
 
 

Single-cell analysis of bone marrow CD8+ T cells in Myeloid Neoplasms predicts response 

to treatment with Azacitidine 

Authors:  

Athanasios Tasis1,2,*, Nikos E. Papaioannou3,#, Maria Grigoriou1,4,#, Nikolaos Paschalidis4,#, 

Katerina Loukogiannaki4, Anastasia Filia1,4, Kyriaki Katsiki1, Eleftheria Lamprianidou2, 

Vasileios Papadopoulos2, Christina Maria Rimpa1,2, Antonios Chatzigeorgiou5, Ioannis P. 

Kourtzelis6, Petroula Gerasimou7, Ioannis Kyprianou7, Paul Costeas7, Panagiotis Liakopoulos8, 

Konstantinos Liapis2, Petros Kolovos8, Triantafyllos Chavakis9,10, Themis Alissafi3,11, Ioannis 

Kotsianidis2,#, Ioannis Mitroulis1,2,9,10,#,* 

 

Affiliations: 
1Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, 

University Hospital of Alexandroupolis, Democritus University of Thrace; Alexandroupolis, 

Greece 

2Department of Hematology, University Hospital of Alexandroupolis, Democritus University of 

Thrace; Alexandroupolis, Greece 
3Laboratory of Immune Regulation, Center of Basic sciences, Biomedical Research Foundation 

Academy of Athens; Athens, Greece 
4Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and 

Translational Research, Biomedical Research Foundation Academy of Athens; Athens, Greece 

5Department of Physiology, Medical School, National and Kapodistrian University of Athens; 

Athens, Greece 
6Hull York Medical School, York Biomedical Research Institute, University of York; York, 

United Kingdom 

7Molecular Hematology-oncology, Karaiskakio Foundation, Nicosia, Cyprus 
8Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 

Alexandroupolis, Greece. 
9 Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of 

Medicine Carl Gustav Carus of TU Dresden; Dresden, Germany 
10 National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany 



2 
 

11 Laboratory of Biology, School of Medicine; Athens, Greece  

# These authors contributed equally to this work  

 

* Corresponding authors:  

Ioannis Mitroulis, MD, PhD, Email: imitroul@med.duth.gr 

Athanasios Tasis, MSc, Email: tasis.thanasis@gmail.com  



3 
 

Abstract  

CD8+ T cells are critical players in anti-tumor immunity. In higher-risk myelodysplastic 

neoplasms (HR-MDS) and acute myeloid leukemia (AML), CD8+ T cells exhibit altered 

functionality, however whether this affects disease course is poorly understood. Herein, we 

aimed to identify immune cell signatures in the bone marrow (BM) associated with disease 

progression and treatment outcomes. In-depth immunophenotypic analysis utilizing mass and 

flow cytometry on 104 pre-treatment BM samples from patients with myeloid neoplasms, 

revealed an increased frequency of a CD57+CXCR3+ subset of CD8+ T cells in patients with HR-

MDS and AML who failed AZA therapy. Furthermore, increased baseline frequency (>29%) of 

the CD57+CXCR3+CD8+ T cell subset correlated with poor overall survival. We further engaged 

scRNA-seq to assess the transcriptional profile of BM CD8+ T cells from treatment-naïve 

patients. We observed an increased abundance of cells within cytotoxic CD8+ T lymphocytes 

(CTL) cluster in secondary AML compared to HR-MDS. Additionally, response to AZA was 

positively associated with enrichment of IFN-mediated pathways, whereas enhanced TGF-β 

signaling signature in CTL clusters was observed in non-responders. Our results support that 

targeting of CD8+ T cells with inhibitors of TGF-β signaling in combination with AZA is a 

potential future therapeutic strategy in HR-MDS and AML.  
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Main Text: 

Introduction 

Myelodysplastic neoplasms (MDS), chronic myelomonocytic leukemia (CMML) and acute 

myeloid leukemia (AML), are clonal disorders sharing common features in their pathobiology.1 

While genetic alterations and epigenetic modifications are central in the pathobiology of myeloid 

neoplasms, the interaction between clonal and immune cells is also crucial,2–4 since compelling 

evidence indicate that the interplay between clonal cells and the bone marrow (BM) 

microenvironment plays a significant role in the development and progression of MDS and 

CMML.5–7 In particular, CD8+ T cells play a crucial role in the regulation of tumor 

microenvironment.8 Aberrant functionality of CD8+ T cells has been observed in patients with 

myeloid neoplasms compared to healthy individuals,9–11 rendering the former cell subset a major 

target for immunotherapeutic interventions.12,13  

The standard of care for patients with higher-risk MDS (HR-MDS) and non-proliferating 

CMML, as well as patients with secondary AML, who are not eligible for intensive 

chemotherapy, is treatment with hypomethylating agents (HMA) like azacitidine (AZA).14–16 

Additionally, AZA in combination with venetoclax is currently used in patients with previously 

untreated AML.17 However, not all patients exhibit a favorable response, and there is a 

significant risk of relapse.18 Additionally, molecular predictors of response to HMA and the 

precise mechanism of action of this drug are not well-defined. The exact genetic and cellular 

processes through which HMA exerts its effects are still being studied,19 whereas there is no 

therapeutic approach to overcome resistance to this treatment.20. Several lines of evidence 

suggest that AZA promotes the cellular and cytokine-mediated effector T-cell tumor lysis.21,22 
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Nevertheless, the exact role of CD8+ cells in disease progression and response to HMA in 

myeloid neoplasms remains to be defined. 

The aim of the study was to comprehensively investigate the immune cell compartment in the 

BM of patients with myeloid neoplasms in various disease stages, to identify immune cell 

populations or molecular pathways that could predict response to treatment with HMAs and/or 

serve as targets for immunotherapies. For this reason, we initially engaged a systematic approach 

to study the immune landscape of BM samples by utilizing mass cytometry (Cytometry by time 

of flight; CyTOF) for the immunophenotypic characterization of immune cell populations in the 

BM. Based on this analysis, we then focused on BM CD8+ T cells and performed single-cell 

RNA sequencing (scRNA-seq), to address the molecular signature in CD8+ T cell subsets that 

are linked to response to treatment with AZA. 
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Results 

Immunophenotypic analysis of BM immune cells from patients with myeloid neoplasms 

To study the immune cell compartment, we performed deep immunophenotyping using CyTOF 

in BM samples from patients with LR-MDS (n=12), HR-MDS (n=15), AML (n=16) and CMML 

(n=5), collected before treatment initiation. Multidimensional scaling analysis revealed a 

separation of samples derived from patients with MDS and AML compared to CMML based on 

dimension 2, enforcing the notion of a different pathobiological background between MDS and 

the latter (Fig. 1A). Untargeted cluster analysis resulted in the identification of 14 clusters of 

cells (Fig. 1B, C). We observed a significantly decreased frequency of cells in the cluster of 

CD4+ T cells (CD4 T1) and B cells in patients with CMML, with a respective increase in the 

frequency of monocytic cells of myeloid cluster 2, characterized by the expression of CD11c, 

CD14 and CD38 (Fig. 1D). As chemokine signatures and the expression patterns of chemokine 

receptors potentially have prognostic implications in MDS and AML,23,24 we further evaluated 

the expression of the chemokine receptors C-C chemokine receptor 4 (CCR4), CCR6, CCR7 and 

C-X-C Motif Chemokine Receptor 3 (CXCR3), CD161 and CD294 within the T cell clusters 

(Supplementary Fig. 1). We observed increased expression of CXCR3 on cells from patients 

with AML and CMML compared to MDS patients in the CD4 T2, CD8 T1 and CD8 T2 clusters 

(Fig. 1E).  

Based on these findings, we then focused on CD4+ and CD8+ T cells and performed an 

untargeted cluster analysis on CD3+CD4-CD8+ (Fig. 2) and CD3+CD4+CD8- T cells 
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(Supplementary Fig. 2). We identified 10 clusters of CD8+ T cells (Fig. 2A). We noted a 

significantly decreased frequency of cells within cluster 1 in samples from patients with LR-

MDS and HR-MDS compared to AML and CMML (Fig. 2B), a cluster that included terminal 

effector cells (CCR7-CD45RA+), expressing CD57 and CXCR3 (Fig. 2C). We also identified an 

additional cluster (cluster 2) of terminal effector cells (CCR7-CD45RA+), that did not express 

CD57 and CXCR3, and did not show any difference among the groups (Fig. 2B, C). 

Additionally, the expression of CXCR3 in cells from cluster 1 was higher in patients with AML 

and CMML compared to patients with MDS (Fig. 2D). Similar analysis on CD4+ T cells did not 

reveal any difference in the frequency of the generated clusters (Supplementary Fig. 2).  

