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ABSTRACT 1 

Schizophrenia spectrum disorder (SSD) is one of the top causes of disease burden; similar to 2 

other psychiatric disorders, SSD lacks widely applicable and objective biomarkers. This study 3 

aimed to introduce a novel resting-state functional connectivity (rs-FC) magnetic resonance 4 

imaging (MRI) biomarker for diagnosing SSD. It was developed using customised machine 5 

learning on an anterogradely and retrogradely harmonised dataset from multiple sites, 6 

including 617 healthy controls and 116 patients with SSD. Unlike previous rs-FC MRI 7 

biomarkers, this new biomarker demonstrated a notable accuracy rate of 77.3% in an 8 

independent validation cohort, including 404 healthy controls and 198 patients with SSD from 9 

seven different sites, effectively mitigating across-scan variability. Importantly, our biomarker 10 

specifically identified SSD, differentiating it from other psychiatric disorders. Our analysis 11 

identified 47 important FCs significant in SSD classification, several of which are involved in 12 

SSD pathophysiology. Beyond their potential as trait markers, we explored the utility of these 13 

FCs as both state and staging markers. First, based on aggregated FCs, we built prediction 14 

models for clinical scales of trait and/or state. Thus, we successfully predicted delusional 15 

inventory scores (r=0.331, P=0.0177), but not the overall symptom severity (r=0.128, 16 

P=0.178). Second, through comprehensive analysis, we uncovered associations between 17 

individual FCs and symptom scale scores or disease stages, presenting promising candidate 18 

FCs for state or staging markers. This study underscores the potential of rs-FC as a clinically 19 

applicable neural phenotype marker for SSD and provides actionable targets to 20 

neuromodulation therapies.  21 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.01.02.23300101doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.02.23300101
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

INTRODUCTION 1 

Diagnosis of schizophrenia spectrum disorder (SSD) relies on diagnostic criteria that 2 

categorise disorders based solely on signs and symptoms. There are currently no widely 3 

applicable objective biomarkers1 that can distinguish individuals with SSD from their healthy 4 

counterparts. 5 

 Generating an SSD classifier using resting-state functional connectivity (rs-FC) 6 

magnetic resonance imaging (MRI) is an emerging research topic. However, the practical use 7 

of these classifiers is hindered by several key challenges2–5. First, there is an accuracy problem. 8 

In studies with a large sample size and external validation6,7, classifier performance was below 9 

biomarker requirements (approximately 80%). Accuracy typically decreases with increase in 10 

sample size (N>200) in whole-brain imaging biomarkers8. A machine learning algorithm 11 

requiring many explanatory variables (i.e. FCs) needs more data to achieve accuracy and 12 

generalisability; however, large training samples from multiple facilities may cause a large site 13 

effect, deteriorating data quality9. Second, there is an issue with generalisability. Most previous 14 

studies have used only internal or limited external validation and lacked genuinely independent 15 

cohorts obtained in multiple sites not involved in the initial research10. Third, across-session 16 

variability poses a problem. The reliability of rs-fMRI is questionable over repeated tests11. 17 

Finally, there is a lack of specificity in potential biomarkers identified in rs-FC MRI studies 18 

focusing on specific disorders. Overcoming these issues is crucial for determining truly 19 

effective biomarkers for clinical use in SSD. 20 

 Although disease trait markers assist early intervention, state markers estimate 21 

dynamic changes in response to treatment12,13 and staging markers aid disease prevention or 22 

personalising interventions14. In SSD research, few studies have succeeded in developing state 23 

markers using neuroimaging, and for staging markers, there is no consensus on biological 24 
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staging models15. 1 

 Patient biological data may simultaneously encompass information on traits, states, 2 

and disease stages. As machine learning exploits these features without making distinctions, 3 

diagnostic markers developed using machine learning may also function as state and/or staging 4 

markers. Previous rs-FC biomarker studies reported multiple aggregated FCs as 5 

biomarkers16,17; however, whether individual FCs can be used as one or more of these three 6 

types of biomarkers remains unexplored. A previous study showed that FCs originally 7 

identified as diagnostic markers dynamically changed after treatment18; thus, they also 8 

functioned as state markers. Nevertheless, thoroughly investigating individual FCs has not 9 

been attempted, making it difficult to determine whether any FCs can benefit early disease 10 

detection and intervention as a trait marker or treatment target selection and drug discovery as a 11 

surrogate marker. 12 

Our study focused on two key areas (Figure 1). First, we aimed to develop a clinically 13 

viable rs-FC biomarker for SSD, addressing the challenges mentioned above. Second, we 14 

aimed to investigate whether the diagnostic biomarker can be used as state and staging markers. 15 

The findings of this study can help develop new approaches for improving the diagnosis and 16 

treatment of various psychiatric disorders, not only SSD.17 
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MATERIALS AND METHODS 1 

Participants 2 

We used two independent multi-disorder datasets: one for developing classifiers (‘discovery 3 

dataset’) and the other for validating the classifiers (‘validation dataset’). Participant 4 

characteristics are presented in Table 1 and Supplementary Table 1. There was no overlap of 5 

participants between the discovery and validation datasets. 6 

The discovery dataset comprised data from four sites: Kyoto University Siemens 7 

TimTrio scanner, Showa University (SWA), Centre of Innovation in Hiroshima University, and 8 

University of Tokyo (UTO). The dataset included 1 045 participants consisting of 617 healthy 9 

controls (HCs), 116 patients with SSD (which includes schizophrenia, schizoaffective disorder, 10 

and delusional disorder), 148 patients with major depressive disorder (MDD), 125 patients 11 

with autism spectrum disorder (ASD), and 39 patients with bipolar disorder (BP). 12 

 The validation dataset comprised international cohorts, including the Japanese cohort 13 

from Hiroshima Kajikawa Hospital, Hiroshima Rehabilitation Centre, Hiroshima University 14 

Hospital, Kyoto University Siemens Trio scanner, and Kyoto University Siemens Prisma 15 

scanner. It also included the Taiwanese cohort (Taipei Medical University) and the Centre of 16 

Biomedical Research Excellence open dataset 17 

(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html), along with the Johns Hopkins 18 

University cohort (United States), which included HCs and patients with early-stage SSD. The 19 

total number of participants was 708 (405 HCs, 198 patients with SSD, and 105 patients with 20 

