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ABSTRACT 25 

Background 26 

    Intratumor bacteria (ITB) plays a role in various cancer types. Its role in clear-cell renal cell 27 

carcinoma (ccRCC) remains elusive due to small sample size and inadequate decontamination 28 

in relevant studies. 29 

Objective 30 

    To establish common and reproducible ITB-associated biomarkers in ccRCC. 31 

Design, setting, and participants 32 

    This retrospective study comprised seven bulk RNA sequencing datasets from six publicly 33 

available cohorts and one in-house Chinese cohort (Renji), one 16S rRNA sequencing dataset 34 

from an original Chinese cohort (Huashan), and one publicly available single-cell RNA 35 

sequencing dataset. All of these datasets included ccRCC cases. 36 

Outcome measurements and statistical analysis 37 

    Composition was presented by relative abundance. Overall and progression-free survival 38 

were primary outcomes profiled by putative ITB load and risk score, respectively. Potential 39 

host interaction was exploratorily analyzed using gene set enrichment analysis and Sparse CCA. 40 

Results and limitations 41 

Nine cohorts encompassing a total of 1049 ccRCC cases and 130 paired normal tissues were 42 

initially analyzed and underwent decontamination. Surprisingly, neither diversity nor 43 

composition was differentially distributed between normal and cancer tissue. High putative 44 

bacterial load was associated with better overall survival. Notably, a 7-genera dichotomized 45 

ITB risk score was indicative of overall survival and a 13-genera dichotomized ITB risk score 46 

was predictive of progression-free survival, respectively. Actinomyces, Rothia and 47 

Bifidobacterium showed a protective role while Exiguobacterium was a risk factor. A limitation 48 

is lack of causation analyses. 49 
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Conclusions 50 

        ITB exists in ccRCC. High ITB loads and ITB-risk score predicts better ccRCC survival 51 

regardless of sequencing tech, sample processing or racial disparity.  52 

 53 

KEY WORDS Clear-cell renal cell carcinoma; Intratumor bacteria; Biomarker; Prognosis 54 

 55 

Patient Summary 56 

In this report, we explored the role of intratumor bacteria (ITB) in renal clear-cell carcinoma 57 

(ccRCC) in patients with different race and sequencing platforms. Putative ITB load and a 7-58 

genera ITB risk score were associated with overall survival. A 13-genera ITB risk score was 59 

predictive of progression-free survival. We conclude that certain ITB features are universally 60 

pathogenic to ccRCC. 61 

  62 
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INTRODUCTION 63 

Intratumor microorganisms, especially intratumor bacteria (ITB) signature has shown 64 

prognostic effect in a variety of cancer types including gastric cancer1, colorectal cancer2, 65 

hepatocellular cancer3, etc., establishing microbiome as a novel omics or “second genome” of 66 

cancer4. However, ITB may vary to vast extents that renders intratumor microbe findings in 67 

some cases, hardly reproducible5. Amongst all confounders, biomass of subject6,7, race8,9, 68 

sequencing tech10., and contamination11 play the most pivotal roles.  69 

Despite the pitfalls present in ITB studies, true bacterial signatures could be still identified 70 

by imperfect sequencing technologies and decontamination processes, which has been 71 

demonstrated through experimental validation12,13. Furthermore, when consistent findings 72 

emerge from multiple cohorts, the influence of these pitfalls can be minimized, leading to more 73 

reliable and robust conclusions. 74 

Clear-cell renal cell carcinoma (ccRCC) is the most common type of malignancy in kidney 75 

that is conventionally accepted as sterile organ and ccRCC is expected to harbor a low biomass 76 

of ITB. To date, the existing literature on ITB in ccRCC is limited to three full papers14-16and 77 

one meeting proceeding17. These studies suffer from small sample sizes, lack of racial diversity, 78 

use of a single sequencing technology, and inadequate decontamination process. Consequently, 79 

the precise composition and significance of ITB in ccRCC remain elusive. Therefore, a multi-80 