To further confirm the above findings, we engaged conventional flow cytometry in BM cells 

from an additional cohort of patients (n=64), focusing on the frequency of CD57+CXCR3+CD8+ 

T cells (Fig. 2E, F). We also analyzed with flow cytometry samples from eight patients that were 

also analyzed with CyTOF, to compare the two methods. We observed that the frequency of this 

cell population within CD8+ T cells was increased in patients with AML and CMML compared 

to LR- and HR-MDS (Fig. 2F), being in line with the findings from the unsupervised analysis of 

data derived from CyTOF. On the other hand, no difference was observed in the frequency of 

CD57+CXCR3- CD8+ T cells (Supplementary Fig. 3).  

Next, we characterized CD57+CXCR3+ CD8+ T cells compared to CD57+CXCR3- CD8+ T cells, 

using the mass cytometry data. Increased expression of chemokine receptors CCR4 and CCR6 

and decreased expression of the co-stimulatory molecules CD27 and CD28 was observed in 

CXCR3+ cells from patients with HR-MDS and AML (Supplementary Fig. 4). Additionally, 

flow cytometry analysis revealed decreased PD-1 expression in CXCR3+ cells compared to 

CXCR3- cells (Supplementary Fig. 5). 
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The frequency of CD57+CXCR3+CD8+ T cells is associated with the response to AZA  

Dynamic changes of chemokine receptor expression on T cells may inform prognosis,24 whereas 

AZA may alter the BM chemokine profile in MDS patients. Having observed a gradual increase 

of the frequency of the CD57+CXCR3+CD8+ T cell subset from LR-MDS to AML, we next 

assessed whether the proportion of this cell population before treatment initiation with AZA was 

associated with response to treatment. Univariate analysis revealed that a decreased percentage 

of CD57+CXCR3+CD8+ T cells is associated with better response (Supplementary Table 1). 

Furthermore, multivariate analysis affirmed the independent predictive value of the baseline 

frequency of CD57+CXCR3+CD8+ T cells in relation to patient response (Supplementary Table 

1). In line with this, utilizing the flow cytometry data, we observed that the baseline frequency of 

this cell subset was significantly increased in patients with HR-MDS and AML that did not 

respond to treatment, whereas no difference was observed in patients with CMML (Fig. 3A). 

Next, utilizing the CyTOF data, we performed unsupervised cluster analysis of CD3+CD4-CD8+ 

T cells in responders and non-responders to AZA patients with MDS and AML, which resulted 

in the identification of 6 cell clusters (Fig. 3B). We observed an increased frequency of cluster 3 

in non-responders (Fig. 3B, C), a cluster of CCR7-CD45RA+ cells characterized by the 

expression of CD57 and CXCR3 (Fig. 3D). Conversely, we observed an increased frequency of 

cluster 6 in responders, characterized by naive/memory markers CD28, CD27, CCR7, CD127 

(Fig. 3C, D), whereas there was no difference between responders and non-responders in the 

analysis of total CD3+CD8-CD4+ T cells (Supplementary Fig. 6). 

We further evaluated whether the baseline frequency of the CD57+CXCR3+CD8+ T cell subset 

was associated with survival. To do so, optimal CD57+CXCR3+ cut-off was determined at >29% 

by transformation of scale variable to binary one through optimal scaling. We observed that 
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patients with ≤29% CD57+CXCR3+CD8+ T cells had better overall survival (OS) (Fig. 3E). 

However, when patients with HR-MDS, AML and CMML were evaluated separately, we 

observed that this cut-off value could be applied to patients with HR-MDS and AML but not to 

patients with CMML (Fig. 3F). Thereafter, we aimed to assess the applicability of this cut-off in 

predicting response to treatment with AZA. Patients with HR-MDS and AML characterized by a 

baseline frequency of ≤29% CD57+CXCR3+CD8+ T cells demonstrated higher rates of response 

to AZA (Fig. 3G). In contrast, the percentage of CD57+CXCR3+CD8+ T cells was not associated 

with response to treatment in patients with CMML (Fig. 3G), once more illustrating the distinct 

immune background of the latter. Together, these findings suggest that an increased frequency of 

the CD57+CXCR3+CD8+ T cell subset is associated with treatment failure and worse survival in 

patients with MDS and AML treated with AZA.  

Association between mutational status and frequency of CD57+CXCR3+CD8+ T cells 

We further investigated whether there is a connection between mutational burden, type of 

mutations, and the frequency of CD57+CXCR3+CD8+ T cells in patients with HR-MDS and 

AML. No difference was found in the frequency of this cell population when patients were 

categorized based on the oncogenic mutations (Supplementary Fig. 7A), whereas no single 

mutation was associated with an increased frequency (>29%) of the CD57+CXCR3+CD8+ T cell 

subset (Supplementary Fig. 7B). Furthermore, the number of oncogenic mutations was not 

significantly altered in patients with >29% CD57+CXCR3+CD8+ T cells compared to patients 

with a lower frequency (≤29%) (Supplementary Fig. 7C), and no specific group of oncogenic 

mutations was associated with the frequency of CD57+CXCR3+CD8+ T cells (Supplementary 

Fig. 7D).  
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Single-cell transcriptomic landscape of CD8+ T cells in patients with HR-MDS and 

secondary AML 

We next sought to assess the molecular signature of BM CD8+ T cells from patients with MDS 

and AML secondary to MDS, at the single cell level, to further identify molecular signatures in 

specific CD8+ T cell subpopulations associated with disease progression and clinical outcomes of 

AZA monotherapy. scRNA-seq was performed in sorted BM CD8+ T cells from patients with 

HR-MDS (n=4) and secondary AML (n=5) prior to AZA initiation (Supplementary Table 2). We 

obtained transcriptomes of 28,449 cells in total. Based on unsupervised clustering, cells were 

partitioned in 11 clusters (Fig. 4A), which were characterized according to the gene expression 

of markers associated with T cell phenotype,25 including naive/memory markers (CCR7, IL7R, 

SELL, CD27, CD28, CD44), cytotoxic markers (GZMA, GZMB, GZMK, PRF1, CX3CR1, NKG7, 

HOPX, KLRG1), cell cycle genes (MKI67, CCNB2), the transcription factors (TFs) LEF1, 

EOMES and TCF7, the cytokine IFNG, and the cell surface markers ITGA1, CD69 and CCR6 

(Fig. 4B, C). We identified clusters of cells characterized by the expression of GZMK (cluster 0), 

and EOMES, KLRG1 and GZMK (cluster 1), previously characterized as pre-dysfunctional cells 

in studies from patients with solid tumors.25,26 We further identified two clusters of cytotoxic 

CD8+ T lymphocytes, clusters 2 (CTL_1) and 4 (CTL_2), based on the expression of GZMA, 

GZMB and PRF1.27 Clusters 1, 2 and 4 were the clusters with the highest frequency of cells 

expressing B3GAT1, the gene that encodes CD57 (Supplementary Fig. 8). We identified a cluster 

of memory-like cells, characterized by the expression of IL7R and low expression of CCR7, 

SELL, CD27 (cluster 3), a cluster of naive-like cells, expressing CCR7, SELL, CD27 and the TFs 

TCF7 and LEF128 (cluster 5), a cluster characterized by the expression of CCR6 (cluster 6) and a 

cluster characterized by the highest expression of CD44 (cluster 7) (Fig. 4B, C). Cluster 8 
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included cells expressing ITGA1 and ITGAE (Fig. 4D), previously described as resident memory 

cells (cluster 8),28–30 and cluster 9 included cytotoxic cells expressing IFNG, GZMK and NKG7. 

Finally, a cluster of proliferating T cells (cluster 10) was identified (Fig. 4B, C). Top 

differentially expressed genes (DEGs) for each cell cluster are depicted in Fig. 4D. We further 

engaged a previously reported cytotoxic score31 to confirm the enhanced cytotoxicity of cells in 

clusters 2 (CTL_1), 4 (CTL_2) and 9 (IFNG) (Fig. 4E) and a cell cycle score31 to confirm the 

increased proliferation activity of cells in cluster 10 (Proliferative) (Fig. 4F). Finally, utilizing a 

previously reported dysfunctional/exhaustion score,31 we did not identify a specific cluster 

characterized by high expression of genes associated with exhaustion, such as PDCD1, LAG3, 

HAVCR2, ENTPD1 or CTLA425 (Supplementary Fig. 9A). Nevertheless, cluster 1 (EOMES) 

exhibited the highest dysfunctional score among the clusters with the highest cell abundancy 

(Supplementary Fig. 9B). 

We further studied whether there is a difference in the transcriptomic landscape of CD8+ T cells 

in HR-MDS compared to secondary AML (Fig. 5A). We observed that the frequency of cells in 

cluster 4 (CTL_2) was increased in patients with AML (Fig. 5B, C), a cluster showing high 

expression levels of B3GAT1, the gene that encodes the CD57 protein (Supplementary Fig. 8). 

