
Identifying direct risk factors in UK Biobank  
with simultaneous Bayesian-frequentist  

model-averaged hypothesis testing 

using Doublethink 
 

Nicolas Arning, Helen R. Fryer, Daniel J. Wilson 
 

University of Oxford 

Big Data Institute, Oxford Population Health, and 

Department for Continuing Education 

 

December 2023 

 

Abstract 
Big data approaches to discovering non-genetic risk factors have lagged behind genome-wide 

association studies that routinely uncover novel genetic risk factors for diverse diseases. Instead, 

epidemiology typically focuses on candidate risk factors. Since modern biobanks contain thousands of 

potential risk factors, candidate approaches may introduce bias, inadequately control for multiple 

testing, and miss important signals. Bayesian model averaging offers a solution, but classical statistics 

predominates, perhaps because of concern that the prior unduly influences results. Here we show that 

simultaneous Bayesian and frequentist discovery of direct risk factors is possible via a model-averaged 

hypothesis testing approach for large samples called 8Doublethink9. Doublethink produces 

interchangeable posterior odds and p-values that control the false discovery rate (FDR) and familywise 

error rate (FWER). We implement the Doublethink approach in R and apply it to discover direct risk 

factors for COVID-19 hospitalization in 2020 among 1,912 variables in UK Biobank. We find nine 

exposome-wide significant variables at 9% FDR and 0.05% FWER. These include several commonly 

reported risk factors (e.g. age, sex, obesity) but exclude others (e.g. diabetes, cardiovascular disease, 

hypertension) which might be mediated through variables measuring general comorbidity (e.g. 

numbers of medications). We identify significant direct effects among infrequently reported risk factors 

(psychiatric disorders, infection, dementia and aging), and show how testing groups of correlated 

variables is a useful alternative to pre-analysis variable selection. We discuss the potential for impact 

and limitations of joint Bayesian-frequentist inference, and the mutual insights afforded into the long-

standing differences on statistical approaches to scientific discovery. 

 

Keywords: UK Biobank, COVID-19, exposome, Bayesian, frequentist, closed testing procedure, 

multiple testing, epidemiology, posterior odds, p-values, confounding, Bayesian false discovery rate, 
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Introduction 
The big data era has seen the advent of biobank-scale scans for genetic determinants of diverse health 

outcomes in cohorts like UK Biobank (1, 2). But similar data-driven identification of non-genetic 

determinants, termed risk factors, has not become commonplace. Instead, current epidemiology 

typically reports on candidate risk factors. Studies address the question: What is the total effect of a 

variable on the outcome? Is it non-zero? For instance, more than 100 published studies have analysed 

dozens of candidate risk factors for COVID-19 outcomes in UK Biobank (Table S1). Synthesizing 

these findings is difficult because: (i) Other, more important, risk factors that were not analysed may 

exist among the thousands measured. (ii) It is unclear how to appropriately limit false positives caused 

by multiple testing. (iii) The processes of selecting candidate risk factors and deciding to publish are 

vulnerable to bias. The experience of candidate gene studies, largely superseded by genome-wide 

association studies (GWAS), raises further questions about strength of evidence and reproducibility in 

candidate risk factor studies (3, 4, 5). 

 

A major complication for systematic studies of non-genetic risk factors, compared to GWAS, is the 

problem of mediation (6). Mediation occurs when the total effect of a variable (e.g. age) on an outcome 

(e.g. COVID-19 severity) is wholly or partially mediated through another variable (e.g. prior 

pneumonia). This conceptually divides the total effect into direct and indirect effects. Mediation is 

ignored in GWAS because genetic variables are coinherited at conception; they cannot generally cause 

one another. So the question is effectively: What is the direct effect of a variable on the outcome? Is it 

non-zero? In GWAS, artefactual signals generated by confounding are instead the major concern. 

Controlling for other variables helps avoid confounding (7), but controlling for mediating variables 

alters the scientific question by shifting attention from total to direct effects. Unfortunately, direct 

effects can differ in direction and magnitude to total effects, a source of bias known as the Table 2 

fallacy (8). Further pitfalls include reverse causation and collider bias (9). 

 

Nevertheless, the demand for GWAS-inspired exposome-wide association studies (10) presents an 

opportunity, which has been partly filled by machine learning (11, 12). Machine learning offers a data-

driven agnostic approach. A major advantage is the ability to analyse high dimensional data with 

minimal curation, even in the presence of collinearity and widespread correlation between variables. 

But the question is different: What is the contribution of a variable to predicting the outcome? Usually 

there is no formal test. More importantly, a variable can be valuable for prediction due to confounding 

(13). Machine learning is therefore problematic for risk factor identification. Other concerns have been 

raised with artificial intelligence approaches in healthcare, particularly in terms of often difficult-to-

achieve interpretability and equity (14). 

 

Bayesian methodology offers a solution to the question of identifying direct effects in biobank-scale 

data while controlling for confounding (15). An important advantage is the ability to account for 

uncertainty in model choice by averaging over the inclusion or exclusion of other variables when 

estimating or testing the direct effect of each variable. This uncertainty can strongly influence 

conclusions. The question is therefore: What is the explanatory value of each variable, over and above 

all the other variables? Is it non-zero? With a careful approach to feature engineering to mitigate issues 

around mediation, reverse causality and collider bias, and with independent validation akin to GWAS, 

Bayesian model averaging (BMA) offers a powerful approach. But Bayesian approaches are seldom 

used in current epidemiology: none of 127 published studies of risk factors for COVID-19 outcomes in 

UK Biobank was Bayesian (Table S1). This might be explained by several issues, including lack of 

familiarity among researchers, high computational requirements, and difficulties specifying prior 

distributions (16). Many practitioners worry about the role of the prior in Bayesian hypothesis testing, 

which can lead different researchers to different conclusions from the same data (17). 
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Here we apply Bayesian model averaging to test for direct risk factors among individual variables and 

groups of variables. Moreover, we use our new method, Doublethink, that assumes a specific prior and 

large sample size, to produce a one-to-one correspondence between Bayesian model-averaged posterior 

odds and traditional p-values (18). This allows simultaneous control of not just the Bayesian false 

discovery rate (FDR), but also the frequentist familywise error rate (FWER). We apply Doublethink to 

investigate direct risk factors for COVID-19 hospitalization in UK Biobank, and we compare our 

results to the literature. This framework provides a highly capable model-averaging approach that can 

be applied to the systematic evaluation of direct risk factors in biobank-scale resources. 

Theory 
The Doublethink method (18) considers a general regression setting in which there are n observed 

outcomes Y1 … Yn and À variables (features) with regression coefficients β1… βÀ. The aim is to identify 

which variables directly influence the outcome, i.e. which of the regression coefficients are non-zero. 

In total there are 2À models which we identify via vector s, the jth element of which indicates whether 

variable j is included (sj = 1; βj ≠ 0) or excluded (sj = 0; βj = 0) from the model. 