cohort study focusing on ccRCC is urgently required. 81 

  While we highly concur that ITB exists in most, if not all solid tumors including ccRCC, 82 

we aim to answer whether common ITB composition exists in ccRCC and whether ITB 83 

signature is prognostic, regardless of demographic, racial and sequencing differences. To 84 

achieve this, we incorporated various reports on decontamination and multiple ccRCC cohorts 85 

encompassing over 1000 cases that vary in region, race, batch, sequencing tech, etc. We aim 86 
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to identify inherent ITB signatures and explore its prognostication in ccRCC in the current 87 

study.  88 
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METHODS 89 

Study Population 90 

    For 16S rRNA sequencing, we retrospectively collected the 217 tumor and 27 normal 91 

samples from 217 patients histologically diagnosed clear cell renal carcinoma who underwent 92 

partial or radical nephrectomy in Huashan hospital (Shanghai, China) between May 2013 and 93 

Oct 2022 under reasonable inclusion criteria (Figure 1). The samples were formalin-fixed and 94 

paraffin-embedded. We also included 10 negative controls using sliced paraffin from the 95 

margin of the block, sampling paraffin only without tissue. Tumor stages were stratified 96 

according to the 8th American Joint Committee on Cancer staging system (AJCC)18 No 97 

subjects received preoperative treatments, including immunotherapies or molecular targeted 98 

therapies.  99 

    Six cohorts with the RNA-Seq data available were included in our study. 100 

EGAD0000100059719 as an integrated molecular study of ccRCC and consists of 100 tumor 101 

samples. EGAD00001006029 (CheckMate 025; NCT01668784)20 was a prospective clinical 102 

trials of the anti-PD-1 antibody nivolumab in advanced clear cell renal cell carcinoma, and 53 103 

FFPE tumor tissues were obtained prior to initial therapy for patients enrolled in this study, 104 

including 15 patients with the objective response record of immunotherapy. Data from above 105 

two datasets (EGAD00001000597 and EGAD00001006029) were requested from the principal 106 

strictly via European Genome-phenome Archive (EGA, https://ega-archive.org/) according to 107 

the clinical data transfer agreement. GSE10210121, GSE12696422, GSE15141923 were studies 108 

concerning on the renal cell carcinoma by organizations located in Singapore, China and 109 

Poland, respectively, and the raw sequencing data of tumor and paired normal samples were 110 

downloaded from the gene expression omnibus (GEO) data repository 111 

(https://www.ncbi.nlm.nih.gov/geo/). Besides, 27 fresh tumor samples with RNA sequencing 112 

were supplied by the Renji hospital (Shanghai, China).  113 
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TCGA was a cancer genomics program which molecularly characterized primary cancer and 114 

matched normal samples including clear cell renal cell carcinoma (KIRC). However, due to the 115 

limit of access to the level 1 or 2 data of TCGA hosted at the Genome Data Commons (GDC) 116 

website, the microbiome data processed by by Poore et al. 24 and by Salzberg et al. 25 117 

respectively were directly adopted for downstream bioinformatic analysis in this study. Poore 118 

et al. derived the microbiome data from both WGS and RNA-Seq data, and we used the 119 

normalized and batch effect-corrected data of 532 tumor and 72 paired normal samples. The 120 

author performed decontamination in several degrees and got 5 microbial communities 121 

including data with non-contamination removed (NR), data with likely contaminants removed 122 

(LR), data with putative contaminants removed (PR), data with contaminants removed by 123 

sequencing “plate–center” combinations (CR), and data with mostly stringent filtering (SR). 124 