Pathway analysis of the DEGs in cluster 4 (CTL_2) (Fig. 5D) revealed an overrepresentation of 

the T cell receptor pathway and anabolic pathways involved in DNA transcription, gene 

expression, mRNA processing and cell cycle in cells from patients with HR-MDS and IFN 

response pathways and oxidative phosphorylation (OXPHOS) pathway in cells from patients 

with AML (Fig. 5E). Of note, when we studied the exhaustion signature 31 between the two 

groups in cluster 1 (EOMES), a cluster characterized by the highest dysfunctional score among 

the clusters, we observed a significantly higher dysfunctional score in the HR-MDS group (Fig. 
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5F), which was associated with the enhanced expression of CD7, FAM3C, TIGIT, TNFRSF9, 

DGKH, LYST, RAB27A, TNFRSF1B (Fig. 7G) and PDCD1, CD244, AKAP5, KIR2DL4 

(Supplementary Fig. 10). 

Single-cell transcriptomes of CD8+ T cells are associated with treatment outcome 

We next sought to identify molecular signatures in CD8+ T cell subpopulations associated with 

response to AZA (Fig. 6A). We did not observe any statistically significant difference in the 

cluster abundance in patients that achieved complete remission (CR) after treatment with AZA 

(n=2 patients with HR-MDS, 7,571 cells; n=2 patients with secondary AML, 6,096 cells) and 

patients that failed (FAIL) to treatment (n=2 patients with HR-MDS, 8,026 cells; n=3 patients 

with secondary AML, 6,756 cells) (Fig. 6B), except from an increased abundancy of cluster 10 

(Proliferative) in the CR group (Supplementary Fig. 11). 

Pathway analysis was performed, and DEGs upregulated in the CR group were associated with 

IFN response in all clusters (Fig. 6C). To this direction, increased expression of the IFN-

responsive genes MT2A, BST2, STAT1 and IRF2 was observed in the CR group (Fig. 6D). We 

then focused on specific clusters, and we used a score that derives from the expression of 

interferon stimulated genes (ISG signature).32 We observed higher ISG signature score in the CR 

group in cluster 0 (GZMK), which was associated with increased expression of the IFN-

responsive genes CCL5, MT2A, BST2, CD74, GZMA, PSME1, PSME2, CD69, VAMP8 and 

TXNIP (Fig. 6E). Similarly, increased expression of HLA-DRB1, MT2A, BST2, CD74, TXNIP, 

GZMA, PSME1, PSME2, CD69, PTPN2, IRF2, STAT1, SOCS1 and KLRK1 was observed in 

cluster 1 (EOMES) (Fig. 6F). Regarding the cytotoxic clusters 2 (CTL_1) (Fig. 6G, 

Supplementary Fig. 12A) and 4 (CTL_2) (Fig. 6H, Supplementary Fig. 12B), higher ISG 
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signature and increased expression of the genes IFITM2, MT2A, BST2, STAT1, GZMA, PSME1, 

PSME2 and CD69 was detected in cells from the CR group from both clusters.  

Pathway analysis of DEGs upregulated in the FAIL group demonstrated that cells from the 

clusters 0 (GZMK), 1 (EOMES), 2 (CTL_1), 3 (Memory), 4 (CTL_2), 5 (Naïve), 6 (CCR6) and 8 

(Trm) were enriched for DEGs associated with TNF signaling (Fig. 7A, Supplementary Fig. 13). 

Moreover, cells from the cytotoxic clusters 2 (CTL_1), 4 (CTL_2), 9 (IFNG) and clusters 3 

(Memory), 6 (CCR6) and 7 (CD44) were enriched for DEGs of the TGF-β signaling pathway 

(Fig. 7A). Specifically for cluster 2 (CTL_1), there was higher TGF-β signature score in the 

FAIL group and increased expression of TFGB1, SMURF2, SMAD7, SKI, SKIL (Fig. 7B, 

Supplementary Fig. 12A), whereas for cluster 4 (CTL_2) the higher TGF-β signature score was 

associated with increased expression of TFGB1, ARID4B, SMAD7, SKI, SKIL and SMURF2 

(Fig. 7C, Supplementary Fig. 12B). Since TGF-β signaling has been previously associated with 

decreased cytotoxicity,33 we further used the cytotoxic signature score (Fig. 7D) to address 

whether the TGF-β signature is associated with decreased cytotoxic activity in CTL clusters in 

the FAIL group. We observed higher cytotoxicity score in the CR group in cluster 2 (CTL_1), 

which was associated with the enhanced expression of GZMA, GZMB, CX3CR1 and CCND3 

(Fig. 7E) and in cluster 4 (CTL_2), which was associated with enhanced expression of FGFBP2, 

GZMA, GZMB, GZMH, CCND3, C1orf162 and CX3CR1 (Fig. 7F). 

We further utilized the dysfunctional score31 to study potential differences in the expression of 

exhaustion-associated genes based on treatment outcome. This analysis revealed no significant 

differences in the dysfunctional score across all clusters between CR and FAIL patients 

(Supplementary Fig. 14). 
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Cytokines act together with transcription factors (TFs) to regulate T cell fate and functionality.34 

To study the TFs that could act as possible regulators of the transcriptomic alterations observed 

in responders to AZA compared to non-responders, TF regulatory network analysis was 

performed using SCENIC,35 which resulted in the identification of 11 clusters-regulons (Fig. 

8A). We observed that regulon 5 was enriched with cells from the CR group of patients, whereas 

regulon 7 was enriched with cells from the FAIL group (Fig. 8B, C). Regulon cluster 5 was 

characterized by IRF7-, CHURC1-, NFYB- and RFXANK-regulated networks (Fig. 8D) and was 

enriched mainly with cells from cluster 4 (CTL_2) (Supplementary Fig. 15). On the other hand, 

regulon 7 was characterized by the NFKB2-, REL-, RELB-, CREM- and NFKB1-regulated 

networks (Fig. 8D) and it was enriched with cells from cluster 0 (GZMK) and cluster 1 (EOMES) 

(Supplementary Fig. 15), previously described as pre-dysfunctional cells.25,26 

Differential TF activity analysis between the two groups of patients within regulon 5, predicted 

that the activity of the interferon-related TFs IRF2, IRF9 and STAT1 was increased in the CR 

group and the activity of SMAD3, and the NF-κB superfamily TFs RELB, REL, NFKB2 and 

NFKB1 was increased in the FAIL group (Fig. 8E). Similar analysis within regulon 7, predicted 

increased activity for IRF2 and STAT1 and decreased activity for NFKB1 in cells derived from 

the CR group (Fig. 8F). Taken together, the TF regulatory network analysis further supports that 

BM CD8+ T cells in the CR group are targeted by TFs associated with IFN signaling, whereas 

TFs linked to TGF-β and NF-κB signaling target CD8+ T cells in the FAIL group.  
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Discussion 

Alterations in CD8+ T cell functionality in the tumor milieu promote tumor evasion and 

compromise response to immunotherapies.25 In AML and MDS, several CD8+ T cell defects 

have been described that are potentially reversible by various treatments, including AZA.9,11,36 

However, the architecture of CD8+ T cell immunity and its impact on the clinical behavior of 

AML and MDS are still incompletely understood, thus hampering the development of successful 

immunotherapeutic approaches.  

Herein, we provide a systemic analysis at the single cell level of CD8+ T cells derived from the 

BM immune microenvironment of patients with clonal myeloid disorders. We specifically 

focused on the identification of specific immunophenotypic, and molecular signatures associated 

with the outcome of AZA treatment.  

Deep immunophenotyping with CyTOF resulted in the identification of a BM 

CD57+CXCR3+CD8+ T cell population with increased frequency in patients with AML and 

CMML compared to MDS. We further observed that increased pre-treatment frequency of BM 

CD57+CXCR3+CD8+ T cells was associated with poor OS and response to AZA treatment in 

patients with HR-MDS and AML. Interestingly, no association between the frequency of this cell 

population and disease course was observed in patients with CMML, supporting the notion that 

this disorder does not share common immune features with MDS and AML. Though the 

mutational profile may sculpt specific immune response patterns across heterogeneous tumors,37 

no definite association between somatic mutations and defects in T cell immunity has been 

shown in MDS.38 Consistent with this report and our previous observation, showing absence of 

an association between alterations in CD4+ cells and somatic mutations,21 we could not find any 
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correlation between the levels of the aforementioned subpopulation with the mutational profile of 

patients.   