 

We are interested in testing the null hypothesis that the variables indexed by a set (�) all have 

regression coefficients βj = 0 (for j ∈ �). We can average over the inclusion or exclusion of all other 

variables to produce a set of models compatible with the null hypothesis, 

 �� = {Ā ∈ �: Ā� = 0 for all � ∈ �}, (1a) 

and a complementary set of models compatible with the alternative hypothesis, 

 �� = � ∖ ��, (1b) 

where � is the state space of s. In the Bayesian setting, we reject the null hypothesis if the posterior 

odds of �� versus ��, 

 PO�� :�� = ∑ �ÿ(�|Ā) �ÿ(Ā)ý∈��∑ �ÿ(�|Ā) �ÿ(Ā)ý∈�� , (1c) 

exceed some threshold τ. The Bayesian false discovery rate (FDR), both local and global (19), is then 

controlled at or below 1/(1 + τ), contingent on the prior. 

 

Lemma 1 (18). The Bayesian procedure defined by Equation 1, which rejects the null hypothesis �� 

when PO�� :�� > τ, is a closed testing procedure (20), and therefore controls the frequentist FWER in 

the strong sense. 

 

To implement simultaneous Bayesian and frequentist inference, we assumed priors of the form 

 Ā� ∼ Bernoulli ( ¿1+¿) , � = 1 & À (2a) 

 θĀ ∼ Normal(0, /21 ℐ�21) (2b) 

where ¿ are the prior odds that βj≠0, h is a prior scale factor, θs are the unconstrained parameters in 

model s (the βj for which sj = 1, and any nuisance parameters), and ℐ� is the per-observation Fisher 

information matrix for model s, evaluated at θs = 0. Fisher9s information matrix has been used widely in 
the definition of reference priors (e.g. 21, 22), and to generate concordance between Bayesian and 

frequentist point and interval estimates (see Table 1 of 18). 

 

Subject to further assumptions, principally that (i) the outcomes are independent, given the model, (ii) n 

is large, and (iii) h is proportional to n (known as 8local alternatives9), Johnson (23, 24) showed that the 

posterior odds between model t and nested model s are 
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 POā:Ā ∼ ¿|ā|2|Ā| ( ℎ�+ℎ)(|ā|2|Ā|)/2 �ā:Ā, (3) 

i.e. proportional to the maximized likelihood ratio �ā:Ā. These assumptions enable interconversion 

between Bayesian and frequentist hypothesis tests. From the well-known result that the deviance 

(2 �Āý �ā:Ā) follows a chi-squared distribution with |ā| 2 |Ā| degrees of freedom, conditional on model 

s, one can transform the posterior odds into a p-value as 

 āþ:ý ∼ �ÿ (�|þ|2|ý|2 > 2 �Āý POþ:ý�|þ|2|ý|( ℎ�+ℎ)(|þ|2|ý|)/2), (4) 

which is a rearrangement of the familiar āþ:ý = �ÿ(�|þ|2|ý|2 > 2 �Āý �ā:Ā) (25). Note the p-value depends 

on �ā:Ā, but not the hyper-parameters ¿ and h. 

 

Following Johnson (23, 24), we drop the assumption that h is proportional to n, and assume it is fixed. 

Although this contradicts a motivating assumption, it has the desirable effects of (i) removing the 

dependency of the prior on n, (ii) achieving statistical consistency and (iii) recapitulating the Bayesian 

information criterion (BIC) when h = 1, which has been shown to reasonably approximate a wide range 

of Bayes factors when n is large (26, 27). We further assume that ¿ < 1, and each variable has one 

parameter, and one degree-of-freedom. We use the theory of regularly varying random variables (28, 

29) to derive the following. 

 

Theorem 1 (18). We find that, under these assumptions, the model-averaged posterior odds, 

 PO�� :�� ∼ |�| ÿ ( ℎ�+ℎ)1/2 ��� :�� , (5) 

can be transformed into an asymptotically valid p-value for large n. Here ��� :��  is a weighted mean of 

the nested maximized likelihood ratios in �� and ��, and the p-value (unadjusted for multiple testing) 

is 

 ā�� :��~ �ÿ (�12 > 2 �Āý PO��:��|�| �( ℎ�+ℎ)1/2)   as  ÿ →∞. (6) 

 

Theorem 2 (18). The level at which this procedure controls the FWER in the strong sense is 

 α ∼ �ÿ (�12 > 2 �Āý τÀ �( ℎ�+ℎ)1/2)   as  ÿ →∞. (7) 

As a corollary, the Bayesian procedure is equivalent to rejecting the null hypothesis �� when an 

adjusted p-value, 

 ā�� :��⋆ ~ �ÿ (�12 > 2 �Āý PO��:��À �( ℎ�+ℎ)1/2)   as  ÿ →∞, (8) 

is smaller than threshold α. 

 

An equivalent interpretation of these results is that the model-averaged deviance (2 �Āý ��� :��) follows 

a chi-squared distribution with one degree of freedom, when large. This means Doublethink p-values 

cannot be arbitrarily rescaled by the prior parameters ¿ and h because (i) the null distribution of the 

model-averaged deviance does not depend on them, and (ii) the realized value depends on them only 

through weights. Therefore ¿ and h influence the power of the test, but not its theoretical distribution 

under the null hypothesis. This makes model-averaged hypothesis testing a viable frequentist procedure 

by facilitating a prior-agnostic approach to quantifying Bayesian significance thresholds in terms of 

FWER, for large samples. 
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Methods 
We implemented the Doublethink approach as a Monte Carlo Markov Chain approach (30) in R (31) 

and Python (32) and applied it to identify risk factors for COVID-19 hospitalization in UK Biobank, 

following the COVID-19 Host Genetics Initiative definition as applied to UK Biobank. 

 

Outcomes. Cases were identified from Public Health England9s Second Generation Surveillance 
System (SGSS), the National Health Service9s Hospital Episode Statistics (HES) and the National 
Health Service9s death registry between January and December 2020 as PCR positive for SARS-CoV-2 

in SGSS, and hospitalized with International Classification of Diseases, Tenth Revision (ICD-10) 

diagnosis code U07.1 or U07.2 in HES. Participants not identified as cases were considered controls. 

We excluded participants that died before 2020, non-England residents determined by assessment 

centre, and those that withdrew before the analysis. The total numbers of controls were down-sampled 

to 200,000 to speed computation. The total number of cases was 1,917. 

 

Variables. We considered data fields approved for UK Biobank project 53100 8Microbiology, disease 

and genetics9, across the categories Population characteristics, Assessment centre, Biological samples, 

Online follow-up, Additional exposures and Health-related outcomes. We excluded Compound, Date, 

Text and Time variables, and variables concerning genetics and sampling processes. For repeated 

measures, we took the first instance. We excluded factors exceeding 50 levels, except self-reported 

illnesses, and variables missing in more than 15% of participants. Special values, including negative 

factor levels, were treated as missing. We imputed missing continuous and integer covariates taking the 

mean of non-missing values. Missing factor levels were treated as a separate level and excluded. We 

created binary variables for all levels of every factor observed with frequency above 0.2%. We created 

a binary variable for every ICD-10 code with frequency above 0.2% recorded before 2020 in HES. 

