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Abstract

Purpose: Breast density is associated with risk of developing can-
cer and can be automatically estimated, using deep learning mod-
els, from digital mammograms. Our aim is to estimate the capacity
and reliability of such models to estimate density from low dose
mammograms taken to enable risk estimates for younger women.
Methods: We trained deep learning models on standard and
simulated low dose mammograms. The models were then tested
on a mammography data-set with paired standard and low-dose
image. The effect of different factors (including age, density and
dose ratio) on the differences between predictions on standard
and low dose are analysed. Methods to improve performance are
assessed and factors that reduce model quality are demonstrated.
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Results: We showed that whilst many factors have no significant effect
on the quality of low dose density prediction both density and breast
area have an impact. For example correlation between density pre-
dictions on low and standard dose images of breasts with the largest
breast area is 0.985 (0.949-0.995) while with the smallest is 0.882 (0.697-
0.961). We also demonstrated that averaging across CC-MLO images and
across repeatedly trained models can improve predictive performance.
Conclusion: Low dose mammography can be used to pro-
duce density and risk estimates that are comparable to stan-
dard dose images. Averaging across CC-MLO and across model
predictions should improve this performance. Model quality is
reduced when making predictions on denser and smaller breasts.
Code is available at: https://github.com/stevensquires/

Keywords: machine learning, artificial intelligence, deep learning,
mammographic density, low dose mammography, cancer risk

1 Introduction

Breast cancer is a leading cause of death among women below the age of 50 with
women who have a known family history of breast cancer being at greater risk.
Screening can offer reduced mortality [1], however, many younger women with
no family history still go on to develop breast cancer [2, 3]. Assessing which
younger women would benefit from early screening should enable an improve-
ment in early detection of cancers and facilitate targeting of risk-reducing
interventions.

High mammographic density is known to be strongly related to increased
risk of developing breast cancer [4]. Identifying women with high breast density
can thus enable preventative interventions (e.g. breast cancer risk-reducing
drugs like Tamoxifen [5], which can also reduce density), additional surveillance
(e.g. earlier or more frequent screening) or the use of alternative or additional
screening modalities (e.g. MRI or ultra-sound scans).

There are several available methods to estimate breast density from mam-
mograms, both automated [6–8] and by radiologists [9]. Radiologist’s time
is limited and it would enable these experts to focus on more challenging
problems if automated methods can be used effectively.

Younger women are not routinely screened in part because of the radiation
dose risk [10]. Low dose mammography is being investigated as a means to
enable density assessment in younger women which can be used to tailor their
screening in the future [11].

Deep learning methods have been shown to produce mammographic density
predictions with a high correlation between standard and low dose mammog-
raphy [12], where the low dose images were taken at a radiation dose of around
10% of the standard dose. This suggests that using low dose mammogra-
phy for risk prediction in younger women is feasible. However, more evidence



Springer Nature 2021 LATEX template

Capability of deep learning density prediction 3

is required about the relationship between density predictions on standard
and low dose mammograms. One possibility for the strong correlation shown
between standard and low dose mammograms is that image resolution is often
reduced substantially when using deep learning methods and this reduction
may obscure features that would otherwise be available in the standard dose
but not low dose images. This could result in falsely similar predictions on
standard and low dose images. However a previous study [13] found no evi-
dence of this effect and proposed that the similarity of prediction on standard
and low dose images does not decline at higher resolution. There are, how-
ever, many other factors that might influence the variability in prediction on
standard and low dose mammograms.

In this paper we investigate where the variability in prediction occurs,
how much confidence in the results we should have and how to reduce the
uncertainty. Specifically if low dose mammography could be used for density,
and therefore risk, estimation we need to know how closely the predictions
would match predictions on standard dose images. We also need to consider
how to reduce the variation between standard dose and low dose predictions.

2 Data

The aim of this study is to investigate how well we can estimate mammographic
density in low dose (approximately 10% of standard dose) mammograms. For
this purpose we utilise two data-sets which we describe in this section.

2.1 ALDRAM

The Automated Low Dose Risk Assessment Mammography (ALDRAM)
dataset [12] was produced as part of a study to investigate whether automated
mammographic density predictions could be made on images with 10% the
dose of a standard mammogram. Participants were recruited from the Nightin-
gale Centre at Wythenshawe Hospital, Manchester University NHS Foundation
Trust. All participants were between 30-45, were attending for annual screen-
ing mammography, and had previously been diagnosed with unilateral breast
cancer.

Right cranial-caudal (RCC), left cranial-caudal (LCC), right mediolateral
oblique (RMLO) and left mediolateral oblique (LMLO) full-field digital mam-
mograms were taken at standard dose and, whilst the breast was in position
for the RCC and RMLO images, further mammograms were taken with a
dose of approximately 10% of the standard dose (the low dose images). As
the compression and positioning are the same, the standard and low dose
images should be directly comparable. All the images are acquired using GE
Senographe Essential (GE Healthcare, Buc, France) machines.