Salzberg et al. also used the TCGA data but only took WGS data into consideration and shared 125 

us with the data including 40 tumor and 35 paired normal samples. Demographics of all cohorts 126 

were demonstrated in Table 1.  127 

16S rRNA gene amplicon sequencing 128 

In preparation for the 16S rRNA gene sequencing, samples were sectioned from the paraffin-embedded 129 

tissue blocks, which accepted quality testing, purification and nested amplification. To meet the requirement 130 

of sufficient DNA for sequencing, the amplified products were detected by DNA electrophoresis, and the 131 

eligible samples were kept for further study. 16S rRNA gene sequencing was conducted at the Nonogene 132 

Co., Ltd. In brief, genomic DNA was extracted from the tissue samples using the CTAB/SDS method. The 133 

16S rDNA V4 region was amplified through PCR employing a primer pair (515F: 5’-134 

GTGCCAGCMGCCGCGGTAA-3’ and 806R: 5’-GGACTACHVGGGTWTCTAAT-3’) with a barcode. 135 

Sequencing libraries were prepared using the TruSeq® DNA PCR-Free Sample Preparation Kit (Illumina, 136 

USA) following the manufacturer's instructions. The libraries were subsequently sequenced on the Illumina 137 

NovaSeq platform, yielding 250 bp paired-end reads. 138 

16S rRNA sequencing data processing and analysis 139 

The raw sequencing data of 16S rRNA in FASTQ format underwent processing with QIIME 2 version 140 
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2023.2. Quality filtering, denoising, and chimera removal were performed using DADA2, resulting in high-141 

quality sequences that were assigned to amplicon sequence variants (ASVs). The feature table was 142 

constructed using these ASVs, and taxonomic information was annotated using a Naive Bayes classifier 143 

trained with the SILVA 138 SSURef NR99 database. ASVs that could not be confidently assigned at the 144 

phylum level, as well as non-bacterial ASVs, were excluded from further analysis. 145 

To minimize the potential impact of contaminants, we employed a previously established decontamination 146 

process. This involved three steps: Firstly, we used the isNotContaminant function in the "decontam" 147 

algorithm (ref) to identify possible contaminants. This prediction was based on the difference in ASV 148 

prevalence between FFPE samples and tissue samples. Secondly, ASVs with a relative abundance greater 149 

than 0.5% in the FFPE samples were removed. Lastly, ASVs that appeared in less than 5% of the tissue 150 

samples were further eliminated to avoid contingency. Only ASVs that met these criteria were retained for 151 

downstream analysis. 152 

Bulk RNA sequencing data processing 153 

Raw RNA sequencing data from tissue samples obtained from six cohorts were acquired online. Sequencing 154 

reads were quality-controlled using fastp v0.21.1, with parameters “-l 50 -5 3 -3 3”. Filtered reads that were 155 

shorter than 50 bp were discarded. To quantify human gene expression, the clean reads were aligned to the 156 

human reference genome, GRCh38.p13, available in the GENCODE database using HISAT2 v2.2.1. The 157 

gene expression values were quantified in transcripts per million (TPM) using StringTie v2.2.1.  158 

For profiling the intratumor bacteria from bulk RNA-Seq data, clean reads were initially aligned against an 159 

indexed database to remove host or contaminant reads. This alignment was performed using bowtie2 v 2.4.5 160 

with a “--very-sensitive” model. The indexed database included 9 mammalian genomes (hg38, felCat9, 161 

canFam6, mm39, rn7, rheMac10, susScr11, galGal6, bosTau9; University of California– Santa Cruz 162 

Genome Browser), 2145438 complete bacterial plasmids (PLSDB databse, v.2021_06_23_v2), 13705 163 

mitochondrial genomes (NCBI RefSeq database, accessed on Aug 15, 2022), 9443 plastid sequences (NCBI 164 

RefSeq database, accessed on Aug 15, 2022), 6093 UniVec sequences (NCBI RefSeq database, accessed on 165 