MDD). 21 

 Clinical scale scores: Positive and Negative Syndrome Scale (PANSS)19 and Peters et 22 

al. Delusions Inventory (PDI) 21-item version20 and information about the dosage of 23 
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antipsychotics were available from a subset of participants in both datasets (Supplementary 1 

Table 2). 2 

 This study was conducted in accordance with the recommendations of the review 3 

boards of institutions affiliated with the principal investigators—namely, Hiroshima 4 

University, Kyoto University, SWA, and UTO. Most of the material data in this study can be 5 

downloaded from the DecNef Project Brain Data Repository21 6 

(https://bicr-resource.atr.jp/srpbsopen/). 7 

Data acquisition 8 

All data in the discovery dataset were collected using a unified protocol developed by a 9 

national project (Strategic Research Program for Brain Science [SRPBS] & Brain/Mind 10 

Beyond) in Japan21. The MRI data comprised a T1-weighted structural image, rs-fMRI 11 

acquired using an echo-planar imaging technique, and field map images. The duration of 12 

rs-fMRI was 10 min. The participants were instructed to relax, stay awake, fixate on the central 13 

crosshair mark, and not concentrate on specific things. The MRI data for the validation dataset 14 

included a structural image and rs-fMRI similar to the discovery dataset; however, some of the 15 

data lacked fieldmap images. Scanning parameters for the validation dataset varied by site. The 16 

duration of rs-fMRI was approximately 4–6 min. Detailed imaging parameters for both 17 

datasets are provided in Supplementary Table 3. 18 

Preprocessing 19 

The data were preprocessed according to a previous report22. fMRIPrep version 20.1.11 was 20 

used for data preprocessing23. First, the first four volumes of the rs-fMRI scan were discarded 21 

for T1 equilibration. The preprocessing steps were as follows: slice-timing correction, 22 

realignment, coregistration, susceptibility-induced distortion correction using field maps, 23 
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segmentation of a T1-weighted structural image, normalisation to Montreal Neurological 1 

Institute space, and spatial smoothing with an isotropic Gaussian kernel of 6 mm full-width at 2 

half-maximum. For the participants without field maps in the validation dataset, we applied 3 

‘fieldmap-less’ distortion correction implemented in fMRIPrep. Further details of the pipeline 4 

are available at http://fmriprep.readthedocs.io/en/latest/workflows.html. 5 

Signal extraction 6 

We used two approaches for fMRI signal extraction: (1) a surface-based approach following 7 

the Human Connectome Project pipelines (using the ciftify toolbox version 2.3.224, we 8 

converted volume-based MRI data into data based on ‘greyordinate’ [cortical grey matter 9 

surface vertices and subcortical grey matter voxels]) and (2) an approach based on the regions 10 

of interest (ROIs). For reliable surface-based brain parcellation, we adopted the ROIs from 11 

Glasser et al.25 (379 parcels in total, comprising 360 cortical parcels as surface ROIs and 19 12 

subcortical parcels as volume ROIs). Using these approaches, we extracted BOLD signal time 13 

courses from 379 ROIs. To compare these ROIs with conventional annotations of brain areas 14 

and intrinsic brain networks, we referred to the Anatomical Automatic Labelling (AAL) and Ji 15 

et al.26, respectively. 16 

Noise removal 17 

We used component-based noise correction (CompCor)27 to detect physiological noise. 18 

Anatomical CompCor was applied to the subcortical white matter and cerebrospinal fluid 19 

regions, and the top five principal components were estimated as physiological noise, except 20 

for one participant who had only four components. Accordingly, we regressed out these 21 

components together with six head-motion parameters and averaged the signals over the entire 22 

brain. 23 
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Temporal filtering 1 

We used temporal bandpass filtering ranging from 0.01 to 0.08 Hz28 to the time series of 2 

rs-fMRI to extract the low-frequency brain activity characterising resting state. 3 

Data scrubbing 4 

We removed volumes with considerable head motion based on framewise displacement (FD)29. 5 

FD was calculated as the sum of the absolute displacements in translation and rotation between 6 

two consecutive volumes. We removed volumes with FD >0.5 mm, as proposed in a previous 7 

study29. In addition, participants whose scrubbed volume ratio exceeded the mean +3 S.D. were 8 

excluded. 9 

Calculation of the FC matrices 10 

We defined FC as the temporal correlation of rs-fMRI BOLD signals between two ROIs. We 11 

calculated Pearson’s correlation coefficient of the preprocessed BOLD time series between 12 

each pair of ROIs out of Glasser’s 379 ROIs. Fisher’s Z-transformed values of the correlation 13 

coefficients constituted an FC matrix for each participant, where the total number of FC was 14 

�379
2 � � 71 631. 15 

Harmonisation of the site differences 16 

We harmonised the site effects in the discovery dataset prospectively21 using a unified imaging 17 

protocol under the SRPBS & Brain/Mind Beyond project and retrospectively using the 18 

travelling subject method9. Regarding the travelling subject method, site effects were 19 

separately estimated as measurement bias and sampling bias from the rs-fMRI data of these 20 

travelling subjects, each of whom underwent scans at multiple sites9. We subtracted the 21 
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estimated measurement bias to obtain harmonised connectivity data (see Supplementary Text 1 

1). For the validation dataset, we applied the ComBat harmonisation method30–32. In the 2 

execution of ComBat harmonisation, we inputted the diagnosis, PANSS total score, PDI total 3 

score, age, sex, handedness, and duration of illness (DOI) (for patients with SSD) as auxiliary 4 

variables to correct measurement bias. 5 

Diagnostic classifiers for SSD 6 

Next, we constructed classifiers to differentiate patients with SSD from HCs using machine 7 

learning based on 71 631 FC values as features. In subsequent sections, we used only the data 8 

of HCs and patients with SSD, except for generalising the models to other disorders. Initially, 9 

we used a customised sparse learning algorithm, specifically least absolute shrinkage and 10 

selection operator (LASSO), similar to our previous work on MDD26. The sparse method in 11 