In Figure 1 we show an example of a standard dose RCC image and its low
dose counterpart which have both been pre-processed from the for processing
(or raw) mammograms (see Section 3.1 for details). The left two plots show
examples of the whole image for the standard and low dose respectively. These
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are images that are fed into the density prediction model - they have been
pre-processed. The dashed rectangle in the left-hand plots is a patch of size
320 × 256 which is then shown in the right-hand plots. The standard and low
dose images have the same structure but the low dose image has a higher level
of noise.

Fig. 1 An example of a pre-processed (see Section 3.1 for details) CC image from the
ALDRAM data-set with standard and low dose shown as well as two patches of the images.
Left two plots) Standard dose and low dose whole images, respectively. The rectangular
outline shows the location and size of the zoomed in patches. Right two plots) A zoomed in
image of the outlined part of the whole images.

In total we consider 147 sets of images (the four standard dose and two low
dose images). Of those image sets 82 have size (2, 294 × 1, 914) and 65 have
size (3, 062 × 2, 394). Each set of images, or each participant, is made up of
only one of the image sizes.

The ages of the patients range from 31 to 45 which is considerably lower
than the distribution of ages in the training data-set (see Section 2.2). The
age distribution is shown in Figure 2.

Fig. 2 Left) Histogram of the age distribution of the 147 women in the ALDRAM dataset.
Right) Histograms of the ratios of low to standard doses for the RCC and RMLO images.



Springer Nature 2021 LATEX template

Capability of deep learning density prediction 5

The distribution of the exposure ratios between the low and standard dose
for the two mammographic projections of the right breast is also shown in
Figure 2. There is one outlier on the RCC side with an exposure ratio of 0.049
compared to around 0.1 for the rest. Otherwise the exposure ratios are fairly
similar. There is no relationship between the exposure ratio for the RCC and
RMLO for pairs of the same patient.

2.2 PROCAS

The number of images in the ALDRAM dataset is relatively small and
there are no associated density labels so to apply supervised machine learn-
ing approaches we train our models on a separate data-set. In addition, by
not using the ALDRAM data in the training process we maintain it as an
independent test set.

The standard dose data-set we use for training is from the Predicting Risk
Of Cancer At Screening (PROCAS) [14]. This data-set comprises mammo-
grams from GE machines - the same as the ALDRAM data so we do not need
to consider the issue of different imaging modalities due to machine variation.

Each image has two associated density estimates on a visual analogue scale
(VAS) between 0 and 100 supplied by a pair of experienced mammogram
readers [4]. The label is the average of these two scores. The pair of readers
were pragmatically selected from a pool of 19 and there are differences in
the distributions of density scores produced by individuals. Previous work has
shown that differences in these distributions significantly affects the trained
models [15]. To reduce this effect we use a subset of the PROCAS data which
were all scored by the same pair of readers to avoid confounding the models
due to variation in training labels.

This subset of the PROCAS data consists of images of the same size as
the ALDRAM data (2, 294 × 1, 914 and 3, 062 × 2, 394). We use 15,290 mam-
mograms which we partition into 12,287 training, 1,533 validation and 1,470
test images. The individual partitions include all the images available from one
woman so there are no images from any one woman in different partitions.

Models trained on the standard dose PROCAS data-set might not produce
accurate predictions on a low dose data-set. We therefore utilise software [16,
17] which can simulate low dose images using an input standard dose image.
Using this software we generated simulated low dose images for each of the
15,290 mammograms to create a parallel data-set to train a low dose model
on. The labels are the same as the standard dose equivalents.

3 Methodology

3.1 Image preparation

All images are pre-processed in the same way and are set to a final size of
1, 280 × 1, 024. LCC and LMLO images are flipped to the right side. We pad
the smaller (2, 294 × 1, 914) sized CC images equally on top and bottom of



Springer Nature 2021 LATEX template

6 Capability of deep learning density prediction

the image to increase the size to 2, 995 and the smaller MLO images with
701 additional rows on the bottom of the image. The smaller CC and MLO
images are padded on the left side with 480 new columns. The larger images
are cropped to remove 34 rows. All images are now at size 2, 995× 2, 394. The
images are then resized using cubic interpolation to size 1, 280×1, 024. We clip
the image intensities to 75% of their maximum and invert the pixel intensity.
We perform histogram equalisation and normalise the images to between 0 and
1. This pre-processing approach is the same that produced the largest images
in previous related work [8, 13]. There is a further normalisation step that
takes place before training, and inference, which we will discuss in Section 3.2.

3.2 Model and training

We train two sets of models: one set on the PROCAS standard dose data
and the second set on the PROCAS simulated low dose data. Our approach
is identical for both the standard dose and simulated low dose data so that
we minimise differences in outcomes due to reasons different from the level of
radiation dose.

We use ResNet-18 [18] from the popular ResNet family of models and
initialise the model using weights pre-trained on ImageNet [19]. The final fully
connected layer that maps the representation to the 1,000 classes is removed
and another fully connected layer is re-inserted with one output neuron. We
do not apply any additional function to the output neuron.

