect sizes observed for BAG 

values (and the lowest for the MS-age gap) and no clear anatomical specificity (Figure 4 and 

Supplementary Figure 4). As for the impact of MS lesions, there was a significant impact of 

the filling procedure on brain-predicted DD values (mean difference between unfilled and 

filled scans:  0.55 ± 0.57 years, p < 0.001) (Figure 5A), with no evident systematic bias 

caused by lesion filling for brain-age predictions (mean difference: -0.03 ± 0.80 years, p = 
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0.31) (Figure 5B). The MS-age model was also slightly sensitive to the filling procedure 

(mean difference: 0.07 ± 0.43 years, p < 0.001) (Supplementary Figure 5).  

Brain-age and disease duration gaps independently explain 

physical disability 

In the test set, both BAG (β = 0.026, p < 0.001) and DD gap (β = 0.060, p < 0.001) were 

positively associated with EDSS (Table 2 and Figure 6A-B). A positive association was also 

found for the MS-age gap metric (β = 0.031, p < 0.001) (Supplementary Table 2 and 

Supplementary Figure 6). 

When investigating the incremental value of multiple sclerosis-specific metrics in explaining 

EDSS in addition to BAG, the DD gap significantly added to the baseline model (ΔR2 = 

0.012, p < 0.001) (Table 2), while the inclusion of the MS-age gap did not significantly 

improve the model fit (ΔR2 = 0.002, p = 0.10) (Supplementary Table 2). 

Longitudinal brain-age and disease duration gaps’ increases 

independently explain EDSS worsening 

In the early multiple sclerosis cohort, growth models revealed significant EDSS worsening (β 

= 0.058, p < 0.001) and BAG increase (β = 0.472, p < 0.001) over time (Supplementary 

Figure 6). Both DD (β = 0.057, p = 0.22) and MS-age (β = 0.016, p = 0.76) gaps only 

exhibited a slight, non-significant, upward trend (Supplementary Figure 7). 

The annualised change in EDSS score correlated with annualised changes of both BAG (r = 

0.48, p < 0.001) and DD gap (r = 0.50, p < 0.001) (Figure 6C-D), while the correlation 

between annualised changes of EDSS and MS-age gap did not reach statistical significance (r 

= 0.11, p = 0.12) (Supplementary Figure 8). 

When assessing how longitudinal changes of multiple sclerosis-specific metrics contributed 

to explaining EDSS worsening, the DD gap significantly added to the baseline model 

including BAG change over time (ΔR2 = 0.064, p < 0.001) (Table 2), while the addition of the 

MS-age gap metric did not significantly improve the model fit (ΔR2 = 0.010, p = 0.13) 

(Supplementary Table 4). 
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Discussion  

Using deep learning, we separately modelled ageing and disease-specific effects from 

structural brain MRI scans of a large multicentric sample of PwMS. We validated the DD gap 

as a biologically and clinically meaningful global measure of multiple sclerosis-specific brain 

damage, adding to the information provided by models of healthy brain ageing as a 

biomarker of disease severity and progression.  

While age is often treated as a mere confounder in neuroimaging analyses, brain ageing and 

multiple sclerosis are intimately intertwined. On the one hand, the relationship between age 

and the brain is shaped by the disease and encodes disease-related information. On the other, 

age is an essential modifier of multiple sclerosis clinical course and treatment response.20,21 

Understanding the complex interaction between ageing and neurodegeneration and 

disentangling the overlapping and distinct mechanisms underlying the two processes bears 

great transdiagnostic relevance and is the topic of increasing research interest.22,23 

The brain-age paradigm offers a window into this problem and has been previously used to 

characterize neurodegeneration in multiple sclerosis due to its sensitivity to brain ageing-like 

patterns.5–7,24,25 In line with previous studies, our results confirmed that, when observed 

through the lens of healthy ageing, the brains of PwMS look older than normal (around eight 

years on average), suggesting that at least some of the disease-related variance in brain 

structure can be effectively modelled in terms of premature/accelerated brain ageing.  

When trying to disentangle disease-specific effects, the proposed DD gap metric exhibited a 

low correlation with BAG, supporting the relative independence between the two measures 

and the underlying phenomena. It should be noted that DD is an intrinsically noisy measure, 

relying on the date of clinical onset, which is often assigned retrospectively based on the 

subjective recollection of symptoms. Nevertheless, the model performance was above chance 

level, and explained considerably more variance in DD than other established measures of 

multiple sclerosis-related brain involvement such as total lesion and thalamic volumes. On 

the other hand, the MS-age model was highly accurate, nearly approaching the performance 

of state-of-the-art deep learning models of healthy brain ageing14,26–28, but the corresponding 

gap measure was highly correlated with BAG, suggesting a greater degree of residual 

dependence from healthy brain ageing patterns.  
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The interpretability analyses showed that all measures were influenced by regional brain 

volumes, with the lowest effect sizes observed for the MS-age gap metric, revealing the lower 

capacity of the corresponding model to capture inter-subject variability. In line with what has 

been previously observed for healthy brain ageing models,29,30 age and DD predictions were 

influenced by spatially distributed, rather than localized, variations in brain volume. 