LASSO can prevent overfitting and simultaneously select important features (for the detailed 12 

methodology, refer to Supplementary Text 2). Although we used LASSO to identify 13 

important FCs for SSD classification, we applied a voting method33 to enhance the 14 

classification performance of the LASSO classifiers. 15 

Building LASSO classifiers 16 

 As illustrated in Supplementary Figure 1a, we implemented a nested 10-fold cross 17 

validation (CV) scheme. In the outer loop, we divided the discovery dataset into 10 folds. After 18 

leaving one fold as the test set, the remaining nine folds were used as the training set. To 19 

minimise the bias arising from the imbalance between the number of patients with SSD and 20 

HCs, we conducted subsampling with undersampling simultaneously. We randomly sampled 21 

the same number (N=102) of HCs and SSDs from the training set, creating a subsample. 22 

During subsampling and undersampling, we matched the mean ages of HCs and SSDs. We fit 23 
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the logistic regression model to the subsample while tuning a hyperparameter with an 1 

inner-loop 10-fold CV (for the detailed methodology, see Supplementary Text 2). By 2 

repeating random subsampling and fitting the model 10 times, we obtained 10 classifiers. We 3 

then predicted SSD probability for each participant in the test set. By applying the 10 classifiers 4 

built from a training set to a test set in each CV, we obtained the probability values for the 5 

participant as the classifier outputs. When the mean probability value was >0.5, we considered 6 

the participant’s class as SSD; otherwise, as HC. Finally, by repeating the above procedure 10 7 

times in the outer loop, 100 classifiers were obtained. 8 

 We evaluated the performance of the classifiers using the following indices: an area 9 

under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and 10 

Matthews’ correlation coefficient (MCC) (see Supplementary Text 3 for details). 11 

Independent validation of LASSO classifiers 12 

To assess the generalisability of the obtained classifiers, we tested them on the validation 13 

dataset. We applied the 100 classifiers to each participant in the validation dataset to compute 14 

diagnostic probability values for each participant (Supplementary Figure 1b). We classified a 15 

participant as having SSD if the average probability value was >0.5. 16 

 We also performed a statistical analysis of the classification performance for 17 

independent validation using a permutation test. We created 100 quasi-classifiers using the 18 

same procedure as for building genuine classifiers, with the participants’ classes permutated in 19 

the discovery dataset. We predicted the diagnosis in the same manner as mentioned above 20 

using the quasi-classifiers on the validation dataset for each permutation. By repeating random 21 

permutations 500 times and obtaining null distributions of the AUC and MCC, we evaluated 22 

the statistical significance of the true classifiers. 23 
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Identifying important FCs for predicting diagnosis 1 

We investigated which FCs were utilised to predict the diagnosis in each classifier by 2 

identifying the nonzero coefficients in LASSO. We counted the number of classifiers (out of 3 

100) that selected each FC as an explanatory variable. We performed a permutation test to 4 

identify the most informative FCs from 71 631 FCs. Each time we randomly permutated the 5 

class labels of participants in the discovery dataset, we built 100 quasi-classifiers using 10-fold 6 

CV with 10-time subsampling, following the methodology described in the previous section 7 

(see ‘Building LASSO classifiers’ section). We determined the maximum counts for which 8 

each FC was selected as a predictive explanatory variable using 100 quasi-classifiers for each 9 

permutation. This procedure was repeated 100 times, resulting in a null distribution of 100 10 

values for the maximum selection count. An FC was considered significantly informative 11 

(‘important FC’) when the selection count in the genuine 100 classifiers exceeded the threshold 12 

that corresponded to P <0.05 in the null distribution. 13 

Voting classifiers 14 

In addition to logistic regression with LASSO, we attempted to enhance the performance by 15 

introducing a voting method33. We incorporated support vector machine34, random forest35, 16 

light gradient boosting machine36, and multi-layer perceptron37 as representative algorithms. 17 

For each algorithm, we conducted CV, subsampling with undersampling, and training on the 18 

discovery dataset following the same procedure used to build the LASSO classifiers (for 19 

detailed methodology, see Supplementary Text 4). 20 

 To statistically compare the classification capability of the voting classifiers with that 21 

of the LASSO classifiers, we used the R programmes Compbdt and pROC. Using Compbdt38, 22 

we compared the two classifiers based on their sensitivity and specificity using the McNemar 23 
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test. We used pROC to conduct DeLong’s test on the AUC. The significance level for all tests 1 

was set at P <0.05. 2 

Application of the classifiers to other psychiatric disorders 3 

We assessed the specificity of the classifiers for SSD by applying them to data from 4 

participants with other mental disorders, MDD, ASD, and BP. Regarding the LASSO 5 

classifiers, we applied 100 classifiers to all the patients with these disorders from the discovery 6 

and validation datasets. If the output probability was >0.5, the participants were assumed to 7 

have SSD-like characteristics. Regarding the voting classifiers, we applied 500 classifiers to 8 

the same patients, and the participants were assumed to be SSD-like if over half (>250) of the 9 

classifiers predicted as such. The discovery dataset included patients with MDD, ASD, and BP, 10 

whereas the validation dataset only included patients with MDD. The outputs of the classifiers 11 

for HC and SSD were used for the comparison with MDD, ASD, and BP. Specifically, the 12 

output for test data in the 10-fold CV was used in the discovery dataset, and the output of 100 13 

classifiers was used in the validation dataset. 14 

 To evaluate if the classifying results of patients with any of the other disorders (MDD, 15 

ASD, BP) had similarity to HC, SSD, or neither, we conducted a two-sided binomial test 16 

(significance level, P<0.05). We also assessed whether each probability density curve was 17 

differently distributed using the two-sample Kolmogorov–Smirnov test. We conducted this test 18 

for every combination of HC, SSD, MDD, ASD, and BP; thus, 10 combinations were obtained 19 

in total. The level of significance was P<0.05/10=0.005 (Bonferroni-corrected). 20 

Prediction of clinical scores using important FCs 21 

Another objective of this study was to determine the extendibility of the trait marker to the state 22 

or disease stage. In the first part of this investigation, we attempted to predict the scores of two 23 
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clinical scales with important FCs in the aggregate so we could aid clinical assessment and 1 

estimate the extent to which our biomarker could function as a trait and/or state marker using 2 

the PDI and PANSS total scores. These scales have been widely used to assess delusional 3 

thinking and psychotic syndrome39. PDI may reflect trait20 and state40, whereas the PANSS 4 

may reflect the overall symptom severity of psychosis at that time point (state)41. 5 