Overall, we analysed 184 covariates, binary variables encoding 865 levels across 193 factors, and 863 

ICD-10 admission codes, a total of 1,912 variables (Supplementary Table S2). 

 

Model. We fitted the data separately for each outcome via a logistic regression model implemented in 

R using the glm function, assuming an additive linear predictor with an intercept term. We assumed the 

prior odds of variable inclusion were ¿ = 0.0053, independently for the À = 1,912 variables, implying a 

prior expectation of 10 variables in the model. We assumed a unit information prior (h = 1) for the 

regression coefficients (27). We disallowed the inclusion of collinear variables by defining a zero 

likelihood. 

 

Implementation. Like the implementation in (33), we employed a Markov Chain Monte Carlo 

(MCMC) sampler over the variable inclusion vector s. We ran 100 chains with 25,000 iterations of 

burn-in and 75,000 iterations of sampling. Chains were initialized using a furthest neighbor algorithm 

to avoid including correlated variables. For initialization, we clustered variables into 200 groups with 

the scikit-learn-extra KMedoids algorithm, using rank correlation distance. Each chain was initialized 

with the medoid of one group, before adding nine more variables iteratively from the next-least 

correlated variables. Three Metropolis Hastings moves were implemented that respectively added, 

removed, or swapped pairs of variables with relative proposal probabilities 9:9:2. Variables were 

swapped preferentially for those with high squared correlation. We simulated regression coefficients 

directly from conditional Normal distributions by post-processing the MCMC iterations. We calculated 

posterior odds and parameter estimates by combining chains, computing standard errors across 

independent chains. 
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Grouping variables. We could perform valid post-hoc variable grouping while controlling the FDR 

and FWER, which was useful since correlated variables reduce one-another9s individual posterior 
inclusion probabilities. We clustered variables in two ways: (i) A posteriori, using the scikit-learn 

OPTICS algorithm with distances defined by their posterior correlation in inclusion probabilities. This 

grouped the variables with the strongest negative correlations in inclusion probabilities. (ii) A priori, 

using the algorithm applied to one minus the squared correlation between variables. We computed the 

posterior odds of including any variable among each group. 

 

p-value calculation. We used the chi-squared distribution to compute adjusted p-values using Theorem 

2. In the case of orthogonal variables with one degree-of-freedom, this is conservative for p < 0.02. 

Since the large n assumption implies interest in small significance thresholds, we report any p-value 

larger than 0.02 as n.s. (not significant) or 8-9. This makes Doublethink incompatible with any threshold 

exceeding α = 0.02. In practice, we did not explicitly set a threshold, instead reporting adjusted p-

values alongside posterior odds. 

 

Literature review. We reviewed the variables included in published analyses of COVID-19 risk 

factors in UK Biobank using the query "UK Biobank" (Abstract) and "COVID" (Abstract) in 

www.webofscience.com on 19 September 2023. After excluding Review Articles and Editorial 

Material, this search returned 203 publications. We analysed a subset of 127 of these papers that 

quantified the effect of non-genetic risk factors on COVID-19 outcomes; this predominantly excluded 

papers reporting genetic risk factors, two-sample Mendelian randomization, and COVID-19 as an 

exposure for other outcomes (Supplementary Table S1). We manually categorized the variables 

analysed by these 127 papers into groups (Supplementary Table S3). We summarized the frequency 

with which each category of variable was included in the published analysis or abstract. 

 

Results  
We aimed to identify risk factors that directly influenced COVID-19 hospitalization in the UK 

Biobank, to help understand the underlying processes, by using model-averaged hypothesis tests to 

account for uncertainty in variable selection and deplete for potential confounders, subject to the 

limitations of the data in terms of unmeasured variables and measurement error. We intended to limit 

the impact of collider bias by focusing on exposure variables measured before 2020, and by comparing 

cases to the rest of the biobank. This compounded the case definition with selection bias, for example 

access to testing, which may affect interpretation (9). We focus on risk factors for hospitalization with 

COVID-19, because there were more cases than critical illness, and less obvious selection bias than 

infection (since testing was more widely available in hospitals). 
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Figure 1 Individual variables (points) and pre-defined groups of variables (vertical lines) with the strongest evidence of direct effects on 

the risk of COVID-19 hospitalization in UK Biobank. Evidence was quantified simultaneously by log10 posterior odds and -log10 adjusted 

p-value using Doublethink. Groups were defined a priori. Points and lines are coloured for legibility. Variables were ordered horizontally 

using OPTICS. Vertical lines show the boost in significance (if any) from the most significant individual variable per group to the 

significance of the whole group. Significance was truncated to log10 posterior odds between -6 and 6. Individual variables and groups 

significant at log10 posterior odds g 1 are labelled (with the most significant variable per group in parentheses). Individual variables are 

named by UK Biobank field ID or, when prefixed by a letter, ICD-10 code. Refer to Table 1 for full names. 

Doublethink facilitates joint Bayesian-frequentist model-averaged hypothesis tests 

Figure 1 shows a Manhattan plot displaying the evidence that each of the 1,912 individual variables 

(points) directly affected the risk of COVID-19 hospitalization in UK Biobank, averaged over 

uncertainty in the effect of all other variables. Points are plotted against both the log10 posterior odds 

(left side) and the −log10 adjusted p-value from Theorem 2 (right side). This interconversion allows a 

Bayesian or frequentist approach to evaluating the strength of evidence. 

 

Comparison of the two vertical axis scales shows that in the Doublethink model, the model-averaged 

posterior odds and adjusted p-values are approximately linearly related, for small p-values. Significant 

variables are identified by applying a threshold to either the posterior odds or the adjusted p-value; this 

simultaneously controls the FWER and – for the assumed prior – the FDR, under the asymptotic 

approximation. For example, a Bayesian threshold of τ = 10 would control the FDR at 1/(1 + τ) = 0.091 

and the FWER at α = 10-3.3 = 0.00047. The latter is much smaller than the conventional threshold of 

0.05, partly because of the large sample size. 

 

At a significance threshold of τ = 10 and α = 10-3.3, nine variables were identified as individually 

exposome-wide significant. Significant variables, such as the ICD-10 codes F03 Unspecified 

dementia, J22 Unspecified acute lower respiratory infection and R29.6 Tendency to 

fall, not elsewhere classified, appeared to affect risk of COVID-19 hospitalization, even after 

controlling for the effects of all other measured variables. This differs from the common practice of 

testing the significance of a variable in the context of a single model that controls for a limited set of 

other variables. Model averaging was important here because no single model had high posterior 

probability. 
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Several significant variables were indicators or aggregates of presumptive underlying processes, such 

as 41214 Carer support indicators : 1 : Yes, which indicates a hospital record of past carer 

support, 137 Number of treatments/medications taken, which summarizes the recruitment 

interview, and Z86.4 Personal history of psychoactive substance abuse, which indicates a 

hospital record of past alcohol, tobacco or drug use. The direct effect of these proxies was to increase 

the risk of COVID-19 hospitalization in all cases (Table 1). In contrast, significant measures of 

educational attainment, 6138 Qualifications : 3 : O levels/GCSEs or equivalent, and 6138 

Qualifications : 1 : College or University degree, had protective direct effects on risk of 

COVID-19 hospitalization. 