The expression of CD57 by CD8+ T cells, coupled with the absence of CD28 expression, 

characterizes a senescent-like phenotype, linked to chronic immune activation in several 

disorders.12,39,40 These CD57+CD28-CD8+ T cells are antigen specific effector cells that have 

limited proliferation capacity, due to their advanced differentiation stage.41 Previous studies 

demonstrated increased levels of CD57+CD28-CD8+ T cells in patients with MDS and AML 

compared to healthy individuals.10,42 CXCR3, on the other hand, is expressed on Th1-CD4+ T 

cells43 and effector CD8+ T cells and is considered crucial for the recruitment of T cells to 

inflammatory sites.44 The expression of CXCR3 on CD8+ T cells has been associated with 

changes in the equilibrium from memory towards effector cell populations.45 Interestingly, recent 

studies engaging scRNA-seq in CD8+ T cells isolated from patients with cancer have described 

cells expressing CXCR3 together with GZMK and EOMES as a pre-dysfunctional cell 

population.26  

In line with our findings, it has been recently demonstrated that the accumulation of senescent-

like CD8+CD57+ T cells is negatively associated with the response to chemotherapy and 

checkpoint blockade immunotherapy in AML patients.46 By utilizing in vitro studies, the authors 

further demonstrated that patient-derived senescent-like T cells were not able to sufficiently 

eliminate autologous AML-blasts when compared to their non-senescent CD8+ T cell 

counterparts, providing direct evidence for their limited antileukemic activity.46  

Based on our findings from immunophenotyping, we engaged scRNA-seq analysis to investigate 

in depth the transcriptomic profile of BM CD8+ T cells from patients with HR-MDS and 

secondary AML. We observed that the abundance of cells within the CTL_2 cluster, 
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characterized by higher expression compared to other clusters of B3GAT1, the gene that encodes 

the CD57 protein, was increased in patients with secondary AML compared to HR-MDS, being 

in line with the immunophenotypic findings. Regarding response to treatment, a significant 

enrichment of the TGF-β signaling pathway was observed in cytotoxic clusters (CTL_1 and 

CTL_2) of non-responders. This pathway has been previously shown to directly inhibit the 

cytotoxic program of CD8+ T cells leading to compromised anti-tumor responses, tumor evasion 

and poor outcomes.33 In line with this, non-responders displayed decreased cytotoxic signature 

within the same clusters. Of note, upregulated TGF-β signaling has also been reported in ex 

vivo–expanded BM mesenchymal cells from AZA-treated patients,47 potentially implying a 

ubiquitous targeting of TGF-β signaling by AZA. Luspatercept, an inhibitor of TGF-β signaling, 

has been recently approved by the FDA for the treatment of transfusion dependent LR-MDS 

patients either after failure to erythropoiesis stimulating agents or at first line.48 The effect of 

luspatercept on tumor immunity is still unknown, but, given the immunoregulatory role of TGF-

β,  it could be worthwhile considering the potential benefit of adding luspatercept in AZA 

refractory patients. 

On the other hand, responders exhibited a significant enrichment of pathways associated with 

IFN response, across many BM CD8+ T cell clusters. Interferons play a crucial role in immune 

activation during anti-tumor responses.49,50 Notably, there is evidence indicating that AZA exerts 

its effects in an IFN-dependent manner by increasing the production of IFN-γ in T cells,51 and by 

activating type I and III Interferon signaling in tumor cell lines,52,53 as well as upregulating the 

expression of Interferon Stimulated Genes (ISGs), all of which aid in the rejuvenation of the anti-

tumor immunity.52 Taken together, our findings suggest that the balance between TGF-β and IFN 
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signaling in CTLs within the BM microenvironment may regulate their anti-tumor effect, 

affecting the response to treatment.   

Immunotherapies based on immune checkpoint blockade (ICB) have revolutionized the field of 

oncology.54 Many studies employing scRNA-seq in solid tumors demonstrated that CD8+ T cells 

show a distinct molecular signature, indicative of an exhausted phenotype, which is associated 

with disease progression and treatment resistance,31,55 thereby providing evidence supporting the 

effectiveness of ICB treatment in these patients. In contrast, ICB therapy in myeloid 

malignancies, including MDS and AML, has yielded limited results so far, while the risk of 

serious adverse events still remains.56 For this reason, the identification of alternative pathways, 

such as TGF-β signaling pathway, that could be targeted by immunotherapies in patients with 

myeloid neoplasms is of paramount importance.  

In conclusion, by performing a mass cytometry-guided transcriptomic analysis of BM CD8+ T 

cells at the single cell level we provide evidence of predictive abnormalities of BM CD8+ cells in 

AML and MDS patients treated with AZA. We further identified TGF-β signaling in BM CD8+ 

T cells as a potential immune-mediated mechanism of resistance to AZA, thus arguing for the 

use of inhibitors of the TGF-β pathway to prevent or overcome AZA refractoriness. In view of 

recent data suggesting a T-cell mediated antileukemic activity of venetoclax,36 a triple 

combination of AZA, venetoclax and luspatercept may have the potential to induce a fully 

competent immune-mediated control of the leukemic clone in AML and MDS patients. 
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Methods 

Study design 

The overall aim of our study was to investigate the BM immune landscape of patients with 

myeloid neoplasms, aiming to uncover specific immunophenotypic disparities and molecular 

signatures related to the development and advancement of myeloid neoplasms, as well as the 

response of patients to AZA treatment. To this direction, we initially engaged mass cytometry 

(CyTOF) to study the immune cell populations of BM samples from patients with LR-MDS, HR-

MDS, CMML and AML collected before treatment initiation. We, then, engaged an additional 

cohort and performed flow cytometry, to validate the results derived from CyTOF. Based on the 

findings from the immunophenotypic analysis we focused on BM CD8+ T cells and performed 

scRNA-seq, to address the molecular signature in CD8+ T cell subsets. 

Study patients 

BM samples were collected from treatment-naïve patients with MDS, AML and CMML-2. 

Patient diagnosis was conducted based on the 2022 5th World Health Organization (WHO) 

classification57 and MDS patients were categorized based on their IPSS-R score, into lower-risk 

MDS (LR-MDS; IPSS-R score ≤ 3.5) and higher-risk MDS (HR-MDS; IPSS-R score > 3.5).58 

Except from patients with LR-MDS, patients were treated with Azacitidine (AZA) in a 
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subcutaneous dose of 75 mg/m2 for 7 consecutive days within a 28-day cycle. To manage 

myelotoxicity or complications associated with myelosuppression, potential measures such as 

reducing the dose by up to 50% or delaying treatment were considered. Response assessment 

was determined using the International Working Group Response Criteria for MDS59 and the 

recently revised European LeukemiaNet criteria for AML.60 Detailed demographic and clinical 

data are presented in Table 1. The study was approved by the local Ethics Committee, under the 

reference number (877/23-10-2019). All patients provided informed written consent in 

accordance with the principles outlined in the Declaration of Helsinki. 

Collection and handling of samples 

Density gradient centrifugation, using Ficoll-Histopaque 1077 (Sigma-Aldrich), was employed 

to isolate bone marrow mononuclear cells (BMMCs). Immediately after isolation, BMMCs were 

cryopreserved in a freezing medium consisting of 90% Fetal Bovine Serum (FBS) and 10% 

Dimethyl Sulfoxide (DMSO). 

Mass cytometry and data analysis  

High-dimensional immunophenotyping of BMMCs was performed with mass cytometry using 

established and validated workflows from previous studies.61,62 We employed the Maxpar Direct 

Immune Profiling Assay (MDIPA) that contains 30 pre-conjugated antibodies (Supplementary 

Table 3) with metal probes in lyophilized form (Standard Biotools).63 Prior to staining, BMMCs 

were thawed in prewarmed RPMI medium and supplemented with 10% FBS. After two washes, 

the cells were resuspended in fresh medium. BMMCs were subjected to a blocking step using 

Human TruStain FcX (Biolegend). Subsequently, cells were stained for surface markers 

following the MDIPA manufacturer's instructions. Two additional washes with Cell Staining 

Buffer (CSB) were performed, and fixation was carried out using a 1.6% filtered formaldehyde 
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solution from Sigma for 20 minutes at room temperature. Finally, cells were stained in a DNA 

intercalator solution (1:1000 dilution of 125 μM Cell-ID™ Intercalator-Ir) in Maxpar Fix and 

Perm buffer (Standard BioTools). The next day, cells were washed with CSB buffer and Cell 

Acquisition Solution (CAS) and then resuspended with EQ Passport beads (Standard Biotools, 

1:10 dilution) immediately before acquisition. Acquisition was performed using a Helios™ 

system. To ensure data quality during acquisition, the flow rate at the Helios™ system did not 

exceed 350 events per second. Data were subsequently normalized using Passport beads with 

CyTOF software (version 10.7.1014). Prior to analysis, we performed data cleanup, with 

bivariate dot plots in FlowJo™ (v10.8 Software, BD Biosciences), to refine gaussian parameters, 

and live, singlet cell events were selected for downstream analysis. Data analysis was performed 

on CD45+ cells, to exclude blasts from the analysis. FlowSOM clustering analysis and 

dimensionality reduction via tSNE were carried out in the R programming environment (version 

4.1.0), following established open-source workflows previously described.62  

For targeted analysis of T cell populations, data were imported into Cytobank (accessible at 

https://premium.cytobank.org) for further assessment. All related statistical tests and illustrations 

were generated through Cytobank. The FlowSOM algorithm was utilized to hierarchically cluster 

gated CD4+ and CD8+ T cell populations into distinct metaclusters, based on their surface marker 

expression profiles. Proportional sampling was employed to maximize the inclusion of total 

events in the analysis. The default/automatic settings were used for the clustering method, 

iterations, seed, and number of clusters, while the number of metaclusters was set to 10 or 6 

based on the specific analysis requirements. For illustration purposes, metaclusters were also 

projected onto representative tSNE maps that were generated using the dimensionality reduction 

algorithm tSNE-CUDA. 
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Flow cytometry 

Sample preparation and flow cytometry was performed as previously described.21 Details about 

the antibodies used are provided in Supplementary Table 4. Data were collected, on an 8-color 

flow cytometer FACS Canto II (BD Biosciences), using BD FACSDivaTM (version 8.0.1 for 

Windows) software and subsequently analyzed using FlowJoTM (version 10 for Windows, BD 

Biosciences) software. 