Interestingly, the presence of lesions did not directly influence BAG values, while MS-age 

and, most prominently, DD predictions on unfilled scans were systematically higher than 

those obtained on lesion-filled counterparts, suggesting that multiple sclerosis-specific 

models can effectively measure disease-related phenomena that are not captured by the 

classical brain-age paradigm. 

This idea was further supported by the association with physical disability, with the DD gap 

metric explaining additional variance in the EDSS score compared to BAG alone. 

Longitudinal trajectories estimated on the early multiple sclerosis cohort substantiated the 

biological interpretation of the investigated metrics. EDSS, as a measure of physical 

disability, and BAG, expressing the deviation from healthy brain ageing, tend to increase 

over time on average as a reflection of disease progression. Conversely, multiple sclerosis-

specific metrics express deviation from the average PwMS and therefore do not exhibit 

significant group-level change over time.  

It should be noted that early multiple sclerosis represents the ideal setting to analytically 

separate ageing and disease-specific effects, as the relative contribution of normal ageing to 

brain atrophy is low and the amount of disease-related variance in brain structure that is not 

explained by ageing is higher.8 Indeed, a ceiling effect is observable for brain structural 

damage, with the trajectories of brain volume change in PwMS and HS tending to align in the 

elderly.31  

From the clinical perspective, the longitudinal association between BAG and physical 

disability has been previously demonstrated.7 We showed that disability worsening is also 

paralleled by the increase in DD gap, reflecting accelerated progression of multiple sclerosis-

specific brain damage compared to reference trajectories and adding to the BAG metric in 

explaining EDSS change over time.  

Taken together, our results show that complementing the brain-age paradigm with models 

explicitly designed to capture disease-specific effects allows to comprehensively measure 

both ageing-like and non ageing-like aspects of brain pathology, providing a more accurate 
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explanation of brain damage and related disability in PwMS. The DD gap metric, in 

particular, is sensitive to imaging patterns (and underlying biological processes) that are 

relatively independent from healthy brain ageing and therefore adds to classical brain-age 

models as a disease-specific biomarker. The model of multiple sclerosis-specific ageing, on 

the other hand, is not as specific, probably because of its sensitivity to physiological, non 

disease-related variability across subjects, and does not seem to add to the classical brain-age 

paradigm. 

Our study is not without limitations. First, the DD model is prone to biases. As mentioned, 

DD is an intrinsically noisy measure, with the length of the preclinical phase being influenced 

by several, not necessarily random, factors.32 For a more accurate estimation of reference 

disease trajectories, we need more accurate estimates of disease onset relying on objective 

biomarkers.32,33 Also, consideration is needed on the potential confounding role of disease 

modifying drugs. In recent years, the therapeutic landscape in multiple sclerosis has 

drastically changed, with the proliferation of highly effective treatment options making 

PwMS with a more recent diagnosis more likely to have milder disease courses. More 

complex models taking into account the effect of treatment as a disease course modifier will 

be needed to solve this possible bias. Furthermore, some caution is needed when interpreting 

gap values due to their DD-dependence (i.e., the underestimation of DD in PwMS with 

longer disease and vice versa). Similarly to healthy brain ageing models, care should be taken 

to apply statistical bias correction before or during downstream analyses.34 Second, further 

clinical validation with additional outcome measures, longer follow-up times and more 

varied, real-world, clinical populations will be needed to fully assess the potential of the DD 

gap metric for patient stratification in clinical practice. It is also worth noting that the realm 

of deep learning methods offers possible alternatives to solve the problem of unraveling brain 

ageing and disease-specific effects, with disentangled representation learning approaches 

being particularly promising in this regard and potentially representing a crucial area for 

future research.35,36 

In conclusion, we demonstrated that the DD gap is a clinically meaningful measure of 

multiple sclerosis-specific brain damage, adding to models of healthy brain ageing. 

Condensing the complex information contained in routinely acquired brain MRI scans into a 

simple and intuitive biomarker of disease severity and progression, it may represent a 

powerful tool for the stratification of PwMS in both clinical and research settings. 
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Figures 

Figure 1. Conceptual framework of the study. With the brain-age paradigm, chronological 

age is modelled as a function of brain MRI scans in healthy subjects, and the resulting model 

of normal brain aging is used for neuroimaging-based age prediction in unseen subjects. The 

extent to which a subject deviates from healthy brain ageing, expressed as the difference 

between predicted and chronological age (the brain-age gap), is an age-adjusted global index 

of brain health. We proposed to complement this approach by additionally modelling DD in 

PwMS as a function of brain MRI scans, to provide a reference standard of multiple sclerosis-

related brain damage accumulation. The error associated with the prediction of DD (the 

brain-predicted DD gap), quantifying the extent to which a patient deviates from the typical 

disease trajectory, is a DD-adjusted global measure of multiple sclerosis-specific brain 

damage. 