 

The significance of some variables was, at first glance, unexpectedly low, such as the well-established 

risk factors 31 Sex : 1 : Male (Posterior probability, PP = 49.9; p⋆ = 10−2.23; where posterior 

odds = PP/(1-PP)) and 34 Year of birth (years) (PP = 40.8; p⋆ = 10−2.05; Table 1). This is 

explained by the inclusion in the data of the other very highly correlated variables 31 Sex : 0 : 

Female, 21003 Age when attended assessment centre (years) and 21022 Age at 

recruitment (years). Including variables that are correlated, whether strongly or weakly, inevitably 

dilutes the significance of individual variables when testing for the existence of a direct effect, over and 

above all other variables. For age and sex, an obvious solution would be to exclude these correlated 

variables. However, correlation is pervasive in biobank-scale data. An alternative solution is to define 

groups of correlated variables and test whether one or more members of a group affect the outcome. 

Doublethink allows arbitrary groups of variables to be tested in this way, while controlling the FDR 

and FWER. 

Testing the significance of groups of variables reveals more signals 

Nine groups of variables defined a priori were significant at τ = 10 and α = 10-3.3, often when the 

individual member variables were not. In Figure 1, vertical lines illustrate the boost in the significance 

of groups of variables compared to their most significant member. The groups are numbered for cross-

reference with Table 1. For example, the well-established risk factors age (Group 1; PP = 100; 

p⋆ < 10−5.95), indices of multiple deprivation (Group 2; PP = 100; p⋆ < 10−5.95) and sex (Group 3; 

PP = 100; p⋆ = 10−5.95) were significant despite containing no individually significant member 

variables. In these examples, testing groups of variables recovered signal that was diluted by the 

inclusion in the data of highly correlated variables. 

 

Finding that a group of variables is significant means there is evidence that one or more of them 

influence the outcome, after controlling for all other measured variables. This controls confounding 

caused by variables outside the group, but combines signals within the group, increasing power. For 

example, Group 8 was strongly significant (PP = 99.5, p⋆ = 10−4.71) while containing variables that 

were individually less so: Z50.1 Other physical therapy (PP = 79.9, p⋆ = 10−2.89) and Z50.7 
Occupational therapy and vocational rehabilitation, not elsewhere classified 

(PP = 19.6, p⋆ > 0.02). One of these variables, or something they measure that is not captured by other 

variables, presumably influences the risk of COVID-19 hospitalization, even if we cannot attribute the 

effect specifically to either. 

 

Testing groups is useful but defining them a priori is not the most effective method of discovering 

signals, because the groupings might not be relevant to the outcome under investigation. For example, 

Group 8 also included variable Z50.5 Speech therapy, which appeared to contribute nothing to the 
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group9s overall significance (PP = 0.0, p⋆ > 0.02). Conversely, failure to group relevant variables 

together can cause signals to be overlooked, as we will see. 

Doublethink allows arbitrary groups to be tested 

 
Figure 2 Individual variables (points) and post-hoc groups of variables (vertical lines) with the strongest evidence of direct effects on the 

risk of COVID-19 hospitalization in UK Biobank. The horizontal axis is truncated to show only significant variables and groups. Vertical 

lines show the boost in significance (if any) from individual member variables to the significance of the whole group. See Figure 1 legend 

for further details. 

One of the advantages of the Doublethink approach is it motivates the testing of arbitrary groups of 

variables without inflating the FWER or FDR through a multiple testing 8fishing expedition9. This is 

because the thresholds of all possible tests are pre-defined in the closed testing procedure. Therefore we 

were free to search for the most significant groups of variables. To this end, we grouped variables post-

hoc whose posterior inclusion probabilities (PPs) were negatively correlated, because this suggests 

they 8competed9 for inclusion in the model. 
 

Figure 2 and Table 2 show that post-hoc grouping revealed signals that were weaker in pre-defined 

groupings, such as Group D (PP = 99.5, p⋆ = 10−4.75), which captured aspects of obesity by combining 

the individual variables 48 Waist circumference (cm) (PP = 89.0, p⋆ = 10−3.22), 21001 Body mass 

index (BMI) (Kg/m2) (PP = 5.5, p⋆ > 0.02) and 23104 Body mass index (BMI) (Kg/m2) 

(PP = 5.0, p⋆ > 0.02). In contrast, prior Group 10 (PP = 89.0, p⋆ = 10−3.22) had only combined 48 

Waist circumference (cm) with the non-significant variables 21002 Weight (Kg) and 23098 

Weight (Kg) (Table 1). 

 

Some post-hoc groups overlapped the pre-defined groups but dropped non-significant variables that did 

not contribute to the significance of the group. For example, Group H (PP = 99.2, p⋆ = 10−4.48), 

contained only the three most significant deprivation scores of the eight members of Group 2. Other 

groups revealed new connections between variables, such as Group I (PP = 95.7, p⋆ = 10−3.69), which 

combined the individually non-significant K59.0 Constipation (PP = 66.1, p⋆ = 10−2.55) and 
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N39.0 Urinary tract infection, site not specified (PP = 58.4, p⋆ = 10−2.40), a combination 

that might reflect underlying kidney disease. 

 

The post-hoc grouping of 41218 History of psychiatric care on admission : 8 : Not 

applicable with I10 Essential (primary) hypertension was at first glance surprising from the 

field descriptions (Group G: PP = 99.3, p⋆ = 10−4.55). However, the former variable indicates a history 

of non-psychiatric hospital care. This suggests it may act, in a manner interchangeable with I10, as a 

proxy for a history of underlying poor physical health. The direct effect of both variables was to 

increase risk of COVID-19 hospitalization (Table 2). 

 

The ability to quantify the evidence for groups of variables offers an alternative to approaches such as 

pre-analysis selection of representative candidate variables among groups of correlated variables. 

Doublethink permits all and any groups of variables to be tested while controlling the FDR and FWER. 

This presents new possibilities for identifying significant groups, and the identification of these groups 

may help with the interpretation of the role in the individual variables in the outcome. 

Comparison to the literature on COVID-19 outcomes in UK Biobank 

Since early in the COVID-19 pandemic, before the discovery of effective treatments, there were intense 

research efforts to understand susceptibility to infection, disease and poor outcomes. Many focused on 

large established cohorts like UK Biobank that could rapidly link to data on SARS-CoV-2 testing (34), 

COVID-19 hospitalization (35) and mortality (36). Since then, many risk factors have been reported, 

including smoking (37, 38, 39, 40, 41, 42), diabetes (38, 43, 44, 45), asthma (46, 47) and vitamin D 

(48, 49) as predisposing to worse outcomes. We compared our results to the literature on COVID-19 in 

UK Biobank to identify any differences to standard approaches and find new insights. At the time of 

analysis, we identified 127 comparable studies through Web of Science. We manually assigned the 

most common risk factors in published analyses of COVID-19 outcomes to larger categories for 

comparison to the variables and groups listed in Tables 1 and 2, which we assigned to the same list of 

categories. 