As the output is continuous, we use the mean squared error (MSE) as our
objective function and use the Adam [20] optimiser with hyper-parameters left
as standard except for the learning rate which we use for model tuning. We
train using a Nvidia V100 GPU with 16GB of RAM. The model parameters are
saved at each epoch if the total validation error is lower than for any previous
run. We utilise data augmentations with left-right flips and the additional of
Gaussian noise, we also train with no data augmentation.

We considered the best performing two models from both the standard dose
and the simulated low dose data-set. The final models are selected by their
similarity in prediction to one another on the PROCAS test sets. This approach
is taken, rather than selecting the models which perform best compared to
the radiologist averaged scores because we are investigating the differences
between the standard and low dose trained models.

3.3 Analysis approach

The aim of this work is to investigate the confidence we can place in the low
dose predictions compared to standard dose equivalents, and if there are any
approaches that can improve prediction similarity. To do so we investigate
potential sources of variation which we specify below.

One source of variation in density prediction on mammograms is in variable
predictions on CC and MLO images. Some studies [8] train separate models
on the different views and others train models on both together [13] but both
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approaches tend to produce different density scores on the two views. Whether
this is due to different information content in the views, model variability or
other reasons is not clear.

Two different training runs of the same model will have different weights
and produce different predictions. This may be due to alterations in hyper-
parameters or for more stochastic reasons such as the assignment of training
data to different batches. As we train two different models for the standard and
low dose images, we have to consider how much of the variation in prediction
is due to the model differences.

We have two different sized images (see Section 2.1) and they are consistent
across the set of images, i.e. a low dose image will be originally the same size
as a standard dose image. The two sizes of images have the same pixel size
and in the pre-processing stage we altered the smaller image to match the
larger image. However, there still might be variation in the model performance
between the different image sizes.

The ALDRAM study was aimed at producing ratios of 10% between the
low dose and standard dose radiation level. However, there was some variation
in the actual ratio. As the low dose models were trained on simulated low dose
data at 10% of the standard dose level, there may be effects on the quality of
the prediction if the dose ratio of the ALDRAM data varies.

The ALDRAM dataset consists of younger women (see Figure 2) than those
who consented to PROCAS. Younger women have generally denser breasts but
there may also be other changes with age that cause the models to perform
differently due to the different age distributions in the training set (PROCAS)
from the testing set (ALDRAM).

Some automated models have shown poorer predictive accuracy at higher
densities, at least partially because these are less well represented in training
data [8, 21]. We might expect more variable predictions between the standard
and low dose images at those higher densities due to poorer model (standard or
low dose) performance. There may also be additional variation in performance
between standard and low dose images at different densities.

Breast area may also have an impact on the accuracy of density predictions.
In this paper we define breast area as the ratio of the non-background pixels to
the background pixels. There may be effects from general model performance
(both standard and low dose) and also specific to the low dose.

4 Results

4.1 Quality of the predictions on PROCAS

In Table 1 we show metrics on the PROCAS test set relating to the two pairs
of models we selected. Standard 1 and Low 1 are the models used to make
predictions on the ALDRAM data and the results of which make up most of
our analysis. Standard 2 and Low 2 are the second best performing pair of
models. The Labels refers to the averaged radiologist scores for the PROCAS
data.
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Table 1 Spearman rank correlation (Rank Correlation) and root mean squared error
(RMSE) metrics on the PROCAS test set for the best performing two models on both
standard and simulated low dose. Standard 1 and Sim. low 1 are the best performing pair
of models when comparing the standard dose predictions to the simulated low dose
predictions. Uncertainties were found via bootstrapping and reported at the 95% level.
Results are shown both for the models against the labels (averaged radiologist scores) and
against the other model predictions.

Comparison Rank Correlation RMSE
Standard 1 Labels 0.860 (0.843-0.875) 7.45 (7.10-7.82)
Sim. low 1 Labels 0.852 (0.834-0.868) 7.71 (7.36-8.06)
Standard 2 Labels 0.857 (0.839-0.873) 7.88 (7.51-8.25)
Sim. low 2 Labels 0.863 (0.845-0.879) 7.44 (7.08-7.80)
Standard 1 Sim. low 1 0.974 (0.971-0.977) 2.65 (2.51-2.80)
Standard 2 Sim. low 2 0.970 (0.965-0.974) 3.36 (3.17-3.56)
Standard 1 Sim. low 2 0.952 (0.946-0.957) 3.85 (3.64-4.07)
Standard 2 Sim. low 1 0.934 (0.926-0.941) 3.95 (3.76-4.15)

The best performing models with regard to the labels are not necessarily
the best performing when we compare low dose and standard dose predictions.
As we are interested in how the low dose predictions differ from the standard
dose predictions on the ALDRAM data we selected the best performing model
when considering the differences between standard and low dose predictions on
the PROCAS test set. However, the performance of all the models, compared
to the labels, is high. When considering Spearman’s rank correlation the pre-
dictions of all four models, when considered against the labels, all fall within
the uncertainty bounds of each other. The aim of this paper is not to investi-
gate how well the models perform against the labels, but in the relationship
between the standard and low dose predictions because we do not have density
labels for the ALDRAM data.