Aug 15, 2022), which were considered potential sources of human habitat- or laboratory-associated or 166 

extrachromosomal sequence contaminants for taxonomic classification of microbial metagenomic 167 

sequences26. Unmapped paired reads were then subjected to KrakenUniq v 1.0.4 for taxonomic assignment 168 

using a pre-built database. This database includes complete microbial genomes from RefSeq, comprising 169 
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46,711 bacterial genomes, 13,011 viral genomes, and 604 archaeal genomes. Additionally, the database 170 

contains 246 eukaryotic pathogens, the UniVec set of standard laboratory vectors, and the GRCh38 human 171 

genome. The abundance of bacteria was evaluated at the genus level, which was deemed more accurate than 172 

the species level.   173 

To ensure the removal of potential false positive assignments, the bacterial genera underwent further 174 

filtration based on the following criteria: (1) the genus must contain more than 5 reads; (2) number of 175 

duplicated kmer must be larger than half of assigned read counts; (3) genome coverage must be larger than 176 

1e-5. (1) the genus must have a read count greater than 5; (2) the number of duplicated k-mers must exceed 177 

half of the assigned read counts; and (3) the genome coverage must be larger than 1e-5. Additionally, efforts 178 

were made to distinguish the potential host of the identified genera in order to eliminate non-human-179 

associated genera that are likely to be contaminants. To accomplish this, information regarding the isolation 180 

sources of bacteria deposited in NCBI (https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/), 181 

IMG/M (https://img.jgi.doe.gov/cgi-bin/m/main.cgi), GOLD (https://gold.jgi.doe.gov/downloads), and BV-182 

BRC (https://www.bv-brc.org/docs/quick_references/ftp.html) was gathered. For identified genera not 183 

isolated in these four databases, potential hosts were obtained through a literature search on Google Scholar. 184 

Based on the available host information, the identified genera were classified into three groups: non-human 185 

(genera not isolated from human), human-exclusive (genera exclusively associated with the human host), 186 

and mixed (genera derived from either human or other environments). Non-human-associated genera were 187 

subsequently excluded from further downstream analysis. 188 

Microbial analysis 189 

For 16S rRNA sequencing data, feature table, taxonomy, and phylogenetic tree after decontamination were 190 

combined into a Phyloseq object for downstream processing. To estimate alpha diversity and beta diversity, 191 

all samples were rarefied to 2000 sequencing reads. The statistical significance of differences in alpha 192 

diversity was assessed by stat_compare_means function in R package “ggpubr”. Difference in microbial 193 

compositions was tested using Permutational multivariate analysis of variance (PERMANOVA). 194 

For the bulk RNA-Seq data, the counts of genera were converted to relative abundance for analysis. Due to 195 

the ununiform sequencing depth that would skew the measure of alpha diversity, we did not examine alpha 196 

diversity among RNA-Seq data. Rather, we compared the bacterial read counts per million reads, which 197 

could provide an indication of bacterial load. The Bray-Curtis dissimilarity among the samples was 198 
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calculated using the vegdist function in the R package "vegan" and subjected to Principal Coordinates 199 

Analysis (PCoA). The statistical significance of the findings was evaluated using PERMANOVA analysis 200 

with the adonis2 function. 201 

To evaluate the impact of clinical factors on intratumor microbial communities, a PERMANOVA analysis 202 

with 999 permutations was conducted based on Bray-Curtis dissimilarity. To account for multiple 203 

comparisons, all P-values were adjusted using the false discovery rate (FDR) method. To explore the 204 

relationship between the overall microbial community and overall survival or progression-free survival, 205 

dimensionality reduction was employed to reduce the complexity of the microbial data. Principal Component 206 

Analysis (PCA) was performed using the PCA function in the "FactoMineR" R package. The first five 207 

principal components (PCs) of the intratumor microbiome PCA were retained to represent the overall 208 

intratumor microbiome. Cox proportional hazard regression models were employed to examine the 209 

association between each PC and overall survival or progression-free survival. This analysis was conducted 210 

using the coxph function in the "survival" package. P-values were adjusted for multiple comparisons using 211 