 

Table 3 shows the most common categories of risk factors included in published analyses of COVID-

19 outcomes in the 127 UK Biobank studies. Two summaries are shown: the percentage of papers and 

the percentage of abstracts in which each category of risk factors appeared. Alongside we show the 

evidence from our analysis, with values of PP < 50% (corresponding to p⋆ > 10−2.20) omitted, since the 

Bayesian interpretation is this represents evidence against those risk factors. 

 

Age, Sex, Obesity, Ethnicity, Socioeconomic status (including deprivation indices) and Smoking were 

included in more than 66-90% of published analyses. These well-established risk factors were 

mentioned in 6-20% of abstracts. Our analysis supported direct effects of all these categories with 

PP g 99.5% and p⋆ f 10−4.75 except ethnicity (Supplementary Table S4, S5). Post-hoc Group J had 

strong support (PP = 94.1, p⋆ = 10−3.54) but combined self-reported ethnicity and country of birth with 

geographic measures of pollution. However, pre-defined Group 11, which did not contain pollution 

metrics, was not significant at τ = 10 and α = 10-3.3, despite the evidence being suggestive (PP = 80.0, 

p⋆ = 10−2.89). 

 

Other reasonably common categories of risk factor for which our analysis found evidence of direct 

effects included Lung disease, Alcohol intake, General comorbidity, Kidney disease and Educational 

attainment. Risk factors in these categories featured in 28-46% of published analyses and 4-9% of 

abstracts. Our analysis supported these categories with PP g 95.7% and p⋆ f 10−3.69. 
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Many categories of risk factors that appeared commonly in published analyses received no significant 

support for direct effects in our analysis. Diabetes, Cardiovascular disease and Hypertension were 

notable for inclusion in 54-63% of published analyses, and 10-12% of abstracts. No variables or groups 

of variables corresponding to these categories received support for direct effects in our analyses (PP < 

50%, p⋆ > 10−2.20). However, no evidence of a direct effect does not imply no evidence of an effect. 

These common diseases contribute to a general decline of health, and it is possible that their effects 

were mediated through pathways better represented by variables or groups we categorised under 

General comorbidity, such as 137 Number of treatments/medications taken and Group G. 

 

Several notable categories of risk factor that we found to have significant direct effects were rarely 

included in published analyses of COVID-19 outcomes in UK Biobank. Variables representing 

Psychiatric disorders, Infection, Dementia and Aging were included in 9-15% of published analyses, 

and 2-9% of abstracts, whereas we found strong evidence of direct effects of variables we assigned to 

these categories (PP g 99.4% and p⋆ f 10−4.65), including 41214 Carer support indicators : 1 : 

Yes (which we categorised under Psychiatric disorders), J22 Unspecified acute lower 

respiratory infection (Infection), F03 Unspecified dementia (Dementia) and R29.6 Tendency 

to fall, not elsewhere classified (Aging). Therefore a model-averaging big data analysis that 

accounts for widespread correlations among variables and uncertainty in variable selection can bring 

new insight to our understanding of well-studied health outcomes like COVID-19 hospitalization in 

UK Biobank. 

Discussion 
Doublethink for discovery of non-genetic risk factors 

Bayesian model averaging is an approach especially suited to accounting for model uncertainty, such as 

which variables directly affect an outcome. Here we showed that appropriate construction of the prior 

allows simultaneous control of the Bayesian FDR and the frequentist FWER, facilitating its use in 

fields, like epidemiology, where classical statistics predominates. This allowed us to screen 1,912 

variables for direct effects on COVID-19 hospitalization and adjust for confounders via model 

averaging without the need to specify a candidate risk factor (primary exposure) nor select variables in 

a pre-analysis step such as a univariable scan, stepwise regression or machine learning. Instead of 

attempting to identify independent variables – a near-impossible task in biobank scale data where 

correlation is pervasive – we performed tests on groups of correlated variables, which can increase 

power and, in some cases, interpretability. 

 

This work offers a new approach at a time when there are increasing calls for exposome-wide 

association studies (e.g. 10). With some exceptions (9, 12, 45, 50, 51, 52, 53), agnostic exposome-wide 

approaches to discovering new risk factors were absent from published studies of COVID-19 outcomes 

in UK Biobank (Table S1). Perhaps that is particularly surprising given that COVID-19 was a new 

disease in which all risk factors were initially unknown. 

 

The approach of this paper had numerous limitations. Principally, we did not assess the total effect of a 

variable on the outcome, only the direct effect. In some applications it is necessary to estimate the total 

effect to understand the likely impact of an intervention on the outcome. The direct effect can differ in 

magnitude and direction to the total effect, and confusing the two is a pitfall known as the Table 2 

fallacy (8).  Focusing on direct effects therefore limits the interpretation of our conclusions. In 

particular, we are unable to predict the effect on the outcome of a hypothetical intervention in the study 

population. 
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Importantly, we cannot conclude that no evidence of a direct effect implies no evidence of an effect. 

For example, hypertension was mentioned in 11% of abstracts and included in 54% of published 

analyses of COVID-19 outcomes in UK Biobank, but we did not find significant evidence of its direct 

effect on hospitalization. This does not rule out an indirect effect mediated through another variable, 

such as a general decline in health. Several fields captured general comorbidity, including 137 Number 

of treatments/medications taken. Not only might they mediate indirect effects, but fields like 137 

that pool, aggregate or summarize data from several other sources might be favoured for inclusion by 

the sparsity-inducing prior, which imposed a penalty ¿ on every additional parameter. This ability of 

the Bayesian prior to influence the final results is inevitable and exists despite the ability to control the 

frequentist FWER. 

 

In practice, the main considerations for running Doublethink are (i) preparation of the outcome data 

and variables, (ii) choice of hyper-parameters and (iii) computational feasibility. (i) As demonstrated 

with the UK Biobank analysis, it is not necessary to filter variables a priori to find 8independent9 sets, 
usually an impossible task. Instead, variables can be grouped post hoc to sidestep correlation and detect 

signals. Data quality control is still paramount. (ii) To choose the hyper-parameters, the main 

consideration is the average number of variables expected to be included in the model, which 

determines µ; we chose Āÿ/(1 + ÿ) = 10. For many purposes, the unit information prior of h = 1 will 

suffice. For non-Bayesians, these hyper-parameters determine the performance envelope of the 

analysis, with performance optimal when the 8truth9 resembles the prior. The aim of the paper is the 

method should still be useful, and the p-values theoretically well calibrated, at other times. (iii) 

Computation is the major limitation. The analysis of À = 1,912 variables in n = 201,912 UK Biobank 

participants required 100,000 iterations of 100 independent chains running for 35 hours each. This is 

substantially slower than many machine learning algorithms. 