4.2 The effect of CC-MLO comparisons and multiple
trained models

The predictions made by models on CC and MLO images can be variable for
the same individual even though we use the same model to make predictions
on both views. We show Spearman rank correlation coefficient and root mean
squared errors (RMSE) of model predictions on standard and low doses for
the RCC and RMLO in Table 2. The low dose differences are higher (but not
statistically significantly) than the equivalents for the standard dose images,
with a lower rank correlation and higher RMSE. Plots showing the values are
in the appendix.

In Figure 3 we show plots of the low dose predictions against the standard
dose predictions for the RCC (left plot) and RMLO (middle plot) respectively.
Related Spearman rank correlation and RMSE scores for these results are
shown in Table 2. We also show, for completeness, comparison metrics from
the alternate RCC, RMLO scores for standard and low dose in Table 2, i.e. for
RCC low dose predictions compared to RMLO standard dose and vice-versa.
The RMLO comparisons appears to show a more consistent result than the
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RCC but the result is not statistically significant. There is at least as much,
and possibly more, variation between different views (RCC and RMLO) at the
same dose, than there is between the same view but at different doses.

Fig. 3 Plots of the low dose model predictions against standard dose model density
predictions for the RCC view (top left) and RMLO view (top right). Also shown is a com-
parison of the standard and low dose predictions when averaging across the RCC and RMLO
predictions (bottom). Metrics related to these plots are shown in Table 2.

We also show a plot of the low dose against standard dose predictions after
averaging across the RCC and RMLO images (bottom plot of Figure 3). The
metrics for the averaged scores are also in Table 2 named as Std. averaged and
Low averaged. Averaging across the RCC and RMLO images produces greater
similarity between the standard and low dose predictions.

Another potentially important decision is how to utilise the predictions
of multiple trained models on the same data. We consider the effect of this
model variation by performing two repeats of training for both the standard
dose and low dose images - as discussed in Section 3.3. We show the effect
of averaging across both the pairs of standard and low dose predictions on
the absolute differences between the standard and low dose predictions in
Figure 4. This averaging across models is called Models combined in the plot
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Table 2 Spearman rank correlation (Rank Corr.) and RMSE for the comparisons when
considering RCC and RMLO prediction variation as discussed throughout Section 4.2. The
sample uncertainty range, inside the brackets, is found by bootstrapping and reported at
the 95% level.

Related fig Comparison1 Comparison2 Rank Corr. RMSE
16 RCC std. RMLO std. 0.962 (0.944-0.972) 4.78 (4.15-5.38)
16 RCC low RMLO low 0.950 (0.918-0.969) 4.66 (3.66-5.81)
3 RCC std. RCC low 0.964 (0.945-0.974) 4.71 (4.15-5.27)
3 RMLO std. RMLO low 0.973 (0.959-0.979) 4.35 (3.75-4.95)

None RCC std. RMLO low 0.965 (0.948-0.973) 5.23 (4.74-5.72)
None RMLO std. RCC low 0.940 (0.907-0.960) 6.08 (4.92-7.23)

3 Std. averaged Low averaged 0.980 (0.968-0.986) 3.91 (3.44-4.36)

and the distribution of absolute differences is shifted towards smaller absolute
differences - averaging the models produces more similar predictions.

Fig. 4 Absolute differences between standard and low dose predictions (in percentages) for
two independent models (Model 1 and Model 2 ) and the average of the two models (Models
combined). Left) RCC and RMLO absolute prediction differences results separately. Right)
Averaged across the RCC and RMLO predictions.

In Table 3 we further demonstrate the value of averaging across the models
by showing the metrics between the low and standard dose for individual
models and when pairs of models are averaged. When we average across both
the standard and low dose pairs of models (labelled as C ) the comparison
metrics are statistically significantly improved.

4.3 Factors of variation and uncertainty

We now consider factors that may have an impact on the accuracy of the low
dose predictions. By investigating these factors, we can state whether they
have an impact on the performance of the low dose models. These were all
discussed in Section 3.3.

To investigate the relationship between prediction differences and age we
show, in Figure 5, plots of the absolute differences in prediction for three dif-
ferent age ranges: younger than 40, between 40 and 42 (inclusive) and older
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Table 3 Spearman rank correlation and RMSE for the comparisons between standard
and low dose images with different models and views. Model pair 1 produced the best
performance on the PROCAS data and model pair 2 the second best. When the model
predictions are averaged (labelled as C ) the metrics improve significantly.