We predicted the scores on the clinical scales (PDI and PANSS total scores) using 6 

important FCs as explanatory variables. We applied a nested 10-fold CV scheme to the 7 

discovery dataset (only SSD participants with available target scale scores) to build prediction 8 

models (Supplementary Figure 2a). In the outer loop, we divided the discovery dataset into 9 

10 folds. After leaving one fold as the test set, we used the remaining nine folds as the training 10 

set. We fitted the linear regression model to the training set (the LinearRegression module in 11 

scikit-learn version 0.24.1). In the inner loop, we searched for the most suitable number of 12 

important FCs to be used as features to avoid overfitting (for the detailed methodology, see 13 

Supplementary Text 5 and Supplementary Figure 2b). We predicted the score for each 14 

participant in the test set using a linear regression model with the best number of features for 15 

the fold. Using 10-fold CV, we obtained 10 models with different numbers of features. For the 16 

validation dataset, we averaged the outputs from the 10 models to create the final predicted 17 

score (Supplementary Figure 2c). At any step of this analysis, the predicted value was 18 

adjusted within the range of the scale score (if the prediction was lower than the lowest possible 19 

value, it was adjusted to the lowest possible value, and vice versa). 20 

 We conducted a permutation test to assess the evaluation metrics statistically. 21 

Specifically, we permutated clinical labels (diagnosis and symptom scores) against FC values, 22 

created quasi-models following the same procedure as the genuine models, and repeated these 23 

steps 500 times to obtain a null distribution of the evaluation metrics. Differences were 24 

considered statistically significant if each evaluation metric for the genuine models was better 25 
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than the cut-off value of P=0.05 of the null distribution. 1 

Separately identifying FCs associated with the state 2 

Next, we explored the roles of individual FCs. To identify the FCs associated with state (i.e. 3 

symptom scale scores), we performed multiple regression analyses on each of the important 4 

FCs. We selected PANSS as the state index because it dynamically changes with treatment and 5 

has been used as a representative scale for the state of schizophrenia. All HC participants and 6 

patients with SSD having data on PANSS scores across the discovery and validation datasets 7 

were included in the analysis. We examined two models of the PANSS: the original three-factor 8 

model19 composed of positive, negative, and general pathological factors and the five-factor 9 

model41 composed of positive, negative, disorganised, excited, and depressed factors. Because 10 

the general pathological factor was not categorised as a specific symptom dimension, we used 11 

only positive and negative factors as explanatory variables for the three-factor model. 12 

 Owing to the exploratory nature of this analysis, we converted the PANSS scores into 13 

explanatory variables in two ways: by min–max normalisation and binary dummy variables. 14 

The formula to fit was the same for both methods: 15 

�	 � 
� � 
��� � ∑ �
��������������
��� � �  (Eq. 1) 16 

where �� represents the trait or diagnosis (HC: 0, SSD: 1), ��� represents the existence of 17 

symptoms for the jth factor of the PANSS, and � represents a random error. 18 

Conversion 1. Min–max normalisation of the scores 19 

The value ��� was determined using the following formula: 20 

��� � 	�
���	��

����	��
���	��
 (Eq. 2) 21 

where �� represents the participant’s average score in the jth factor of the PANSS and 22 

min���� (or max����) represents the minimum (or maximum) average score of the jth 23 
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PANSS factor across all patients with SSD with available PANSS subscore data. 1 

Conversion 2. Binarising the scores 2 

��� � � 0   ��  �� � 2
 1   ��  �� � 2� (Eq. 3) 3 

The value ���was determined as in Eq.3 as three points or more is considered pathological in 4 

PANSS rating. 5 

 All  � for HC participants were assumed to be zero. In the regression analysis for 6 

each FC, the FC was regarded as a potential state marker when any of the coefficient estimates 7 

for PANSS factor (
�����, " � 1, 2, … $������) was nonzero at a significance level P <0.05 with a 8 

one-sample t-test. We reported FCs as being significant only when the state’s coefficient 9 

concerned (
�����) was of the same sign as % of the FC in terms of consistency with the 10 

underlying LASSO classifiers. 11 

Identifying FCs associated with the disease stage 12 

Finally, we constructed another multiple regression model to identify FCs associated with the 13 

disease stage of SSD, which could be referred to as ‘staging’ markers. Following a pre-existing 14 

definition42,43, we divided the SSD group into an early-stage psychosis subgroup (DOI of <5 15 

years) and a chronic-stage subgroup (DOI of ≥5 years). We formulated a regression model 16 

similar to that described in the previous section: 17 

�	 � 
� � 
��� � 
��� � 
��� � 
��� � �  (Eq. 4) 18 

 &'( )(*)    �� � � 1   ��  +,- . 5 01 .
 0   ��  +,- 3 5 01 .�  ,   �� � � 0   ��  DOI . 5 01 .

 1   ��  +,- 3 5 01 .�  (Eq. 5) 19 

where �� represents the early stage of SSD, ��  represents the chronic stage, and ��  and � 20 

were defined in the same way as in Eq. 1. The value �� , the age of the participant, was 21 

introduced as a covariate because the DOI was supposed to correlate with age. All HC 22 

participants and patients with SSD with DOI data across the discovery and validation datasets 23 
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were included in the analysis. Using this model, we categorised important FCs into six groups 1 

based on which trait, early/chronic stage, was significantly associated: (1) trait only, (2) early 2 

stage only, (3) chronic stage only, (4) trait and early stage, (5) trait and chronic stage, and (6) all 3 

three. In terms of consistency with our classifiers and within the coefficients, every coefficient 4 

estimate concerned must be of the same sign as %.; statistical significance was determined at 5 

the level P<0.05, with a one-sample t-test for each coefficient estimate. Considering the 6 

relative instability of the model fit due to singularity, we adopted the bootstrap method (1,000 7 

iterations) to count the number of times a certain FC was sorted into each category.8 
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RESULTS 1 

Datasets 2 

Fifty-one participants whose scrubbed rs-fMRI volumes exceeded +3 standard deviations 3 

(SDs) were excluded from all datasets. Therefore, 1,015 participants in the discovery dataset 4 

and 683 participants in the validation dataset were included for further analyses. Through the 5 

scrubbing process, 9.2±17.9% (mean±SD) of whole volumes per rs-fMRI scan were removed 6 

across all datasets. 7 

Performance of the LASSO classifiers 8 

Within the discovery dataset, classification accuracy was 79.6%, with an AUC of 0.876. 9 