 

The Monte Carlo Markov Chain approach pursued here was computationally intensive, despite 

restricting our attention only to direct effects. Requiring 3500 CPU hours, its feasibility relied on 

efficiency gains stemming from (i) asymptotic approximations motivated by an assumption of large 

sample size and (ii) a convenient prior. The computational demands of the approach prevented us from 

investigating important phenomena like interactions between variables and non-linear effects such as 

time-since-exposure. With a less computationally expensive approach, we might have investigated 

other potential risk factors with large numbers of rare variables, such as occupation and use of specific 

medicines. 

 

In an analysis of non-genetic direct risk factors, there is no possibility of a definitive approach, even for 

an agnostic scan. Partly, this is because direct effects are only defined relative to a fixed set of 

variables: conceptually, a direct effect could be mediated through one or more downstream variables 

that were not measured or included. Moreover, no method is free of data curation. This includes choice 

of the exposure variables to uphold quality control, avoid reverse causation and avoid collider bias (we 

restricted analysis to pre-2020 exposures), and choice of outcome (we restricted attention to 2020 given 

the time-varying dynamics and likely impact of vaccination status, which we did not know). Methods 

to impute missing values, handle repeat measures and encode factors can all impact the final results. 

 

Doublethink and simultaneous Bayesian/frequentist hypothesis testing 

Other theoretical considerations that may limit the applicability of Doublethink include assumptions of 

large sample sizes and a specific family of priors (or 8random effects9) parameterized by µ  and h. The 

prior covariance on the coefficients (β), based on Fisher information, is hard to justify except through 

its convenience for pursuing joint Bayesian/frequentist inference. This motivating aim is only achieved 
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theoretically as n becomes arbitrarily large. So strictly speaking that aim is not truly met, meaning the 

theoretical properties of the p-value may not hold precisely, leading to inflation or deflation, 

particularly when p is not small, and reducing robustness to poor choices of h and particularly µ . The 

theory contains a technical contradiction, because h is initially assumed to scale with n (the local 

alternatives assumption), allowing the posterior odds to be written in terms of the maximized likelihood 

ratio, but later h is assumed to be constant with respect to n, which affords simplifications in deriving a 

p-value for the model-averaged posterior odds (23, 24). 

 

Beyond its practical utility, Doublethink has wider implications for bridging the gap between Bayesian 

and classical philosophies to scientific inference. First, Lemma 1 showed that the Bayesian approach to 

testing a collection of null hypotheses βj = 0, j ∈ �, in which the null hypothesis is rejected when the 

posterior odds exceed a fixed threshold τ, is a closed testing procedure (20), which therefore controls 

the frequentist FWER in the strong sense at or below some level α. This result is general and does not 

depend on the Doublethink model. Importantly, it disproves the idea that the FWER is a fundamentally 

non-Bayesian quantity, inherently more stringent than the FDR, which the Bayesian approach controls 

at or below level 1/(1 + τ). 

 

Second, Theorem 2 gave an analytic expression for α, the level at or below which the FWER is 

controlled in the strong sense, asymptotically under the Doublethink model. From there, we could 

interconvert model-averaged posterior odds and adjusted p-values, and equivalently, we could 

interconvert FWER and FDR thresholds. This affords insights by allowing frequentist multiple testing 

thresholds to be understood in terms of Bayesian prior assumptions. According to Theorem 2, α is 

asymptotically proportional to À ÿ (//ÿ)1/2/ τ. That is, asymptotically proportional to (i) the number 

of variables, À, which underlies Bonferroni correction, (ii) the prior odds, µ , of the alternative 

hypothesis versus the null, and (iii) the square root of the prior precision h, higher values of which 

make the alternative hypothesis more similar to the null; and inversely proportional to (iv) the Bayesian 

threshold τ, and (v) the square root of the sample size n. The relationship � = �0 À ÿ (//ÿ)1/2, for 

some constant α0, offers a resolution to the classical paradox about multiple testing (54): should I vary 

α0 to correct for the number of tests in an analysis, the number of tests in the whole paper, the number 

of tests I perform in my career, or the number of tests in the scientific literature? The Bayesian 

response is to fix α0 not α, that is to fix the FDR and allow the FWER to vary depending on À, µ , h and 

n. As n grows, this controls the FWER far more stringently than the FDR anyway. 

 

Third, Theorem 2 revisits the Jeffreys-Lindley paradox (55) by emphasizing a principal difference 

between Bayesian and frequentist hypothesis tests, not in philosophical issues like the treatment of 

parameters as fixed or random, but in the practical choice of significance threshold. The common 

practice of fixing the FWER irrespective of n, e.g. at 0.05 or 0.005 (56), leads to tests that are 

inconsistent under the null, because there is a tangible probability, α, of wrongly rejecting the null 

hypothesis even for arbitrarily big data (57). This is solved by varying α with n-1/2, an alternative 

starting point from which one could calculate either the FWER or the FDR. 

 

The FDR considered here is related to, but distinct from, some FDR concepts common in the literature. 

First, we control the Bayesian FDR, rather than a frequentist FDR controlled by procedures like 

Benjamini and Hochberg9s (58) or Storey9s (59). Second, we control the local FDR (19), meaning we 

only call an individual variable significant when its posterior inclusion probability exceeds the 

threshold, τ/(1 + τ). Often, frequentist FDR procedures call as many individual variables significant 

as possible such that the mean FDR is controlled. On average this will reject more individual variables, 

but there are two caveats. First, it allows individual variables with lower posterior probability to be 
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called significant, meaning we reject the null hypothesis that their direct effects are zero. Second, it 

may still miss variables whose individual significance has been diluted by correlation with other 

variables. As we have seen, such signals can be recovered by testing groups of variables. When a group 

of variables is called significant, we reject the null hypothesis that all their direct effects are zero, 

without necessarily pinpointing which variables have a non-zero direct effect. 

 

Further research is needed to determine the generalizability of some of our theoretical findings beyond 

the Doublethink model. The form of Theorem 2 depends on the model choice prior, in which µ  is fixed. 

The impact of co-estimating µ requires attention. The prior on the coefficients also matters. On one 

hand, Doublethink may be general in that log Bayes factors for nested hypothesis tests converge 

asymptotically to the Schwarz criterion (27, 57), which Doublethink recapitulates when n is large. On 

the other hand, the derivation of Theorem 2 relies heavily on the theory of regular variation (28, 29, 

60). In Doublethink, the posterior odds are regularly varying random variables, but slowly varying 

posterior odds arise in non-nested settings (61, 62). The interconversion of p-values and posterior odds 

(or equivalently FWER and FDR) should then behave quite differently. 

 

Doublethink is closely related to recent developments in combined hypothesis tests that exploit heavy 

tailed distributions such as the Cauchy combination test (63) and the harmonic mean p-value (HMP; 

64). The HMP provides a model-averaging approach, starting with p-values, whereas Doublethink 

pursues joint Bayesian/frequentist model-averaging beginning with nested maximized likelihood ratios. 