Model pair Views Rank Corr. RMSE
1 RCC 0.964 (0.945-0.974) 4.71 (4.15-5.27)
1 RML0 0.973 (0.959-0.979) 4.35 (3.75-4.95)
1 Av 0.980 (0.968-0.986) 3.91 (3.44-4.36)
2 RCC 0.971 (0.956-0.978) 4.64 (4.10-5.19)
2 RML0 0.979 (0.968-0.985) 5.45 (4.70-6.24)
2 Av 0.982 (0.972-0.987) 4.60 (4.03-5.20)
C RCC 0.986 (0.977-0.989) 2.42 (2.11-2.72)
C RML0 0.988 (0.980-0.990) 2.68 (2.23-3.22)
C Av 0.990 (0.982-0.993) 1.92 (1.64-2.19)

than 42. The left plot shows a boxplot of the absolute prediction differences
for the averaged views. In the right plot we show the mean average absolute
prediction difference per age range along with uncertainty at the 95% level
found by bootstrapping for both the individual (Ind.) and averaged (Av.) pre-
dictions. There is no statistically significant difference in performance in the
different age ranges. Additional results for the quality of prediction with age
are shown in the appendix.

Fig. 5 Variation in differences with age found via separating women into the age bins. Left)
the boxplot shows the median, range and any outliers for the absolute prediction differences
on averaged views. Right) the mean absolute prediction differences on low and standard
dose images for individual (Ind.) and averaged (Av.) predictions. The uncertainty bounds
are found via bootstrapping and are reported at the 95% level.

The magnitude of the density score is a potentially important factor for
the quality of the low dose predictions. In Figure 6 we show the differences in
predictions (standard dose minus low dose predictions) against the average of
the predictions across low and standard dose - how the difference in prediction
changes as the density of the breasts increases. We see an increase in prediction
variation as the density increases. This is not just an increase in variation in
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prediction difference but the standard dose models are making higher density
predictions compared to the low dose models.

Fig. 6 How the differences in predictions between standard and low dose models varies
with density, as defined by averaging across the low and standard dose predictions. Left)
individual views, both RCC and RMLO plotted separately. Right) averaged across RCC and
RMLO.

We further emphasise the importance of the level of density to the con-
fidence we can place in the low dose model in Figure 7 where we separate
the images into density bins of < 36, 36 − 51 (inclusive) and > 51. We see
an increase in absolute prediction differences at the higher densities. The left
plot shows a box-plot for the averaged predictions and the right plot shows
averaged absolute prediction differences with uncertainty bounds calculated
via bootstrapping and shown at the 95% level. The three plots show the same
increase in prediction difference at higher density.

While the variation in the dose ratios is not large (see Figure 2), there might
be some differences in performance due to these small variations. In Figure 8
we demonstrate that there is no evidence for any difference at different doses
- the Spearman rank coefficient (0.002) shows no relationship. The left plot
shows boxplots when we split the dose ratios into two groups with lower dose
ratios and higher dose ratios, with the dividing point at 0.0954. The right
plot shows the same split but with the mean average absolute differences with
uncertainty generated via bootstrapping.

The ALDRAM data is produced at two image sizes and in Figure 9 we
demonstrate that this factor may correlate with differences in performance.
The left plot shows histograms of the distributions of the absolute differences
for the two sizes for the results when averaged across RCC and RMLO which
are noted by “1” (3, 062×2, 394) and “2” (2, 294×1, 912). We see that at size 2
there appears to be significantly more images with large differences. The right
plot shows the mean absolute prediction differences with uncertainty produced
by bootstrapping. There is a difference in prediction performance between the
two differently sized images.
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Fig. 7 Plots of the absolute differences between standard and low dose averaged (across
RCC and RMLO) predictions for different density ranges. The data is found from separating
the results into density bins of < 36, 36 − 51 (inclusive) and > 51. averaged predictions.
Left) boxplots of the absolute density differences in each bin. Right) plots with mean average
absolute prediction differences within each bin and uncertainty found by bootstrapping at
the 95% level.

Fig. 8 Plots showing the lack of a relationship between the absolute prediction difference
between standard dose and low dose density scores and the exposure ratio. All results are
for individual images, not averaged. Left) Boxplots of the absolute prediction differences for
those pairs of images with an exposure ratio below and above 0.0954 respectively. Right)
Mean average absolute prediction differences for the different groups with the uncertainty
found via bootstrapping.

The area of the breast, which we define here as the ratio of pixels that are
not background to background, can have an effect on the results. In Figure 10
we show the distribution of breast area in the left plot. The area of the breast,
compared to the whole image, has a peak at around 0.25 with a relatively small
number of images which occupy over half the image. The right plot shows the
averaged prediction differences against the breast area, which is also averaged.
There is a significant negative correlation between the differences in prediction
and the breast area, with a Spearman rank correlation of -0.48. We show the
results on the CC and MLO images combined but there is no difference in
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Fig. 9 Absolute differences between standard and low dose predictions by image size.
Left) histogram showing the distribution of absolute differences for the averaged predictions.
Right) the mean absolute prediction differences with uncertainties for the different sizes and
for individual (Ind.) and averaged (Av.) predictions.

conclusion if we consider them separately with a Spearman rank coefficient
of approximately -0.40 between prediction differences and the breast area for
both individual sets of predictions.