Sensitivity, specificity, and MCC were 81.5%, 79.2%, and 0.484, respectively. The density 10 

curve of HCs and patients with SSD is shown in Figure 2a, where a patient with a predicted 11 

probability of >0.5 was classified as a patient and vice versa. The curves for each site are 12 

shown in Figure 2b. 13 

 Within the validation dataset, the classifiers distinguished patients with SSD from 14 

HCs with 77.3% accuracy and an AUC of 0.824, similar to the results from the discovery 15 

dataset (Figure 2c, d). Sensitivity, specificity, and MCC were 69.2%, 81.1%, and 0.490, 16 

respectively. A permutation test revealed that the AUC and MCC were significantly high 17 

(P<0.001). At JHU, the classifiers correctly distinguished HCs in most cases (specificity, 18 

83.6%), but not patients with SSD (sensitivity, 40.6%). The probability density curve of SSD 19 

was closer to that of HC (P=0.37, two-sided binomial test), although the distribution of the two 20 

curves was significantly different (P=0.013, two-sample Kolmogorov–Smirnov test), 21 

suggesting that patients with early-stage SSD at JHU fell between chronic-stage SSD and HC. 22 
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Important FCs for predicting diagnosis 1 

At P<0.05 in the permutation test, the FCs selected by ≥17 classifiers were deemed important. 2 

Ultimately, we identified 47 important FCs, as shown in Figure 3a, b and detailed in 3 

Supplementary Table 4. 4 

 Furthermore, we investigated the detailed patterns of FC value differences between 5 

the HC and SSD groups and their reproducibility across the two datasets by plotting the mean 6 

values for 47 FCs, facilitating a comparison between the datasets (Figure 3c). The relationship 7 

between the mean FC values of the HC and SSD groups was maintained in the validation 8 

dataset for 44 of 47 FCs. 9 

Voting classifiers 10 

Supplementary Figure 3a, b displays the probability density curve of the voting classifier’s 11 

output through 10-fold CV in the discovery dataset.  12 

 Independent validation for all sites in the validation dataset is presented in 13 

Supplementary Figure 3c, d. We conducted statistical tests to compare the performance of the 14 

voting classifiers with that of the LASSO classifiers. Sensitivity was significantly higher for 15 

the voting classifiers than for the LASSO classifiers (P<0.001, McNemar test, two-sided). 16 

However, specificity showed no significant difference between groups (P=0.192, McNemar 17 

test, two-sided). The AUC of the voting classifiers was 0.841, which was not significantly 18 

different from that of LASSO classifiers (P=0.11, DeLong’s test). 19 

Supplementary analyses on classifiers’ characteristics 20 

 LASSO and voting classifiers were built on subsamples in which the mean ages of the 21 

HC and SSD groups were matched to mitigate the confounding effect of age. Furthermore, we 22 
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evaluated whether the classifiers’ performance was influenced by confounding factors (see 1 

Supplementary Text 6 and Supplementary Table 5). Consequently, the performance of 2 

voting classifiers could be partly influenced by age but not by other potential confounding 3 

factors. In contrast, the LASSO classifiers were unaffected by any potential confounding 4 

variables. 5 

 We also investigated how the classification performance varied based on disease 6 

severity in the validation dataset. Following a previous report44, we identified subgroups with 7 

different severities based on PANSS total scores: mild (PANSS≤58, N=55), moderate 8 

(58<PANSS≤75, N=36), marked (75<PANSS≤95, N=20), severe (95<PANSS≤116, N=1), and 9 

most severe (116<PANSS, N=0). Except for the severe and most severe subgroups, each of 10 

which contained only one or no participants, the sensitivity by subgroup was highest in the 11 

marked subgroup, followed by the mild and moderate subgroups (Supplementary Table 6). 12 

This order of performance was consistent for the LASSO and voting classifiers, but the 13 

disparity among the subgroups decreased for the voting classifiers compared with the LASSO, 14 

suggesting that voting classifiers can predict classes with less imbalance across different 15 

disease severity levels. 16 

Classifier specificity for SSD 17 

The LASSO classifiers revealed that the patients with ASD and BP did not exhibit high- or 18 

low-SSD-like characteristics. However, patients with MDD were less SSD-like (P=2.24×10−7), 19 

resembling the HCs (Supplementary Figure 4, Supplementary Table 7). Voting classifiers 20 

showed a similar pattern. These results suggest that both classifiers exhibited high specificity 21 

for SSD. 22 

 Moreover, we investigated whether each probability density curve was distributed 23 

differently. The LASSO and voting classifiers revealed that the curve of each non-SSD 24 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.01.02.23300101doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.02.23300101
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

disorder had a significantly different distribution from those of HC and SSD in the discovery 1 

and validation datasets (Supplementary Table 8). Furthermore, the curves for any two 2 

non-SSD disorders showed no significant differences. 3 

Prediction of clinical scale scores using important FCs 4 

Regarding PDI total scores, the results of 10-fold CV in the discovery dataset were acceptable 5 

(r=0.231, 95% confidence interval [CI]=[0.00101–0.438], P=0.0492, two-sided, mean 6 

absolute error [MAE]=40.0). Weak correlations between the actual and predicted scores were 7 

observed in the validation dataset (r=0.331, 95% CI=[0.0609–0.556], R2=0.110, P=0.0177, 8 

two-sided, MAE=55.5) (Figure 4a). A permutation test was conducted to objectively assess 9 

whether the evaluation metrics were satisfactory. The correlation coefficients were 10 

significantly high (Pperm=0.01) and MAE significantly low (Pperm=0.018). 11 

 Concerning PANSS total scores, the 10-fold CV in the discovery dataset resulted in no 12 

correlation between actual and predicted scores (r=−0.0065, 95% CI=[−0.199–0.186], 13 

P=0.948, two-sided, MAE=17.5). The model did not predict scores in the validation dataset 14 

either (r=0.128, 95% CI=[−0.0588–0.306], R2=0.016, P=0.178, two-sided, MAE=16.8) 15 

(Figure 4b). 16 

 In summary, we predicted the PDI total score more efficiently than the PANSS total 17 

score, suggesting that, collectively, the important FCs may function as trait and state markers. 18 