These are closely related, but a theoretical advance over the HMP is the ability of Doublethink to 

average over uncertainty in the null hypothesis, as well as the alternative hypothesis. An interesting 

result from Doublethink is that under the null hypothesis, the model-averaged deviance asymptotically 

follows a chi-squared distribution with one degree of freedom. This mirroring of the null distribution of 

the classical likelihood ratio test statistic emerges from the self-similarity or 8fractal9 property of sums 
of heavy tailed random variables. Moreover, the model-averaged deviance could be interpreted instead 

of the posterior odds or Bayes factor, which are strongly influenced by the prior (17). 

 

Doublethink, like the HMP, enables us to reconsider established positions concerning the philosophy 

and practice of hypothesis testing. In particular, the multilevel nature of these tests, in which all 

possible combinations of hypotheses are simultaneously controlled via pre-determined thresholds, like 

(65), supports refinements to concepts like fishing for significance, data dredging and p-hacking (66). 

For a fixed set of predetermined null hypotheses, Doublethink allows us to search in arbitrary ways for 

significant groups of variables, without impacting the FDR and, at least asymptotically, the strong-

sense FWER. Since exhaustive searches are not generally practicable, the methods by which signals are 

sought through grouping variables become important. We examined just two possible methods of 

grouping variables, but the strong impact of the groupings on the relative prominence of signals in the 

data means more work is required in this area. From these insights and through new avenues of 

research, this work has the potential to help advance scientific discovery and bridge the differences 

between Bayesian and classical hypothesis testing. 
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criteria, and outcomes and exposures included in the abstract and analysis. 

 

Table S2 All UK Biobank fields included in the analysis, annotated by field or ICD-10 code, UK 
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Tables 

 

Group 
PP 
(%) 

Group 
-log10 
p⋆ Variable 

PP 
(%) 

-log10 
p⋆ 

Effect 
size 
when 
included 

Standard 
error 
when 
included 

1 100 >5.95 34 Year of birth (years) 40.8 2.05 -0.03 0.00 

      21003 Age when attended assessment centre (years) 30.0 1.82 0.03 0.10 

      21022 Age at recruitment (years) 29.2 1.80 0.03 0.10 

2 100 >5.95 26413 Health score (England) 77.7 2.83 0.26 0.03 

   26412 Employment score (England) 10.9 - 2.79 0.37 

   26410 Index of Multiple Deprivation (England) 9.9 - 0.01 0.00 

   189 Townsend deprivation index at recruitment 2.7 - 0.05 0.02 

   26414 Education score (England) 0.3 - 0.01 0.00 

   26411 Income score (England) 0.3 - 1.70 0.34 

   26417 Living environment score (England) 0.0 - 0.00 0.00 

   26416 Crime score (England) 0.0 - 0.01 0.04 

3 100 5.95 31 Sex : 0 : Female 50.1 2.24 -0.49 0.11 

      31 Sex : 1 : Male 49.9 2.23 0.49 0.11 

4 100 5.80 41214 Carer support indicators : 1 : Yes 100 5.78 0.56 0.08 

   54 UK Biobank assessment centre : 11006 : Stoke 0.0 - 0.24 0.21 

5 99.9 5.70 6138 Qualifications : 3 : O levels/GCSEs or equivalent 96.7 3.82 -0.29 0.05 

      6138 Qualifications : 1 : College or University degree 96.5 3.80 -0.34 0.06 

      6138 Qualifications : 2 : A levels/AS levels or equivalent 0.1 - -0.29 0.09 

- 99.9 5.44 Z86.4 Personal history of psychoactive substance abuse 99.9 5.44 0.37 0.06 

6 99.7 5.01 F03 Unspecified dementia 99.7 5.00 0.94 0.15 

      G30.9 Alzheimer's disease, unspecified 0.0 - 0.57 0.23 

      F00.9 Dementia in Alzheimer's disease, unspecified 0.0 - 0.59 0.26 

7 99.7 4.89 137 Number of treatments/medications taken 99.7 4.89 0.06 0.01 

   135 Number of self-reported non-cancer illnesses 0.0 - 0.02 0.01 

- 99.6 4.82 J22 Unspecified acute lower respiratory infection 99.6 4.82 0.51 0.09 

8 99.5 4.71 Z50.1 Other physical therapy 79.9 2.89 0.53 0.09 

   
Z50.7 Occupational therapy and vocational rehabilitation, not 
elsewhere classified 19.6 - 0.61 0.11 

   Z50.5 Speech therapy 0.0 - 0.34 0.22 

- 99.2 4.47 R29.6 Tendency to fall, not elsewhere classified 99.2 4.47 0.63 0.11 

9 98.2 4.10 41218 History of psychiatric care on admission : 8 : Not applicable 98.2 4.10 0.49 0.09 

   41214 Carer support indicators : 99 : Not known 0.0 - 0.03 0.19 

10 89.0 3.22 48 Waist circumference (cm) 89.0 3.22 0.02 0.00 

      21002 Weight (Kg) 0.0 - 0.01 0.00 

      23098 Weight (Kg) 0.0 - 0.00 0.00 

- 84.1 3.02 J18.1 Lobar pneumonia, unspecified 84.1 3.02 0.49 0.09 

11 80.0 2.89 21000 Ethnic background : 1001 : British 70.2 2.64 -0.40 0.08 

      1647 Country of birth (UK/elsewhere) : 6 : Elsewhere 9.8 - 0.42 0.09 

      1647 Country of birth (UK/elsewhere) : 1 : England 0.0 - -0.18 0.07 

      21000 Ethnic background : 1003 : Any other white background 0.0 - -0.21 0.14 

- 66.1 2.55 K59.0 Constipation 66.1 2.55 0.40 0.08 

12 58.4 2.40 N39.0 Urinary tract infection, site not specified 58.4 2.40 0.40 0.08 

      
B96.2 Escherichia coli [E. coli] as the cause of diseases classified 
to other chapters 0.0 - 0.32 0.12 

13 40.1 2.04 3063 Forced expiratory volume in 1-second (FEV1) (litres) 28.1 1.77 -0.19 0.04 

   3062 Forced vital capacity (FVC) (litres) 12.1 - -0.15 0.03 

   3064 Peak expiratory flow (PEF) (litres/min) 0.0 - 0.00 0.00 

14 40.1 2.04 2188 Long-standing illness, disability or infirmity : 0 : No 21.6 - -0.25 0.06 

      2188 Long-standing illness, disability or infirmity : 1 : Yes 18.5 - 0.25 0.06 

15 38.3 2.00 24017 Nitrogen dioxide air pollution; 2006 (micro-g/m3) 15.5 - 0.01 0.00 

   24018 Nitrogen dioxide air pollution; 2007 (micro-g/m3) 15.1 - 0.01 0.00 

   24016 Nitrogen dioxide air pollution; 2005 (micro-g/m3) 7.7 - 0.01 0.00 

- 31.5 1.86 L97 Ulcer of lower limb, not elsewhere classified 31.5 1.86 0.69 0.14 