 

Figure 2. Modelling disease duration in patients with multiple sclerosis. In (A), 

scatterplot showing the relationship between the actual disease duration values in the test set 

(N = 878) and the ones predicted by the model. In (B), scatterplot showing the relationship 

between the disease duration gap and the brain-age gap (obtained with the DeepBrainNet 

model) in the test set; marginal density plots are also shown, portraying the distribution of the 

two variables. Linear fit lines are shown as solid lines (with corresponding 95% confidence 

intervals in grey), while dashed lines represent the line of identity (A), and horizontal and 

vertical zero reference lines (B), respectively. 

 

Figure 3. Guided backpropagation analysis to interrogate brain regions influencing the 

model for the prediction of disease duration. Lightbox view of selected slices from the 

quasi-raw T1w volumes (on the left) and corresponding guided backpropagation-derived 

saliency maps (on the right) of two representative pwMS exhibiting extremely positive (A) or 

negative (B) values of DD gap. For saliency maps, both positive (positively correlated with 

the output, in red) and negative (negatively correlated with the outcome, in blue) magnitudes 

are shown. In both cases, the model focuses mostly on regions that appear to be related to 

(the widening of) the cerebrospinal fluid spaces. 
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Figure 4. Correlations between brain-age and disease duration gaps and regional brain 

and lesion volumes. In the upper row, plots showing the correlations between brain-age gap 

values and cortical (A) and subcortical/lesion (B) volumes. In the bottom row, plots showing 

the correlations between disease duration gap values and cortical (C) and subcortical/lesion 

(D) volumes. Shown are the Pearson correlation coefficients resulting from partial correlation 

analyses correcting for age, age2, disease duration, sex, and estimated total intracranial 

volume. The cortex is parcellated according to the DKT atlas.18 

 

Figure 5. Impact of MS lesions on age and DD predictions. Bland–Altman plot of brain-

predicted DD (A) and age (B) from unfilled and filled T1w scans. The plots show the mean 

value from the 2 measures for each participant (x-axis) and the difference between the 2 

measures (y-axis). The mean difference lines are solid, and the corresponding limits of 

agreement (±1.96 * standard deviation of difference) are dashed lines. 

 

Figure 6. Relationships between brain-age and disease duration gaps and physical 

disability. In the upper row, scatterplots showing the marginal effects on EDSS of the brain-

age (A) and disease duration (B) gap metrics (regression models were corrected for the 

effects of age, age2, disease duration, and sex). In the bottom row, scatterplots showing the 

relationship between annualised changes of EDSS and brain-age (C) and disease duration (D) 

gaps. Linear fit lines are shown as solid lines (with corresponding 95% confidence intervals 

in grey). 
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Tables 

Table 1. Demographic and clinical characteristics of the studied population. 
 

Cohort N 
Age DD EDSS 

CIS / RR / SP / PP / NA 
Mean SD Range Mean SD Range N Median Range 

Age and DD modelling 4,392 42.8 10.6 16.4 - 72.8 11.4 9.3 0.0 - 51.6 4,341 2.0 0.0 - 7.5 134 / 2945 / 347 / 81 / 885 

Barcelona I 885 44.3 9.9 18.4 - 70.6 13.5 8.7 0.0 - 45.8 878 2.0 0.0 - 6.5 0 / 0 / 0 / 0 / 885 

Barcelona II 61 48.9 10.4 25.6 - 72.2 19.7 9.5 8.4 - 46.1 61 2.5 1.0 - 6.5 0 / 52 / 9 / 0 / 0 

Basel 100 46.3 13.6 18.2 - 71.9 14.6 12.0 0.5 - 47.9 100 3.0 0.0 - 7.0 1 / 73 / 18 / 8 / 0 

Bochum 101 34.2 10.7 18.4 - 59.5 0.7 0.7 0.0 - 2.5 101 1.5 0.0 - 5.0 52 / 49 / 0 / 0 / 0 

Graz 143 40.3 10.0 20.1 - 69.0 10.6 8.3 0.4 - 39.1 143 1.0 0.0 - 7.0 3 / 127 / 10 / 3 / 0 

Mainz 350 34.8 10.5 17.0 - 69.0 2.8 4.6 0.0 - 33.0 347 1.0 0.0 - 6.5 64 / 285 / 0 / 1 / 0 

Milan 64 43.6 10.5 22.5 - 62.9 11.7 10.3 0.0 - 39.0 64 4.5 1.0 - 7.5 0 / 30 / 27 / 7 / 0 