Individual FCs associated with PANSS factors 19 

In total, 17 FCs were significantly associated with the PANSS factors. Using the three-factor 20 

model of PANSS, we identified significant associations in FCs #45 (R.TPOJ1 and R.Thalamus, 21 

with the PANSS positive factor) and #8 (L.1 and R.3b, with the PANSS negative factor), 22 

regardless of the score conversion method (Table 2, Supplementary Table 9). With the 23 
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five-factor model of PANSS, we found that the significantly associated FCs, regardless of 1 

conversion method, were FCs #18 (L.FOP1 and R.Putamen), #41 (R.6a and R.PoI1), #43 2 

(R.FOP4 and R.Putamen) with the excited factor, and FC #27 (R.RSC and R.SFL) with the 3 

depressed factor. 4 

 When the coefficient estimate was significant only for a state (not for the trait), such 5 

FCs were assumed to be ‘pure’ state markers. We found nine FCs (Table 2). Among these FCs, 6 

FC #27 (R.RSC and R.SFL) was the only one consistently identified as a ‘pure’ state marker, 7 

regardless of conversion method. 8 

Individual FCs associated with disease stage 9 

Figure 4c presents the results of categorising important FCs into subgroups associated with 10 

trait (diagnosis), the early stage, or the chronic stage of SSD using the bootstrapping method 11 

(1,000 iterations). We assumed that an FC belonged to a certain category with consistent 12 

regression results for over half (>500) of the iterations. Subsequently, the important FCs were 13 

categorised most frequently as ‘trait and chronic stage’ (61.7%), followed by ‘trait and early 14 

stage’ (6.4%), ‘trait only’ (2.1%), and ‘trait, early, and chronic stage’ (2.1%). No FCs were 15 

categorised as ‘early stage only’ or ‘chronic stage only,’ indicating that we did not identify any 16 

pure staging markers. 17 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.01.02.23300101doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.02.23300101
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

DISCUSSION 1 

We developed rs-FC classifiers for SSD based on harmonised multicentre data and validated it 2 

using large-sample independent data. This study also aimed to maximise the potential of the 3 

rs-FC biomarker to function as a state marker and a staging marker.  4 

 The accuracy of the identified diagnostic marker was approximately 80% for the 5 

discovery dataset. It demonstrated comparable performance in an external validation with 6 

seven international cohorts; this presents a sharp contrast to previous studies10. This 7 

achievement was possible through bi-directional (prospective and retrospective) harmonisation 8 

and with optimised machine learning method. Against the concerns on session variability of 9 

rsfMRI, we reduced the variability and improved generalisability to independent validation 10 

cohorts through spatial averaging of 100 classifiers, each analysing tens of FCs. Furthermore, a 11 

previous study45 revealed that test–retest reliability was acceptable with the same methodology 12 

as demonstrated in this study. 13 

 The LASSO and voting classifiers exhibited distinct performance characteristics. 14 

Voting classifiers demonstrated superiority in sensitivity and a more balanced profile over 15 

LASSO classifiers, with the accuracy, sensitivity, and specificity falling within a narrow range 16 

(LASSO: 69.2–81.1%, voting: 74.7–78.8%) in independent validation. 17 

 We identified important FCs that significantly contributed more frequently to SSD 18 

classification in LASSO classifiers. Based on AAL, the putamen, insula, thalamus, and 19 

cingulum were among the top ROIs most frequently found in the important FCs 20 

(Supplementary Table 10). In schizophrenia research, these are consistently implicated in 21 

grey matter volume reduction46 or FC abnormality47,48. Moreover, these ROIs were associated 22 

with the cortico-striatal-thalamic-cortical loop and salience network, both recognised for their 23 

pivotal roles in the psychopathology of SSD49. In the context of FC, hypoconnectivity between 24 
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the putamen and anterior cingulate cortex (FC #13, #30, #37, #38) in the SSD group aligns with 1 

a previous report50, where greater ACC–putamen connectivity predicted better treatment 2 

response. Conversely, in the SSD group, the thalamus exhibited increased connectivity with 3 

various cortical ROIs (FC #11, #12, #24, #25, #35, #36, and #45), corresponding with a report51 4 

on thalamocortical connectivity in schizophrenia, implying disrupted information filtering in 5 

SSD, consistent with the literature52. Therefore, these important FCs aptly reflected the neural 6 

correlates of schizophrenia and were considered trait markers of SSD. 7 

 We observed that our classifiers exhibited high specificity for SSD, whereas other 8 

diagnoses (MDD, ASD, and BP) did not show specificity for HC or SSD. These psychiatric 9 

disorders share several characteristics with SSD in the alteration pattern of brain function53–55. 10 

Moreover, these disorders have similar phenotypes (e.g. cortical thickness) and genotypes56. 11 

Thus, our biomarkers may, to some extent, reflect neural changes common to psychiatric 12 

disorders57. 13 

 The second objective of this study was to dissect the biomarker into a ‘trait marker’ 14 

and other components. Using aggregated important FCs, we achieved an acceptable level of 15 

prediction for the PDI but not for the PANSS, indicating that aggregated FCs were more 16 

strongly associated with traits. Few groups have reported successful prediction of symptoms 17 

using FC58,59; however, these studies lacked external validation. In this study, the predicted PDI 18 

total score was significantly correlated to the actual score in the discovery and validation 19 

datasets. 20 

 Using multiple regression analysis, we identified state markers individually. Using the 21 

three-factor model of the PANSS, we observed a significant association between positive 22 

scores and FC #45 and negative scores and FC #8, irrespective of the score conversion method. 23 