- 25.5 1.71 N18.9 Chronic renal failure, unspecified 25.5 1.71 0.48 0.10 

Table 1 Doublethink allows the interconversion of model-averaged posterior odds and p-values for groups of variables, defined here a 

priori using variable correlation. The most significant groups are shown, alongside details of constituent variables. The most significant 

individual, ungrouped, variables are also shown. PP: posterior probability. p⋆: adjusted p-value (only values below 10−1.71 are shown). 
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Group 
PP 
(%) 

Group  
-log10 p⋆ Variable PP (%) 

-log10 
p⋆ 

Effect 
size 
when 
included 

Standard 
error 
when 
included 

A 100 >5.95 34 Year of birth (years) 40.8 2.05 -0.03 0.00 

      21003 Age when attended assessment centre (years) 30.0 1.82 0.03 0.10 

      21022 Age at recruitment (years) 29.2 1.80 0.03 0.10 

B 100 5.95 31 Sex : 0 : Female 50.1 2.24 -0.49 0.11 

   31 Sex : 1 : Male 49.9 2.23 0.49 0.11 

- 100 5.78 41214 Carer support indicators : 1 : Yes 100.0 5.78 0.56 0.08 

C 99.9 5.50 Z86.4 Personal history of psychoactive substance abuse 99.9 5.44 0.37 0.06 

   20116 Smoking status : 0 : Never 0.0 - -0.17 0.07 

- 99.7 5.00 F03 Unspecified dementia 99.7 5.00 0.94 0.15 

- 99.7 4.89 137 Number of treatments/medications taken 99.7 4.89 0.06 0.01 

- 99.6 4.82 J22 Unspecified acute lower respiratory infection 99.6 4.82 0.51 0.09 

D 99.5 4.75 48 Waist circumference (cm) 89.0 3.22 0.02 0.00 

   21001 Body mass index (BMI) (Kg/m2) 5.5 - 0.04 0.01 

   23104 Body mass index (BMI) (Kg/m2) 5.0 - 0.04 0.01 

E 99.5 4.71 Z50.1 Other physical therapy 79.9 2.89 0.53 0.09 

      
Z50.7 Occupational therapy and vocational rehabilitation, not 
elsewhere classified 19.6 - 0.61 0.11 

F 99.4 4.65 R29.6 Tendency to fall, not elsewhere classified 99.2 4.47 0.63 0.11 

   W19.0 Home 2.4 - 0.59 0.15 

G 99.3 4.55 
41218 History of psychiatric care on admission : 8 : Not 
applicable 98.2 4.10 0.49 0.09 

     I10 Essential (primary) hypertension 5.5 - 0.24 0.06 

H 99.2 4.48 26413 Health score (England) 77.7 2.83 0.26 0.03 

   26412 Employment score (England) 10.9 - 2.79 0.37 

   26410 Index of Multiple Deprivation (England) 9.9 - 0.01 0.00 

   54 UK Biobank assessment centre : 11011 : Bristol 3.9 - -0.47 0.14 

- 96.7 3.82 6138 Qualifications : 3 : O levels/GCSEs or equivalent 96.7 3.82 -0.29 0.05 

- 96.5 3.80 6138 Qualifications : 1 : College or University degree 96.5 3.80 -0.34 0.06 

I 95.7 3.69 K59.0 Constipation 66.1 2.55 0.40 0.08 

      N39.0 Urinary tract infection, site not specified 58.4 2.40 0.40 0.08 

J 94.1 3.54 21000 Ethnic background : 1001 : British 70.2 2.64 -0.40 0.08 

   24017 Nitrogen dioxide air pollution; 2006 (micro-g/m3) 15.5 - 0.01 0.00 

   24018 Nitrogen dioxide air pollution; 2007 (micro-g/m3) 15.1 - 0.01 0.00 

   1647 Country of birth (UK/elsewhere) : 6 : Elsewhere 9.8 - 0.42 0.09 

- 84.1 3.02 J18.1 Lobar pneumonia, unspecified 84.1 3.02 0.49 0.09 

K 40.1 2.04 3063 Forced expiratory volume in 1-second (FEV1) (litres) 28.1 1.77 -0.19 0.04 

   3062 Forced vital capacity (FVC) (litres) 12.1 - -0.15 0.03 

L 40.1 2.04 2188 Long-standing illness, disability or infirmity : 0 : No 21.6 - -0.25 0.06 

      2188 Long-standing illness, disability or infirmity : 1 : Yes 18.5 - 0.25 0.06 

- 31.5 1.86 L97 Ulcer of lower limb, not elsewhere classified 31.5 1.86 0.69 0.14 

- 25.5 1.71 N18.9 Chronic renal failure, unspecified 25.5 1.71 0.48 0.10 

Table 2 Doublethink allows arbitrary groups of variables to be assessed for significance while simultaneously controlling the FWER and 

FDR. Here groups were defined a posteriori by identifying variables whose PPs were negatively correlated. The most significant groups 

are shown, alongside details of constituent variables. The most significant individual, ungrouped, variables are also shown. PP: posterior 

probability. p⋆: adjusted p-value (only values below 10−1.71 are shown). 
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Category % Papers % Abstracts PP (%) -log10 p* 

Age 90 11 100 >5.95 

Sex 84 14 100 5.95 

Obesity 78 20 99.5 4.75 

Ethnicity 78 16 80 2.89 

Socioeconomic status 68 13 100 >5.95 

Smoking 66 6 99.9 5.5 

Diabetes 63 10 
  

Cardiovascular disease 59 12 
  

Hypertension 54 11 
  

Lung disease 46 6 99.6 4.82 

Alcohol intake 35 3 99.9 5.5 

General comorbidity 31 9 99.7 4.89 

Cancer 29 1 
  

Kidney disease 28 6 95.7 3.69 

Educational attainment 28 4 99.9 5.7 

Asthma 26 3 
  

Physical activity 24 6 
  

Neurological disease 21 3 
  

Liver disease 19 2 
  

Inflammatory disease 17 2 
  

Geographic region 17 0 
  

Aging 15 9 99.4 4.65 

Dementia 15 2 99.7 5.01 

Employment 13 3 
  

Immune disease 12 2 
  

Diet 11 6 
  

Depression 11 4 
  

Infection 10 3 99.6 4.82 

Arthritis 10 3 
  

Other 9 2 
  

Sleep disturbance 9 6 
  

Psychiatric disorders 9 5 100 5.8 

Mental health 8 4   

Vitamin D 8 4 
  

Lipid disorders 7 2 
  

Pollution 5 2 
  

Covid-19 related 4 3 
  

Vaccination 4 3 
  

Allergy 4 1 
  

Haematological disease 3 1 
  

Lifestyle 3 2 
  

Gastrointestinal disease 3 2 
  

Sex hormones 2 2 
  

Periodontal disease 2 2 
  

Table 3 Comparison of risk factors for COVID-19 outcomes in the UK Biobank versus this study. The number of papers, out of 127, are 

shown. Categories were assigned manually from a literature review, and from Tables 1 and 2. When there were multiple matches in 

Tables 1 and 2, the maximum significance is given. PP: posterior probability (only values above 50% are shown). p⋆: adjusted p-value 

(only values below 10−2.2 are shown). 
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