Next-generation sequencing 

DNA extraction was performed on BMMCs or peripheral blood mononuclear cells (PBMCs), 

before treatment initiation. The genomic DNA was isolated utilizing the Purelink Genomic DNA 

Mini Kit (Invitrogen, #K182001). The VariantPlex Myeloid panel was utilised to detect copy 

number variations (CNVs), single-nucleotide variants (SNVs) and indels in 75 myeloid 

associated genes as per manufacturer’s instructions. Target-enriched libraries of extracted 

nucleic acids for next-generation sequencing were prepared using Anchored Multiplex PCR 

(AMP), a target enrichment chemistry utilizing unidirectional gene-specific primers (GSPs), 

sample indexes and molecular barcodes for multiplex targeted NGS. After sequencing on an 

Illumina platform, analysis was performed on Archer Analysis bioinformatics platform.   

scRNA-seq and data processing 

BMMCs were thawed and washed with RPMI-1640 (GlutaMAX™, Gibco, #61870) 

supplemented with 10% heat-inactivated fetal bovine serum (FBS, Gibco, #10270), 100 U/ml 

penicillin–streptomycin (10,000 U/ml, Gibco, #15140). Then, BMMCs were treated with DNAse 

I 1mg/ml (0.25 mg ml−1, Sigma) for 10 min at room temperature. Samples were stained with 7-

AAD Viability Staining Solution (420404, Biolegend), CD45 APC/Cy7 (304014, Biolegend), 
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CD3 PE (317308, Biolegend), CD8 APC (345775, BD), CD4 FITC (345768, BD Biosciences). 

After antibody staining, cells were incubated with Cell Multiplexing Oligos (3' CellPlex Kit Set 

A, 10x Genomics) following the manufacturer’s instructions. Based on 7-AAD- CD3+CD4-CD8+ 

profile, cells were sorted on a FACS ARIA III (BD Biosciences) v8.0.1 software (BD 

Biosciences). Cell purity was above 95%. 

Sorted cells were counted, resuspended in PBS + 10% FBS at a concentration of 1600 cells/ uL, 

combined by three per well of the Chromium Next GEM Chip G (10X Genomics) and loaded 

onto the Chromium Controller (10X Genomics). Samples were processed for single-cell 

encapsulation, cDNA and cell multiplexing library generation using the Chromium Next GEM 

Single Cell 3� Reagent Kits v3.1 (Dual Index) (10X Genomics). The constructed libraries were 

sequenced on an NovaSeq 6000 sequencer with a paired-end reads sequencing mode. The 10X 

Genomics Cell Ranger multi v7.1.0 pipeline, was used to map the sequencing reads to the human 

genome (GRCh38) and generate the gene expression and feature barcode matrices. We specified 

the r1-length and r2-length to 28+90, respectively, for both the gene expression and feature 

libraries, while preserving all others parameters of the pipeline under default setting. The 

generated matrices consisted of 38298 cellular barcodes, spanning all samples, with a sequencing 

depth of 34822 mean reads per barcode (cDNA) and were inserted to the R (Version 4.1.1) 

software package Seurat (v4.3.0)64 for all downstream analyses. The gene expression matrices 

were filtered to discard cells expressing less than 200 genes as well as genes found in less than 3 

cells. Each library was processed individually for sample demultiplexing and singlet 

identification in R using Seurat “HTODemux” function based on the feature barcode matrices 

generated by CellRanger. Finally, cellular barcodes corresponding to single cells were merged to 

a single Seurat object. During quality control of the combined dataset, cells expressing less than 
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200 or more than 4500 genes and having more than 13% of mitochondrial associated genes were 

removed from further analysis. Gene expression data of the remaining 28585 cells that passed 

quality control, were normalized and scaled using the “LogNormalize” method and “ScaleData” 

command, respectively, while variable features were identified using the “FindVariableFeatures” 

command. The algorithm Harmony65 was used to perform batch correction and for further 

clustering of the data. The first 63 principal components of the Harmony reduction were selected, 

based on the Seurat Elbow plot, and were designated for the “dims” argument of the 

“FindNeighbors” and “RunUMAP” functions. A resolution of 0.3 was selected for graph-based 

cluster identification in the “FindClusters” function and, finally, cluster visualization in a two-

dimensional space was performed using non- linear dimensional reduction via uniform manifold 

approximation and projection (UMAP). The “FindAllMarkers” command was implemented to 

identify cluster defining genes, expressed at least in 20% of the cluster cells at a minimum of 

0.25-log-fold difference between the respective cluster and the residual cells in the dataset. 

Contaminating clusters, comprising non-CD8+ T cells were identified via their gene expression 

profile and were removed from subsequent analysis. To identify differentially expressed markers 

between conditions in the same cluster(s) the “FindMarkers” command with the MAST 

statistical test were used. For increased sensitivity purposes, the output of the “FindMarkers” 

comparison contained genes having an adjusted p-value < 0.05, expressed in at least 5% of the 

cells in least one condition, without implementing log-fold-change thresholds. Calculation of 

curated gene set scores was performed with the AUCell package.35 

The identification of genes displaying statistically significant differential expression was 

conducted by applying an adjusted p value (q-value) threshold of <0.05 and a |log2 fold change 

(logFC)| threshold of >0.25. Subsequently, an enrichment pathway analysis of the differentially 
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expressed genes was performed using the EnrichR tool.66,67 Trajectories were performed using 

Monocle 3  using default  settings.68 

Gene regulatory network analysis 

The single-cell RNA-seq data underwent further bioinformatic analysis through the utilization of 

SCENIC. SCENIC is a computational tool that constructs intricate gene regulatory networks 

(GRNs) and uncovers distinct cellular states within the framework of single-cell RNA-seq data.35 

SCENIC relies on three main R/bioconductor packages: GENIE3, RcisTarget, and AUCell. 

GENIE369 identifies potential targets of Transcription Factors (TFs) by elucidating the 

coexpression relationships existing between these TFs and their corresponding targets. 

Subsequently, RcisTarget35 is utilized to pinpoint direct targets through the analysis of cis-

regulatory motifs and construct transcription factor regulons. The third component, AUCell,35 is 

used to assess the activity of each of these regulons within individual cells. SCENIC was 

employed to establish regulons, estimate the activity scores of transcription factors, as well as to 

conduct enrichment analysis. Additionally, differential regulon activity analysis was conducted 

within the clusters previously identified by Seurat. The outcomes were represented through 

UMAPs, heatmaps and pie charts. Notably, the heatmap that depicts the activity of certain 

regulons per cluster (switched on/off state) was based on the binary values generated by the 

AUCell algorithm. The methodology and the scripts for this part used as a guide the SCENIC 

vignettes curated by Aibar et al,35 along with relative scripts by Zhu et al.70 

Statistical analysis 

Τo compare two groups, a two-tailed unpaired Student's t-test or a Mann-Whitney U test was 

used as appropriate. For the comparison of multiple groups, one-way ANOVA followed by a 
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"two-stage" Benjamini, Krieger & Yekutieli multiple comparison test, or Kruskal-Wallis test 

followed by a "two-stage" Benjamini, Krieger & Yekutieli multiple comparison test were used as 

appropriate. The independence between variables was assessed using the chi-square (χ²) test and 

Fisher's exact test. Kaplan-Meier analysis was utilized for survival analysis, and the log-rank test 

was employed to assess the significance. To explore the association of BM CD57+CXCR3+CD8+ 

T cells with response to treatment, univariate analysis was performed. Optimal CD57+CXCR3+ 

cut-off was determined by transformation of scale variable to binary one through optimal 

scaling; in detail, discretization to seven groups, regularization using ridge regression, and 10-

fold cross-validation were performed through SPSS CATREG procedure. To explore the 

independent correlations between BM CD57+CXCR3+CD8+ T cells along with mutational status, 

as well as age, gender, and IPSS-R (both score and components), with response to treatment, a 

single univariate and separate multivariate analyses for each mutation of interest were performed 

using Cox proportional hazards regression analysis; every parameter that was significantly 

correlated in a certain univariate analysis (p≤0.05) was treated as a potential independent 

parameter in the relevant multivariate one. Statistical analysis was performed using GraphPad 

prism 9 (version 9.0.0 for Windows, GraphPad Software, Inc., San Diego, CA, USA.), IBM 

SPSS Statistics software (version 26.0 for Windows, IBM Corporation, North Castle, NY, USA) 

and the Cytobank platform. The level of significance was established at P < 0.05. 