Evidence suggests that FC #45 significantly correlates with positive symptoms60. FC #8 also 24 

showed a significant association with the negative and disorganised factors of the five-factor 25 
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model, which could be linked to the finding that interhemispheric connectivity of the precentral 1 

and postcentral gyri were negatively correlated with the PANSS total score61. 2 

 We discovered interesting overlaps of ROIs in the potential state marker FCs. 3 

Concerning negative and depressed factors, sensorimotor areas were noticeable. Specific 4 

functional alterations in these ROIs related to neurological soft signs (NSSs) have been 5 

reported62. Moreover, NSSs correlate with PANSS negative scores and depression scale 6 

scores63. The excited factor seems to involve the putamen, insula, Rolandic operculum, and 7 

middle cingulum, regions likely to be associated with aggression64. The Rolandic operculum 8 

and middle cingulum are related to aggression via disruption of the cognitive control 9 

network65. 10 

 Neuromodulation can be a novel psychiatric treatment, and one of the promising 11 

techniques is neurofeedback (Nef). There is accumulating evidence on the therapeutic effect 12 

of Nef targeting FCs66,67. Our findings on state markers will benefit future FC-Nef in target 13 

selection. 14 

 Although we did not discover any pure staging markers, our results provide a 15 

compelling argument for ‘trait and early stage’ markers exemplified by FCs #16, #20, and #23. 16 

FCs #20 and #23 represented connections between regions around the superior temporal sulcus 17 

(STS) or gyrus (STG). A task-based fMRI study on working memory showed attenuated 18 

activity in the STG in patients with early-stage psychosis compared with HCs68. Moreover, the 19 

cortical thickness of the insula (an ROI in FC #16) and the STS region are reduced in 20 

early-stage psychosis69. These suggest that our biomarker partly include staging marker. 21 

Additionally, the fact that the probability curve for patients with early-stage psychosis at JHU 22 

lies in the middle between the HC and SSD groups may also support this argument. 23 

 This study has some limitations. First, the participants with SSD in our study were 24 

mostly medicated; hence, the applicability of our results to drug-naive patients cannot be 25 
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guaranteed. Second, we only confirmed that our classifiers distinguished patients with SSD 1 

from healthy individuals, not from individuals with other psychiatric disorders exhibiting 2 

psychotic symptoms. Further studies are required to test the classifiers for these disorders to 3 

maximise the clinical applicability. 4 

In conclusion, we developed robust and clinically usable classifiers for SSD using a 5 

combination of cutting-edge strategies. While constructing the classifiers, we identified FCs 6 

that may play key roles in SSD pathophysiology. We also demonstrated that these ‘important 7 

FCs’ had multiple functions as SSD trait, state, or staging markers. Our findings shed new light 8 

on the early diagnosis of SSD and the selection of targets for neuromodulation.9 
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FIGURE LEGENDS 1 

Figure 1. Outline of the study 2 

This study was composed of two parts. (I) Constructing SSD classifier: Using the discovery 3 

dataset, we processed rs-fMRI images into an FC matrix for each participant, which was then 4 

inputted into machine learning (LASSO) to build SSD classifiers. We obtained the 5 

classification performance through 10-fold CV and examined its external generalisability using 6 

the validation dataset. ‘Important FCs’ were those that made the highest contribution to the 7 

classification. To assess classifier specificity for SSD, we also applied the classifiers to other 8 

mental disorders. We performed further analyses on another machine learning method (voting 9 

classifiers) and on classification performance by disease severity. (II) Exploring 10 

trait/state/staging markers of SSD: We investigated the different types of biomarkers inherent 11 

in important FCs. First, we attempted to predict clinical scale scores using aggregated FCs. 12 

Second, we searched for individual FCs associated with the state and/or disease stage. CV, 13 

cross-validation; SSD, schizophrenia spectrum disorder; LASSO, least absolute shrinkage and 14 

selection operator; rs-fMRI, resting-state functional magnetic resonance imaging; FC, 15 

functional connectivity. 16 

 17 

Figure 2. Probability density curves based on LASSO classifiers 18 

(a) Results for all the sites combined in the discovery dataset. (b) Results for individual sites in 19 

the discovery dataset. (c) Results for all the sites combined in the validation dataset. (d) Results 20 

for individual sites in the validation dataset. As four sites in Hiroshima (COI, HKH, HRC, and 21 

HUH) did not have any patients with SSD, these sites have a curve for HCs only. HC, healthy 22 

control; SSD, schizophrenia spectrum disorder; AUC, area under the curve; MCC, Matthews’ 23 

correlation coefficient; LASSO, least absolute shrinkage and selection operator; COBRE, 24 
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Centre of Biomedical Research Excellence. 1 

 2 

Figure 3. Important FCs (P<0.05) in diagnosis prediction by LASSO classifiers 3 

(a) Each node on the inner circle corresponds to an ROI. The line width of the FC shows how 4 

many times it was selected by the classifiers, and the line colour denotes the direction to which 5 

it contributes to the logistic regression model (red means that the higher the FC value is, the 6 

more likely the classifier’s output is to be SSD; blue means a lower FC value for a higher 7 

likelihood of SSD). (b) The 47 important FCs were projected onto glass brains. The colours of 8 

the ROIs in relation to each intrinsic brain network and the red/blue line colours correspond to 9 

those in (a). (c) The mean FC values (Z-score, on the ordinate) of the 47 important FCs for the 10 

HC and SSD groups are shown as a bar plot for the discovery and validation datasets. Error 11 

bars represent standard error. The FC numbers on the abscissa correspond to those in (a) and 12 

Supplementary Table 4. FC, functional connectivity; HC, healthy control; SSD, 13 

schizophrenia spectrum disorder; ROI, region of interest; LASSO, least absolute shrinkage and 14 

selection operator. 15 

 16 

Figure 4. Trait, state, and staging marker analyses 17 

(a, b) Prediction results of PDI total and PANSS total scores. The relationship between the 18 

predicted scores (on the ordinate) and actual scores (on the abscissa) for the validation dataset 19 

is shown in a scatter plot. The grey translucent band represents the 95% confidence interval of 20 

the regression line. (a) PDI total scores. (b) PANSS total score. (c) Individual FCs associated 21 

with disease stage. This heat map shows the results of the bootstrap method, where the number 22 

in the colour bar indicates the number of times the FC was sorted into a category out of 1,000 23 

iterations. n.s., not significant (P≥0.05 for all three explanatory variables or any of the 24 

coefficients’ signs were inconsistent with the average weight in LASSO classifiers); MAE, 25 
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mean absolute error; PDI, Peters et al. Delusion Inventory; PANSS, Positive and Negative 1 

Syndrome Scale; FC, functional connectivity; LASSO, least absolute shrinkage and selection 2 

operator.3 
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 TABLES 1 

Table 1. Demographics of the participants (HCs and patients with SSD) 2 

Site Abbr. 