Fig. 10 Left) A histogram showing the distribution of breast areas for all the images,
defined as the ratio of the breast tissue to background. Right) The differences in prediction
against the breast area when averaging across the CC and MLO predictions. The breast
area is also averaged across the RCC and RMLO images.

In Figure 11 we show results when we bin the images into four quartiles
based upon the breast size. The left plot is a boxplot for the averaged predic-
tion differences. The right plot shows the average prediction differences with
uncertainty found via bootstrapping and shown at the 95% confidence level.
We are not considering absolute results in these plots, so they underestimate
the level of difference of prediction performance. The low dose model shows a
substantial under-prediction of the breast density compared to the standard
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dose model for small breast areas. There is little difference at larger breast
areas. Additional results are shown in the appendix.

Fig. 11 Differences in prediction by quartiles of breast area. Left) Boxplot of the prediction
differences for averaged predictions. Right) Average prediction differences with uncertainty
found via bootstrapping and reporting at the 95% level.

This variation in performance between the standard and low dose images
from breast area is likely to be the reason for the differences in performance
on different image sizes. In Figure 12 we demonstrate this by showing the
relationship between the breast area in the mammogram and the image size.
The left plot shows the distributions of the breast area for the two different
image sizes. The right plot shows the average with uncertainty of the breast
area at the two different image sizes. The larger image sizes show breasts with
significantly larger area which likely accounts for the variation in performance
on the different image sizes.

Fig. 12 The relationship between image size and breast area. Left) Histograms showing the
distribution of the breast area for the two image sizes (Size 1 and Size 2 ). Right) Average
breast area with uncertainty found via bootstrapping and reporting at the 95% level for the
two image sizes as well as them both combined.
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Breast area and mammographic density are also related. In Figure 13 we
show the relationship between the density predictions and the breast area for
the standard (left plot) and low (right plot) dose images. There is a nega-
tive correlation between predicted density and breast area with a Spearman
rank coefficient value of -0.51 and -0.44 for the standard and low dose images
respectively. Both of these factors - the density and the breast area - may indi-
vidually contribute to greater uncertainty about the quality of the low dose
predictions but they are also correlated.

Fig. 13 The relationship between breast area and predicted density. Left) Standard dose
images. Right) Low dose images.

In Figure 14 we show what information can be gained by looking at the
differences between RCC and RMLO low dose predictions and the difference
between standard dose and low dose. The plots show the absolute differences
for ranges of the low dose RCC and RMLO differences. The left plot shows all
the results as a boxplot and the right plot shows the averages for each range
with uncertainty from bootstrapping and showing the 95% uncertainty bounds.
When the gap between the RCC and RMLO for the low dose is high we are
also more likely to see a larger difference between the low and standard dose
predictions. However, from these results, this is only really true at relatively
large differences between the low dose CC-MLO predictions with there being
little relationship if we exclude the most extreme differences.

In Figure 15 we show what information can be gained by examining the dif-
ferences between two separately trained low dose prediction models. The plots
show the absolute differences for ranges of the low dose repeated model predic-
tion differences. The left plot displays boxplots showing all the results and the
right shows the averages for each range with uncertainty from bootstrapping
and showing the 95% uncertainty bounds. With large differences in predictions
between the pair of low dose predictions we also see larger differences between
the low dose and standard dose predictions.

We summarise, in qualitative terms, the effect of the variables on the per-
formance of the low dose models in Table 4. We show the variable, which
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Fig. 14 Plots of the absolute differences between the averaged standard dose and aver-
aged low dose predictions against the absolute differences between the RCC and RMLO
predictions of the low dose images. Left) Boxplots after splitting the data into bins for the
absolute differences between RCC and RMLO. Right) The average and uncertainty of the
absolute differences for differences in the RCC versus RMLO results.

Fig. 15 Plots of the absolute differences between the averaged standard dose and averaged
low dose predictions against the absolute differences between a pair of trained model of the
low dose images. Left) boxplots after splitting the data into bins for the model absolute
differences. Right) the average and uncertainty of the absolute standard-low differences for
differences in averaged model predictions.

figures and tables they link to (including those in the appendix) and give a
description of what effect the variable has on the performance of the model on
low dose images.

The final consideration is about potential outliers. In Table 5 we show how
many standard dose - low dose image pairs that have an absolute difference
greater than a set of numbers from 2 to 12. So for CC the number of image
pairs (standard dose and low dose) that have an absolute difference greater
than 2 is 99 and the fraction of all the images is 0.67. The averaged scores
have mostly fewer at each level than either the CC or the MLO - averaging
tends to reduce the low-standard dose prediction differences. We also see that
only very small numbers have differences larger than 10% points. From these
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Table 4 Qualitative summary of our findings. We show the variable, which figures and
tables they link to and give a description of what effect the variable has on the
performance of the model on low dose images

Variable Evidence Comments
Age Figs 18,5 No effect.
Density Figs 6,7 Substantial effect with poorer performance at high den-

sities.
Dose ratio Figs 8 No effect.
Image size Figs 9 Poorer performance on smaller image sizes, likely due to

distribution of breast area.
Breast area Figs 10, 11.