 

Data availability 

The authors state that all data supporting this study are available in the main text or the 

supplementary material. The raw scRNA-sequencing data for this study have been deposited in 
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the NCBI Gene Expression Omnibus repository and are accessible through accession number 

GSE250077. All other raw data can be provided by the authors upon reasonable request. 

  



28 
 

References 

1. Arber, D. A. et al. International Consensus Classification of Myeloid Neoplasms and Acute 

Leukemias: integrating morphologic, clinical, and genomic data. Blood 140, 1200–1228 

(2022). 

2. Ogawa, S. Genetics of MDS. Blood 133, 1049–1059 (2019). 

3. Itzykson, R. & Fenaux, P. Epigenetics of myelodysplastic syndromes. Leukemia 28, 497–506 

(2014). 

4. Aggarwal, S. et al. Role of immune responses in the pathogenesis of low-risk MDS and 

high-risk MDS: implications for immunotherapy. Br J Haematol 153, 568–581 (2011). 

5. Balderman, S. R. et al. Targeting of the bone marrow microenvironment improves outcome 

in a murine model of myelodysplastic syndrome. Blood 127, 616–625 (2016). 

6. Kitagawa, M. et al. Localization of Fas and Fas ligand in bone marrow cells demonstrating 

myelodysplasia. Leukemia 12, 486–492 (1998). 

7. Pronk, E. & Raaijmakers, M. H. G. P. The mesenchymal niche in MDS. Blood 133, 1031–

1038 (2019). 

8. Verma, N. K. et al. Obstacles for T-lymphocytes in the tumour microenvironment: 

Therapeutic challenges, advances and opportunities beyond immune checkpoint. 

EBioMedicine 83, 104216 (2022). 

9. Knaus, H. A. et al. Signatures of CD8+ T cell dysfunction in AML patients and their 

reversibility with response to chemotherapy. JCI Insight 3, 120974 (2018). 

10. Radpour, R. et al. CD8+ T cells expand stem and progenitor cells in favorable but not 

adverse risk acute myeloid leukemia. Leukemia 33, 2379–2392 (2019). 



29 
 

11. Rodriguez-Sevilla, J. J. & Colla, S. T cell dysfunctions in myelodysplastic syndromes. Blood 

blood.2023023166 (2024) doi:10.1182/blood.2023023166. 

12. Liu, X., Hoft, D. F. & Peng, G. Senescent T cells within suppressive tumor 

microenvironments: emerging target for tumor immunotherapy. J Clin Invest 130, 1073–

1083. 

13. Raskov, H., Orhan, A., Christensen, J. P. & Gögenur, I. Cytotoxic CD8+ T cells in cancer 

and cancer immunotherapy. Br J Cancer 124, 359–367 (2021). 

14. Costa, R. et al. Activity of azacitidine in chronic myelomonocytic leukemia. Cancer 117, 

2690–2696 (2011). 

15. Platzbecker, U. & Fenaux, P. Recent frustration and innovation in myelodysplastic 

syndrome. Haematologica 101, 891–893 (2016). 

16. Stomper, J., Rotondo, J. C., Greve, G. & Lübbert, M. Hypomethylating agents (HMA) for 

the treatment of acute myeloid leukemia and myelodysplastic syndromes: mechanisms of 

resistance and novel HMA-based therapies. Leukemia 35, 1873–1889 (2021). 

17. DiNardo, C. D. et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid 

Leukemia. New England Journal of Medicine 383, 617–629 (2020). 

18. Prébet, T. et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment 

failure. J Clin Oncol 29, 3322–3327 (2011). 

19. Garcia-Manero, G. & Fenaux, P. Hypomethylating agents and other novel strategies in 

myelodysplastic syndromes. J Clin Oncol 29, 516–523 (2011). 

20. Zhao, G., Wang, Q., Li, S. & Wang, X. Resistance to Hypomethylating Agents in 

Myelodysplastic Syndrome and Acute Myeloid Leukemia From Clinical Data and Molecular 

Mechanism. Front Oncol 11, 706030 (2021). 



30 
 

21. Lamprianidou, E. et al. Modulation of IL-6/STAT3 signaling axis in CD4+FOXP3− T cells 

represents a potential antitumor mechanism of azacitidine. Blood Adv 5, 129–142 (2021). 

22. Costantini, B. et al. The effects of 5-azacytidine on the function and number of regulatory T 

cells and T-effectors in myelodysplastic syndrome. Haematologica 98, 1196–1205 (2013). 

23. Kornblau, S. M. et al. Recurrent expression signatures of cytokines and chemokines are 

present and are independently prognostic in acute myelogenous leukemia and 

myelodysplasia. Blood 116, 4251–4261 (2010). 

24. Sand, K. E., Rye, K. P., Mannsåker, B., Bruserud, O. & Kittang, A. O. Expression patterns of 

chemokine receptors on circulating T cells from myelodysplastic syndrome patients. 

Oncoimmunology 2, e23138 (2013). 

25. van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states in human 

cancer: insights from single-cell analysis. Nat Rev Cancer 20, 218–232 (2020). 

26. Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal 

cancer. Nature 564, 268–272 (2018). 

27. Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell 

sequencing. Nat Med 24, 978–985 (2018). 

28. Clarke, J. et al. Single-cell transcriptomic analysis of tissue-resident memory T cells in 

human lung cancer. J Exp Med 216, 2128–2149 (2019). 

29. Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: Tissue resident 

memory T cells in mice and humans. Sci Immunol 4, eaas9673 (2019). 

30. Kok, L., Masopust, D. & Schumacher, T. N. The precursors of CD8+ tissue resident memory 

T cells: from lymphoid organs to infected tissues. Nat Rev Immunol 22, 283–293 (2022). 



31 
 

31. Li, H. et al. Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated 

Compartment within Human Melanoma. Cell 176, 775-789.e18 (2019). 

32. Chiche, L. et al. Modular transcriptional repertoire analyses of adults with systemic lupus 

erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol 66, 

1583–1595 (2014). 

33. Batlle, E. & Massagué, J. Transforming Growth Factor-β Signaling in Immunity and Cancer. 

Immunity 50, 924–940 (2019). 

34. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell 

differentiation. Nat Rev Immunol 12, 749–761 (2012). 

35. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat 

Methods 14, 1083–1086 (2017). 

36. Lee, J. B. et al. Venetoclax enhances T cell-mediated antileukemic activity by increasing 

ROS production. Blood 138, 234–245 (2021). 

37. Thorsson, V. et al. The Immune Landscape of Cancer. Immunity 48, 812-830.e14 (2018). 

38. Winter, S., Shoaie, S., Kordasti, S. & Platzbecker, U. Integrating the ‘Immunome’ in the 

Stratification of Myelodysplastic Syndromes and Future Clinical Trial Design. J Clin Oncol 

38, 1723–1735 (2020). 

39. Tae Yu, H. et al. Characterization of CD8(+)CD57(+) T cells in patients with acute 

myocardial infarction. Cell Mol Immunol 12, 466–473 (2015). 

40. Strioga, M., Pasukoniene, V. & Characiejus, D. CD8+ CD28- and CD8+ CD57+ T cells and 

their role in health and disease. Immunology 134, 17–32 (2011). 

41. Brenchley, J. M. et al. Expression of CD57 defines replicative senescence and antigen-

induced apoptotic death of CD8+ T cells. Blood 101, 2711–2720 (2003). 



32 
 

42. Epling-Burnette, P. K. et al. Prevalence and clinical association of clonal T-cell expansions 

in Myelodysplastic Syndrome. Leukemia 21, 659–667 (2007). 

43. Yoon, S. H. et al. Selective addition of CXCR3+CCR4-CD4+ Th1 cells enhances generation 

of cytotoxic T cells by dendritic cells in vitro. Exp Mol Med 41, 161–170 (2009). 

44. Maurice, N. J., McElrath, M. J., Andersen-Nissen, E., Frahm, N. & Prlic, M. CXCR3 enables 

recruitment and site-specific bystander activation of memory CD8+ T cells. Nat Commun 10, 

4987 (2019). 