HC  SSD  Total (HC and SSD) 

Number M/F 
Age 

(mean±SD) 
 Number M/F 

Age 

(mean±SD) 
 Number M/F 

Age 

(mean±SD) 

Discovery dataset 

Kyoto University 

(Tim Trio) 
KUT 223 127/96 33.4±13.2  61 32/29 40.7±13.2  284 159/125 35.1±13.2 

Showa University SWA 101 86/15 31.4±7.9  19 15/4 42.7±8.4  120 101/19 30.7±9.5 

Centre of Innovation, 

Hiroshima University 
COI 124 46/78 51.9±13.4  – – –  124 46/78 51.9±13.4 

University of Tokyo UTO 169 77/92 35.7±17.5  36 24/12 23.3±10.3  205 101/104 34.9±16.5 

Summary 617 336/281 36.9±16.0  116 71/45 38.5±11.4  733 407/326 37.2±15.3 

Validation dataset 

Kyoto University 

(Trio) 
KTT 72 44/28 28.7±9.4  48 23/25 37.8±9.4  120 67/53 32.4±10.4 

Kyoto University 

(Prisma) 
KUP 11 7/4 35.0±8.5  18 11/7 40.2±12.9  29 18/11 38.2±11.6 

Hiroshima University 

Hospital 
HUH 66 29/37 34.6±13.0  – – –  66 29/37 34.6±13.0 
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Hiroshima Kajikawa 

Hospital 
HKH 29 12/17 45.4±9.5  – – –  29 12/17 45.4±9.5 

Hiroshima Research 

Centre 
HRC 49 13/36 41.7±11.7  – – –  49 13/36 41.7±11.7 

Centre of Biomedical 

Research Excellence 
COBRE 73 50/23 35.7±11.6  67 57/10 37.4±13.8  140 107/33 36.6±12.7 

Taipei Medical 

University 
TMU 29 26/3 31.4±5.0  32 23/9 35.3±6.1  61 49/12 33.4±5.9 

Johns Hopkins 

University 
JHU 75 37/38 24.4±4.1  33 23/10 22.5±4.7  108 60/48 23.8±4.4 

Summary 404 218/186 32.3±11.6  198 137/61 34.9±11.9  602 355/247 33.8±11.7 

 1 

The distributions of age and sex were not significantly different between the HC and SSD groups in the discovery dataset (P>0.05). In the 2 

validation dataset, the age distribution was not significantly different (P>0.05); however, the sex distribution was significantly different (P<0.05). 3 

Abbr., abbreviations; HC, healthy control; SSD, schizophrenia spectrum disorder; SD, standard deviation.4 
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Table 2. Individual FCs significantly associated with PANSS factorial scores 1 

Score conversion 

Three-factor model Five-factor model 

Positive Negative Positive Negative Disorganised Excited Depressed 

1. Min–max 

transformation 

#41: R.6a and 

R.PoI1 

#1: L.3b and L.1 #5: L.5L and 

R.Cereb 

  #17: L.MI and 

R.Putamen 

#27: R.RSC 

and R.SFL 

#45: R.TPOJ1 

and R.Thalamus 

#8: L.1 and R.3b #42: R.i6-8 and 

R.PeEc 

  #18: L.FOP1 

and R.Putamen 

#28: R.POS2 

and R.SFL 

  #45: R.TPOJ1 and 

R.Thalamus 

  #41: R.6a and 

R.PoI1 

 

     #43: R.FOP4 

and R.Putamen 

 

2. Binarisation #33: R.6ma and 

R.Cereb 

#2: L.POS2 and 

R.SFL 

#3: L.PCV and 

L.POS1 

#8: L.1 and 

R.3b 

#8: L.1 and 

R.3b 

#2: L.POS2 and 

R.SFL 

#27: R.RSC 

and R.SFL 
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#45: R.TPOJ1 

and R.Thalamus 

#8: L.1 and R.3b    #14: L.IFSa and 

R.AVI 

 

 #28: R.POS2 and 

R.SFL 

   #18: L.FOP1 

and R.Putamen 

 

     #38: R.p32pr 

and R.Putamen 

 

     #41: R.6a and 

R.PoI1 

 

     #43: R.FOP4 

and R.Putamen 

 

     
#44: R.FOP1 

and R.Putamen 

 

 1 

Using multiple regression analyses, the FCs significantly associated with each PANSS factor were identified. When the coefficient for the 2 

factor was positive, the FC is coloured red, and when it was negative, the FC is coloured blue. ‘Pure state markers’ (the case in which the 3 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 6, 2024. 
; 

https://doi.org/10.1101/2024.01.02.23300101
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2024.01.02.23300101
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 

 

explanatory variable of the PANSS factor was solely associated with the FC) are highlighted in bold letters. The ROIs described here are from 1 

Glasser’s parcellation. FC, functional connectivity; PANSS, Positive and Negative Syndrome Scale; ROI, region of interest. 2 
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Concerns about rsfMRI biomarkers
1. Inadequete accuracy
2. Insufficient generalisability
3. Across-scan variability
4. Lack of disease specificity

Unified imaging protocol
(prospective harmo.)

Discovery dataset
(4 sites)

Retrospective harmo.
(travelling subjects)

FC matrix

Customised 
machine learning

Nested 10-fold CV
+ subsampling

SSD classifiers

Validation dataset (7 sites)
Other psychiatric

disorders

I. Developing Clinically Applicable SSD Classifiers

#33, #41, #45
#1, #2, #8,
#28

PANSS 3-factor 
model

PANSS 5-factor 
model

Positive

Negative
Disorganised

Excited

Depressed

#3, #5, #42,
#45
#8
#8
#2, #14, #17, 
#18, #38, #41,
#43, #44
#27, #28

State markers Staging markers

Aggregated

Individual

Catalog of each marker type

FC → trait, state

Trait Diagnosis, delusional tendency etc.

State Symptom (subject to change)

Stage e.g. early, chronic

trait, state, staging → FC

Scale score prediction

II. Exploring Trait / State / Staging markers of SSD

Aim: To overcome these by 
the methodology below

Important FCs

• Preprocessing
• Calculate FCs

Positive
Negative

Additional analysis
• Voting classifiers
• Performance by 

severity



Discovery dataset
Results for LASSO Classifiers

a c

db

Validation dataset
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