Table 6
Substantial effect with poorer performance on smaller
breast area.

CC-MLO
differences

Figs 14 Poorer performance when large difference in CC-MLO
predictions.

Model dif-
ferences

Figs 15 Greater differences in predictions between models may
imply greater variation between low and standard dose
predictions. But likely dependent on pair of models
compared.

results we do not see any notable outliers - there is a fairly smooth progression
down to the larger differences. Figures for these outlier results are shown in
the appendix.

Table 5 Outlier table. On the left side of the table is the absolute difference value. The
Number is the number of pairs of images (low and standard dose) which have a larger
absolute difference between predictions that the absolute difference number. So for the CC
view 99 images out of 147 have a larger absolute difference than 2. The Fraction is the
fraction of images with absolute differences larger than the specified value.

CC MLO Averaged
Abs. diffs. Number Fraction Number Fraction Number Fraction
2 99 0.67 89 0.61 82 0.56
4 51 0.35 43 0.29 46 0.31
6 31 0.21 24 0.16 23 0.16
8 12 0.08 11 0.07 5 0.03
10 5 0.03 4 0.03 2 0.01
11 4 0.03 3 0.02 1 0.01
12 2 0.01 2 0.01 0 0.00

5 Discussion

The use of low radiation dose mammography enables the assessment of mam-
mographic density in younger women to allow for improved prediction of
individual breast cancer risk prior to routine breast screening. This may
lead to earlier diagnosis and improved health outcomes. Strategies for breast
cancer risk assessment of women between 30 and 39 are currently being
investigated [11].

Deep learning methods have been shown to make accurate mammographic
density estimates on standard dose mammograms [8]. Recent work has also
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shown that the same type of models can make predictions on low dose mam-
mography that are similar to their standard dose counterparts [12, 13]. This
offers the potential for a fully automated method to be able to estimate
accurate density, and therefore risk, predictions on younger women.

Deep learning models can produce highly impressive performance but they
mostly lack transparency; we do not fully understand why many models make
the predictions they do. In addition, these types of models can be brittle
- giving substantial changes in predictions with only small changes in the
inputs. It is always important to understand uncertainty in any prediction,
but these two factors make it particularly important when using deep learning.
In this paper we studied predictions of mammographic density made by deep
learning algorithms on a paired standard and low dose mammography dataset
to provide evidence of the level of confidence we can place in the low dose
predictions.

We used a model drawn from one of the most commonly used model fam-
ilies, ResNet, and trained two sets of models: one for standard dose and one
for low dose images. The standard dose images were taken from the PROCAS
mammography data-set and the low dose image models were trained on sim-
ulated low dose images created from the PROCAS data-set. The predictions
made on the ALDRAM standard dose data-set act as our ground truth.

We demonstrate that combining the predictions made on CC and MLO
images reduces the variation between standard and low dose images but may
be at the cost of some lost information and compression of the distribution.
Our results suggest that there may be as much difference in density predictions
between CC and MLO images of the same dose as the same view with different
doses, but this would need to be confirmed using a larger dataset.

Generally combining multiple models improves performance. By using our
two best performing models (for both the standard and low dose images) on
the validation set and averaging the test set predictions we find more similar
predictions between the standard and low dose models than from a single
model.

We investigated the factors that are correlated with variation in low and
standard dose predictions and summarise the results in Table 4. We see no
relationship between performance and either age or the dose ratio. Age in par-
ticular might have had a significant impact on performance as our models are
trained on women generally older than the women in the ALDRAM dataset.

We can also consider the differences in prediction on CC and MLO images
as a marker for poorer performance. This might be an expected result but it is
useful in that CC and MLO images are usually produced and it is worthwhile
knowing that if the gap between the predictions on the two views for the low
dose images is substantial then the gap between low dose and standard dose
predictions is also likely to be large. It is also not inevitable - it might have
been the case than divergence in prediction between CC and MLO images on
the low dose images would be matched in the standard dose images meaning
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the gap between the standard and low dose predictions would be unrelated to
the gap between CC and MLO.

The difference in performance between two high performing (on the simu-
lated low dose validation set) models on individual images may point towards
increased variation between low and standard dose images. Our results do
show this but it is somewhat variable with the choice of pairs of models to
compare. We should be less confident if the differences in pairs of models on
one low dose image is high and it may indicate less trust can be placed in that
prediction but it is likely to be model dependent.

We demonstrated a link between the performance on the low dose images
and the image size but also showed that this is most likely due to the
compressed breast area rather than anything to do with differential model
performance on the different sized images.

There is a substantial correlation between model performance and breast
area with poorer performance on smaller breasts. However, model performance
is also worse on denser breasts. Smaller breasts also tend to be denser so this
is a heavily confounded. We can conclude that the model predictions on both
smaller and denser breasts requires some correction.

We also demonstrate the lack of significant outliers in our data-set. There
is a reasonable distribution of differences without any images being outside
this distribution.