45. Kurachi, M. et al. Chemokine receptor CXCR3 facilitates CD8(+) T cell differentiation into 

short-lived effector cells leading to memory degeneration. J Exp Med 208, 1605–1620 

(2011). 

46. Rutella, S. et al. Immune dysfunction signatures predict outcomes and define checkpoint 

blockade-unresponsive microenvironments in acute myeloid leukemia. J Clin Invest 132, 

e159579 (2022). 

47. Wenk, C. et al. Direct modulation of the bone marrow mesenchymal stromal cell 

compartment by azacitidine enhances healthy hematopoiesis. Blood Adv 2, 3447–3461 

(2018). 

48. Platzbecker, U. et al. Efficacy and safety of luspatercept versus epoetin alfa in 

erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic 

syndromes (COMMANDS): interim analysis of a phase 3, open-label, randomised controlled 

trial. Lancet 402, 373–385 (2023). 

49. Overacre-Delgoffe, A. E. et al. Interferon-γ Drives Treg Fragility to Promote Anti-tumor 

Immunity. Cell 169, 1130-1141.e11 (2017). 



33 
 

50. Boukhaled, G. M., Harding, S. & Brooks, D. G. Opposing Roles of Type I Interferons in 

Cancer Immunity. Annu Rev Pathol 16, 167–198 (2021). 

51. Yano, S., Ghosh, P., Kusaba, H., Buchholz, M. & Longo, D. L. Effect of Promoter 

Methylation on the Regulation of IFN-γ Gene During In Vitro Differentiation of Human 

Peripheral Blood T Cells into a Th2 Population. The Journal of Immunology 171, 2510–2516 

(2003). 

52. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer 

via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015). 

53. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral 

mimicry by endogenous transcripts. Cell 162, 961–973 (2015). 

54. Heinhuis, K. M. et al. Enhancing antitumor response by combining immune checkpoint 

inhibitors with chemotherapy in solid tumors. Annals of Oncology 30, 219–235 (2019). 

55. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control 

and respond to checkpoint blockade. Nat Immunol 20, 326–336 (2019). 

56. Shallis, R. M. et al. Immune Checkpoint Inhibitor Therapy for Acute Myeloid Leukemia and 

Higher-Risk Myelodysplastic Syndromes: A Single-Center Experience. Blood 134, 1330 

(2019). 

57. Khoury, J. D. et al. The 5th edition of the World Health Organization Classification of 

Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 36, 

1703–1719 (2022). 

58. Greenberg, P. L. et al. Revised International Prognostic Scoring System for Myelodysplastic 

Syndromes. Blood 120, 2454–2465 (2012). 



34 
 

59. Cheson, B. D. et al. Clinical application and proposal for modification of the International 

Working Group (IWG) response criteria in myelodysplasia. Blood 108, 419–425 (2006). 

60. Döhner, H. et al. Diagnosis and management of AML in adults: 2022 recommendations from 

an international expert panel on behalf of the ELN. Blood 140, 1345–1377 (2022). 

61. Vakrakou, A. G. et al. Specific myeloid signatures in peripheral blood differentiate active 

and rare clinical phenotypes of multiple sclerosis. Front Immunol 14, 1071623 (2023). 

62. Nowicka, M. et al. CyTOF workflow: differential discovery in high-throughput high-

dimensional cytometry datasets. F1000Res 6, 748 (2017). 

63. Bagwell, C. B. et al. Multi-site reproducibility of a human immunophenotyping assay in 

whole blood and peripheral blood mononuclear cells preparations using CyTOF technology 

coupled with Maxpar Pathsetter, an automated data analysis system. Cytometry B Clin Cytom 

98, 146–160 (2020). 

64. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29 

(2021). 

65. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. 

Nat Methods 16, 1289–1296 (2019). 

66. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 

2016 update. Nucleic Acids Res 44, W90-97 (2016). 

67. Xie, Z. et al. Gene Set Knowledge Discovery with Enrichr. Curr Protoc 1, e90 (2021). 

68. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 

566, 496–502 (2019). 

69. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks 

from expression data using tree-based methods. PLoS One 5, e12776 (2010). 



35 
 

70. Zhu, C. et al. Single-cell transcriptomics dissects hematopoietic cell destruction and T-cell 

engagement in aplastic anemia. Blood 138, 23–33 (2021). 

 

 

Funding: 

This study was supported by the Hellenic Foundation for Research and Innovation (HFRI) under 

the HFRI ''Research Projects to Support Faculty Members & Researchers and Procure High-

Value Research Equipment'' grant (HFRI-FM17-452) and the General Secretariat for Research 

and Technology Management and Implementation Authority for Research, Technological 

Development, and Innovation Actions (MIA-RTDI) (grant T2EDK-02288, MDS-TARGET). IM 

was funded by the RIG-2023-051 grant from Khalifa University. TA and NEP are supported by 

the ERC under the European Union’s Horizon 2020 research and innovation program (grant 

agreement no 947975 to T. Alissafi) and from the Hellenic Foundation for Research and 

Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Post-

Doctoral Researchers” (Project Number: 166 to T. Alissafi) and the “Sub-action 1. Funding New 

Researchers – RRF: Basic Research Financing (Horizontal support for all Sciences) (Project 

number: 15014 to T. Alissafi). IPK is funded by the Academy of Medical Sciences (R2429101) 

and Rosetrees Trust (R2449101). TC is supported by the Deutsche Forschungsgemeinschaft 

(TRR332, project B4). 

Acknowledgments: 

AT presented this study at the 34th Meeting of Hellenic Society of Haematology and was 

awarded with the “A. Goutas” award. 



36 
 

Authors' contributions: 

Conceptualization: AT, IK, IM 

Methodology: AT, MG, NEP, NP, PC, TC, TA, IM 

Investigation: AT, MG, KLO, AF, KK, EL, VP, AC, IPK, PG, PK, PL, IKY, KL 

Visualization: AT, NEP, NP 

Funding acquisition: IPK, TC, TA, IM  

Project administration: IM 

Supervision: IM 

Writing – original draft: AT, IM 

Writing – review & editing: AT, IPK, TC, IK, IM 

Corresponding author 

Correspondence to Ioannis Mitroulis or Athanasios Tasis. 

Competing interests: 

The authors declare no competing financial interests. 

 

 

 

 

 

 

 



37 
 

 

 

 

 

Table 1. Baseline patient characteristics 
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Total No of patients, N  104 

Age at diagnosis, N (%) 

 >65yo 77 (74%) 

<65yo 

N/A 

22 (21,2%)  

5 (4,8%) 

Sex, N (%)   

Male 69 (66.35%) 

Female 35 (33.65%) 

WHO classification, N (%)   

MDS-LB 19 (18.3%) 

MDS-IB1 15 (14.4%) 

MDS-IB2 26 (25.0%) 

AML 32 (30.8%) 

CMML-2 12 (11.5%) 

Baseline blood counts, median (range)   

Hemoglobin (g/dL) 9.4 (5.4-14) 

Absolute neutrophil count; ANC (× 109/L) 2.01 (0-60) 

Platelet count (× 109/L) 90.5 (5-463) 

(%) Bone marrow blasts, N (%)   

<5% 17 (16,4%) 

5-10% 20 (19.2%) 

11-20% 30 (28,85%) 

>20% 

N/A 

30 (28,85%) 

7 (6,7%) 

Cytogenetic risk score (IPSS-R), N (%)   

Very good 3 (2,9%) 

Good 57 (54,8%) 
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Intermediate 25 (24%) 

Poor 2 (1,9%) 

Very poor 9 (8,7%) 

N/A 8 (7,7%) 

Number of completed AZA cycles, median (range)   

HR-MDS 9 (1-59) 

AML 7(1-70) 

CMML-II 7 (3-36) 
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Figures 

Fig. 1. Untargeted analysis of CD45+ immune cells in patients with MDS, AML and CMML 
by CyTOF. (A) Multidimensional scale plot depicting the relationship between bone marrow 
(BM) samples of patients with LR-MDS (n=12), HR-MDS (n=15), AML (n=16) and CMML 
(n=5). (B) UMAP displaying the major immune cell clusters. (C) Heatmap showing the 
expression of the markers used for the characterization of each cell cluster. (D) Box charts 
displaying the frequency of each cell cluster. (Ε) Violin plots showing the expression level of 
CXCR3 in the CD8 T1, CD8 T2 and CD4 T2 clusters, respectively. Kruskal Wallis followed by 
"two-stage" Benjamini, Krieger & Yekutieli multiple comparison test was used in D. One-way 
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ANOVA followed by "two-stage" Benjamini, Krieger & Yekutieli multiple comparison test was 
used in E. *p < 0.05, **p < 0.01. 