Naples I 220 40.0 12.6 16.4 - 72.3 10.4 8.5 0.0 - 39.4 220 3.5 0.0 - 7.5 2 / 158 / 36 / 24 / 0 

Naples II 63 37.9 10.8 20.9 - 61.7 9.0 8.4 0.1 - 32.3 63 2.0 0.0 - 6.5 1 / 52 / 5 / 5 / 0 

Oslo 401 38.5 10.2 18.5 - 68.3 4.7 6.2 0.0 - 36.9 372 2.0 0.0 - 7.0 7 / 377 / 11 / 6 / 0 

Oxford 16 44.8 6.5 31.9 - 56.0 10.8 4.7 1.8 - 19.5 16 2.0 0.0 - 6.0 0 / 16 / 0 / 0 / 0 

Prague 1,785 45.4 8.9 20.1 - 72.8 14.0 8.9 0.0 - 51.6 1,774 2.5 0.0 - 7.5 0 / 1540 / 226 / 19 / 0 

Rome 105 43.1 11.3 17.7 - 65.3 10.7 8.7 0.7 - 36.9 105 2.0 0.0 - 6.5 1 / 99 / 3 / 2 / 0 

Siena 47 44.0 12.0 17.9 - 71.3 12.7 8.4 1.0 - 38.4 47 1.5 0.0 - 6.5 0 / 42 / 0 / 5 / 0 

Verona 51 40.0 11.4 20.3 - 65.5 9.1 8.7 0.0 - 34.9 50 2.0 0.0 - 7.0 3 / 45 / 2 / 1 / 0 

Early multiple sclerosis 252 34.5 8.3 19.4 - 64.5 0.7 1.2 0.0 - 4.5 231 1.0 0.0 - 6.5 110 / 142 / 0 / 0 / 0 

London I 160 35.2 8.8 19.4 - 64.5 1.0 1.5 0.0 - 4.5 150 1.0 0.0 - 6.5 49 / 111 / 0 / 0 / 0 

London II 92 33.1 7.2 19.9 - 53.7 0.2 0.3 0.0 - 3.1 81 1.0 0.0 - 3.5 61 / 31 / 0 / 0 / 0 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted January 3, 2024. 

; 
https://doi.org/10.1101/2024.01.02.23300497

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2024.01.02.23300497


27 
 
 

 

 

Cohort N 
Age DD EDSS 

CIS / RR / SP / PP / NA 
Mean SD Range Mean SD Range N Median Range 

Note. SD = standard deviation; DD = disease duration; CIS = clinically isolated syndrome; RR = relapsing-remitting; SP = secondary-progressive; PP = primary-progressive; NA = not available. 
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Table 2. Models for the prediction of EDSS and EDSS annualized change. Coefficient 

estimates (with standard errors in parentheses), and model statistics for the linear regression 

analyses predicting EDSS and EDSS annualized change. 

Dependent variable: 

EDSS 

(1) (2) (3) 

Brain-age gap 0.026*** 0.017*** 

(0.005) (0.006) 

DD gap 0.060*** 0.044*** 

(0.011) (0.012) 

Age 13.786*** 6.927*** 9.756*** 

(1.656) (1.754) (1.988) 

Age² 2.093 3.234** 3.022** 

(1.337) (1.356) (1.352) 

DD 0.023*** 0.078*** 0.060*** 

(0.006) (0.010) (0.012) 

Sex -0.094 -0.001 -0.053 

(0.096) (0.095) (0.096) 

Constant 1.900*** 1.475*** 1.558*** 

(0.091) (0.129) (0.131) 

Observations 867 867 867 

R2 0.187 0.191 0.199 

Adjusted R2 0.182 0.186 0.193 

Residual Std. Error 1.318 (df = 861) 1.315 (df = 861) 1.309 (df = 860) 

F Statistic 39.531*** (df = 5; 861) 40.538*** (df = 5; 861) 35.568*** (df = 6; 860) 

EDSS annualised change 

(1) (2) (3) 

Brain-age gap annualised change 0.177*** 0.099*** 

(0.023) (0.029) 

DD gap annualised change 0.228*** 0.150*** 

(0.028) (0.036) 

Constant -0.027** 0.044*** 0.001 

(0.012) (0.005) (0.013) 

Observations 195 195 195 

R2 0.228 0.250 0.292 

Adjusted R2 0.224 0.246 0.285 

Residual Std. Error 0.069 (df = 193) 0.068 (df = 193) 0.067 (df = 192) 

F Statistic 57.158*** (df = 1; 193) 64.325*** (df = 1; 193) 39.583*** (df = 2; 192) 

Note: DD = disease duration; df = degrees of freedom. *p<0.1; **p<0.05; ***p<0.01 
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