The results we have shown demonstrate that we can make highly simi-
lar predictions on low dose compared to standard dose mammograms. This is
especially true if we average across both CC and MLO views and use predic-
tions from more than one model on the mammograms. However, there are also
systematic differences in prediction which should be investigated with low dose
predictions being generally lower than the standard dose counterparts. There
are also issues with the relationship between similarity in prediction (between
standard and low dose) and both breast area and the density level. Finally,
we considered the interdependence between image size and breast area and
also between breast size and density but did not do so for the other factors.
It may be the case than some of the other factors are also correlated. A full
causal model [22] may be necessary to extract the interrelated relationships
that effect the uncertainty level we have on the low dose predictions, poten-
tially with calculated corrections for low dose density results to take forward
into risk prediction algorithms.

A Additional results

In Figure 16 we show plots of model predictions on the ALDRAM standard
dose (left) and low dose (right) images of RMLO against RCC.

In Figure 17 we show the distribution of the predictions for the RCC,
RMLO and when averaging across RCC and RMLO. Averaging across the
views should improve performance if the differences are due to noise. How-
ever, if the views contain different information averaging them might reduce
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Fig. 16 Plots of the model density predictions on RMLO against RCC for the standard
dose (left) and low dose (right) images. Metrics related to these plots are shown in Table 2.

prediction quality. Although it is modest, we may be able to see this effect
in Figure 17 where the predictions are shifted somewhat towards the mid-
dle of the distribution by the averaging effect. The averaging process slightly
compresses the distribution which may result in some information loss.

To test the impact of age we display the prediction differences between the
standard and low dose models against age in Figure 18. The left plot shows pre-
diction differences for individual views (both RCC and RMLO differences are
included in the plot) and the right plot shows the differences for the averaged
views (averaging between RCC and RMLO predictions). We see no relationship
with age with a Spearman rank coefficient of 0.06 for the individual predictions
and 0.08 for the averaged predictions.

Figure 19 shows direct plots of the absolute prediction differences between
standard and low dose images against the exposure ratio, with no correlation
between the two.

In Figure 20 we show boxplots of the individual and averaged predictions
for image size 1 and size 2, denoted by “1” and “2” respectively.

To summarise the variation in predictions between the low and standard
dose for the different breast sizes we show the Spearman rank correlation and
RMSE in Table 6. The results show substantial differences in performance with
the similarity between the low and standard dose predictions being higher at
the larger breast sizes.

In Figure 21 we show histograms of the absolute prediction differences
between the standard dose and low dose image predictions for RCC (top left),
RMLO (top right) and averaged across the views (bottom).
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Fig. 17 Histograms showing the distribution of the density predictions for the standard
dose and low dose models. Top left) Histograms for the RCC predictions. Top right) His-
tograms for the RMLO predictions. Bottom) Histograms when we have averaged across the
RCC and RMLO predictions.

Fig. 18 Prediction differences between standard dose and low dose images against the
age of the woman. Left) individual views, both RCC and RMLO plotted separately. Right)
averaged across RCC and RMLO.
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Fig. 19 Plot showing the lack of a relationship between the absolute prediction difference
between standard dose and low dose density scores and the exposure ratio. The absolute
prediction difference plotted against the exposure ratio for individual images.

Fig. 20 Absolute differences between standard and low dose predictions by image size.
Boxplots of the individual and averaged predictions for size 1 and size 2, denoted by “1”
and “2” respectively.

Table 6 Spearman rank correlation and RMSE for the comparisons between standard
and low dose images with different breast sizes.

Quartile View Rank Corr. RMSE
All RCC 0.964 (0.945 − 0.974) 4.71 (4.14 − 5.28)

RMLO 0.973 (0.958 − 0.979) 4.35 (3.75 − 4.95)
Av 0.98 (0.968 − 0.986) 3.91 (3.45 − 4.37)

1 RCC 0.878 (0.719 − 0.951) 5.77 (4.4 − 7.13)
RMLO 0.878 (0.717 − 0.947) 6.48 (5.24 − 7.71)
Av 0.882 (0.697 − 0.961) 5.47 (4.57 − 6.35)

2 RCC 0.971 (0.926 − 0.987) 5.02 (4.16 − 5.82)
RMLO 0.961 (0.895 − 0.986) 4.15 (3.05 − 5.25)
Av 0.976 (0.924 − 0.992) 4.0 (3.08 − 4.91)

3 RCC 0.964 (0.916 − 0.982) 4.16 (3.08 − 5.2)
RMLO 0.951 (0.884 − 0.977) 3.55 (2.69 − 4.39)
Av 0.973 (0.931 − 0.987) 3.33 (2.55 − 4.04)

4 RCC 0.962 (0.902 − 0.98) 3.7 (2.47 − 4.91)
RMLO 0.956 (0.859 − 0.989) 2.38 (1.86 − 2.89)
Av 0.985 (0.949 − 0.995) 2.19 (1.54 − 2.91)
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Fig. 21 Histograms showing the frequency of the absolute predictions differences between
the standard and low dose images. Top left) averaged differences. Top right) RCC differences.
Bottom) RMLO differences.
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