 

Fig. 2. Identification of a CD8+ subpopulation (CD57+CXCR3+) which distinguishes MDS 
patients from AML and CMML patients. (A) Representative viSNE plots, derived from the 
FlowSOM analysis of BM CD8+ T cells from patients with LR-MDS (n=12), HR-MDS (n=15), 
AML (n=16) and CMML (n=5). (B) Bar plots displaying the proportion of the metaclusters 
between the groups, expressed as percentage within CD8+ T cells. (C) Heatmap depicting the 
expression level of the T-related markers between the metaclusters. (D) Violin plots showing the 
expression level of CXCR3 in metacluster 1. (E) Representative flow cytometry plots for the 
identification of the CD57+CXCR3+CD8+ T cell subpopulation in a cohort of patients with LR-
MDS (n=7), HR-MDS (n=27), AML (n=20) and CMML (n=10). (F) Percentage of 
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CD57+CXCR3+ cells within CD8+ T cells. Kruskal Wallis was used in B and D. One-way 
ANOVA followed by "two-stage" Benjamini, Krieger, & Yekutieli multiple comparison test was 
used in F. *p< 0.05, **p < 0.01, ***p < 0.001. 

 

Fig. 3. Association between the frequency of CD57+CXCR3+CD8+ T cells and outcome in 
patients with HR-MDS and AML under treatment with AZA. (A) Box plots displaying the 
percentage of the CD57+CXCR3+ cells within CD8+ T cells, assessed by flow cytometry in 
responders and non-responders (HR-MDS, n=12 Responders and 9 Non-Responders; AML, n=9 
Responders and 11 Non-Responders; CMML, n=5 Responders and 5 Non-Responders). (B) 
After stratification of HR-MDS and AML patients to responders (n=12) and non-responders 
(n=19), FlowSOM analysis was performed on BM CD8+ T cells, which generated 6 metaclusters 
that are projected onto the viSNE plots. Representative viSNE plots (one for each group) are 
shown. (C) Heatmap depicting the expression levels of all T-related markers (D) Box plots 
showing the proportion of all metaclusters, expressed as frequency within CD8+ T cells. (E) 
Kaplan Meier curves for overall survival (OS) in patients which received AZA treatment, with 
≤29% (n=51) and >29% (n=26) CD57+CXCR3+ CD8+ T cells before treatment initiation. The 
survival curves were compared by Log-rank (Mantel-Cox) test and the p value is shown. Median 
OS of the ≤29% group was 20.98 months, while the median OS of the >29% group was 12.05 
months. (F) Survival curves for each disease subgroup. Increased (%) CD57+CXCR3+ correlates 
significantly with worse survival in HR-MDS and AML patients, whereas no association is 



43 
 

observed in CMML patients. (G) HR-MDS and AML patients with ≤29% CD57+CXCR3+ 

exhibited higher response rates. No association between the frequency of CD57+CXCR3+CD8+ T 
cells and response to therapy was observed in CMML patients. Unpaired Student’s t test was 
used in A. Mann-Whitney U test was used in D. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Fig. 4. Profiling of BM-derived CD8+ T cells of HR-MDS and secondary AML patients with 
scRNA-seq. (A) Uniform Manifold Approximation and Projection (UMAP) of CD8+ T cells 
identified 11 clusters. A total of 28,449 CD8+ T cells were pooled from 4 HR-MDS (15,597 
cells) and 5 secondary AML patients (12,852 cells). (B) Bubble plot depicting the average 
expression of genes used to characterize the clusters. (C) Expression of selected genes projected 
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onto UMAPs. (D) Heatmap showing selected top differentially expressed genes for each cell 
cluster. (E) Ridgeline plots displaying the cytotoxic signature score for each cell cluster, as 
defined by the expression of key-related genes. (F) Ridgeline plots displaying the cell cycle 
signature score for each cell cluster. Differential expression data are reported in Data sheet 1. 

 
Fig. 5. scRNAseq analysis of bone marrow-derived CD8+ T cells from patients with 
secondary AML and HR-MDS. (A) Comparison of separate UMAPs for secondary AML 
(12,852 cells) and HR-MDS (15,597 cells) patients. (B) Stacked bar chart showing the average 
distribution of clusters between the patient groups, and pie charts showcasing the distribution of 
clusters for each patient, individually. (C) Boxplot showing the percentage of clusters 4 (CTL_2) 
and 8 (Trm) expressed as (%) of total CD8+ T cells. (D) Heatmap displaying the top 20 
differentially expressed genes of each disease group in cluster 4 (CTL_2). (E) Pathway 
enrichment analysis (MSigDB, KEGG and GO_BP) of cluster 4 (CTL_2) between HR-MDS and 
secondary AML patients. Positively enriched pathways in each group, with a q-value <0.05 
(Benjamini-Hochberg correction), are shown. (F) Dysfunctional score for cluster 1 (EOMES). 
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(G) Violin plots displaying the expression levels of the top differentially expressed genes 
involved in the dysfunctional score of cluster 1 (EOMES) between patients with HR-MDS and 
secondary AML. Differential expression data are reported in Data sheet 2. 
 

 

Fig. 6. BM-derived CD8+ T cells from responders (CR) to AZA show an enhanced ISG 
molecular signature compared to non-responders (FAIL) in scRNAseq analysis. (A) 
Comparison of separate UMAPs for CR (a total of 13,667 cells, 7,571 from MDS and 6,096 cells 
from secondary AML patients, respectively) and FAIL patients (a total of 14,782 cells, 8,026 
cells from MDS and 6,756 cells from secondary AML patients, respectively). (B) Stacked bar 
chart showing the average distribution of clusters between the two groups. The percentage of 
cluster 10 (Proliferative) was increased in CR compared to FAIL patients (Unpaired Student’s t 
test, p=0.0418). (C) Dot plot representing MSigDB (Hallmark 2020) enrichment analysis of 
positively enriched pathways in CR patients. Enriched pathways with a q-value <0.05 
(Benjamini-Hochberg correction) are shown. (D) Gradient expression of representative selected 
genes involved in IFN-related pathways, as they are projected onto UMAPs. (E) ISG (Interferon 
Stimulated Genes) score of cluster 0 (GZMK) and violin plots showing the expression levels of 
the top differentially expressed IFN-stimulated genes of cluster 0 (GZMK) between CR and 
FAIL. (F) ISG score of cluster 1 (EOMES) and violin plots showing the expression levels of the 
top differentially expressed IFN-stimulated genes of cluster 1 (EOMES) between CR and FAIL. 
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(G) ISG score of cluster 2 (CTL_1) and violin plots displaying the expression levels of the top 
differentially expressed IFN-stimulated genes of cluster 2 (CTL_1) between CR and FAIL. (H) 
ISG score of cluster 4 (CTL_2) and violin plots displaying the expression levels of the top 
differentially expressed IFN-related genes of cluster 4 (CTL_2) between CR and FAIL. 
Differential expression data are reported in Data sheet 3. 

 
Fig. 7. BM-derived CD8+ T cells of non-responders (FAIL) displayed suppressed cytotoxic 
molecular signature at the single-cell level. (A) Dot plot representing MSigDB (Hallmark 
2020) enrichment analysis of positively enriched pathways in FAIL patients. Enriched pathways 
with a q-value <0.05 (Benjamini-Hochberg correction) are shown. (B) TGF-β signaling score of 
cluster 2 (CTL_1) and violin plots displaying the expression levels of the top differentially 
expressed genes of cluster 2 (CTL_1), involved in the enrichment of the TGF-β signaling 
pathway between CR and FAIL. (C) TGF-β signaling score of cluster 4 (CTL_2) and violin plots 
displaying the expression levels of the top differentially expressed genes of cluster 4 (CTL_2), 
involved in the enrichment of the TGF-β signaling pathway between CR and FAIL. (D) 
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Comparison of the cytotoxic score of each group, as it is projected onto the respective UMAPs. 
(E) Cytotoxic score of cluster 2 (CTL_1) and violin plots exhibiting the expression levels of the 
top differentially expressed cytotoxicity-related genes of cluster 2 (CTL_1) between CR and 
FAIL. (F) Cytotoxic score of cluster 4 (CTL_2) and violin plots exhibiting the expression levels 
of the top differentially expressed cytotoxicity-related genes of cluster 4 (CTL_2) between CR 
and FAIL. Differential expression data are reported in Data sheet 3. 
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Fig. 8. Transcription Factor (TF) regulatory network analysis in BM-derived CD8+ T cells. 
(A) UMAP depicting the clustering of CD8+ T cells based on regulons. (B) Pie charts illustrating 
the representation of cells from CR and FAIL patients within each regulon. (C) Comparison of 
cell distribution in regulons between the groups utilizing separate UMAPS for each group. (D) 
Heatmap showing the top differentially activated TFs of each regulon-cluster. (E-F) Violin plots 
depicting the activity score of selected TFs per sample type in regulons 5 and 7, respectively. 