FDR methods. 212 

Identifying diagnosis-related microbiome 213 

For differential abundance testing between tumour and normal tissues in ccRCC, we used  relative abundance 214 

and counts per million reads (CPM) respectively. We performed Wilcoxon rank-sum tests for each feature 215 

in genus level, and corrected the resulting p-values with the BH method. To exclude the bias caused by the 216 

sample number imbalance, we incorporated only the matched specimen and finally got 24 pairs in Huashan 217 

cohort, 10 pairs in GSE102101 (Cohort 3), 11 pairs in GSE126964 (Cohort 4), 13 pairs in GSE151419 218 

(Cohort 5).  219 

We also used the Random Forest algorithm to further identify the potential features distinguishing the paired 220 

samples using randomForest function in the R package " randomForest"27. Ten-fold cross-validation and 221 

five repetitions were adopted to help select a specific number of features, whose importance were measured 222 

by accuracy and Gini index. 223 

Identifying prognosis-related microbiome 224 

Difference in microbial compositions was first tested between population with long term survival (LTS) and 225 

short term survival (STS). Due to the inconsistent following months, we used the median survival time in 226 

each cohort as the cutoff. Permutational multivariate analysis of variance (PERMANOVA) was used for 227 
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testing difference in microbial compositions as above mentioned. 228 

Univariate cox was performed to identify the genera whose abundance associated with overall survival and 229 

progression free survival. The HR (Hazard Ratio)>1 indicated that the feature was a risk factor for the 230 

prognosis, while HR<1 indicated that the protect factor. A cluster of genera were preliminarily screened as 231 

the input for the least absolute shrinkage and selection operator (LASSO) to exclude the features with 232 

potential multi-collinearity. The glmnet function in the R package "glmnet"28 was used and the family was 233 

set as "cox" while the other parameters were set default. Finally, we constructed the cox model using coxph 234 

function in the R package " survival". To fit the model more reasonably, we took the stepwise regression 235 

method to help select a formula-based model by Akaike information criterion (AIC). The  OS-related risk 236 

cox model consist of 7 genera, including Abiotrophia, Actinomyces, Bifidobacterium, Dolosigranulum, 237 

Faecalibacterium, Kocuria, and Prevotella. The PFS-related risk cox model contained 13 genera, including 238 

Acinetobacter, Brachybacterium, Exiguobacterium, Faecalibacterium, Finegoldia, Haemophilus, Kocuria, 239 

Lactococcus, Moraxella, Porphyromonas, Prevotella, Rhodococcus, Rothia. The genera with coef>0 in the 240 

models were considered risk factors, while those with coef<0 were considered protect factors. Kaplan-Meier 241 

survival curves were plotted to report the association between the survival probability and the abundance of 242 

specific genera. The strategy for grouping included dichotomization of abundance measured by CPM and 243 

the presence or not. The significance was examined by log-rank test and two stage hazard rate comparison. 244 

Combined with the clinical covariate such as sex, age, tumor stage and grade, the risk score was tested using 245 

univariate and multivariate cox to determine whether our risk score of microbial features could acted as an 246 

independent prognostic factor.  247 

We attempted to determine the centrality among the genera involved in the cox model and to find the hub 248 

genera. The estimateNetwork function in the R package "bootnet"29 as used and the correlation between the 249 

features were visualized with the network plot. The influence of each genus was also measured by the indexes 250 

including “Strength”, “Closeness”, “Betweenness” and “ExpectedInfluence”.  251 

Mapping interaction between genera and host gene 252 

We previously got the gene expression of 6 cohorts. To filter genes non-related to protein coding, we mapped 253 

the gene list to the human genome profile named ‘Homo_sapiens.GRCh38.109.chr.gtf.gz’ downloaded from 254 

the ENSEMBL website (http://asia.ensembl.org/index.html) and 19142 genes finally remained. The gene 255 

expression of TCGA was downloaded from the GDC portal (https://portal.gdc.cancer.gov/) and the data 256 
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format was transformed to TPM.  257 

To figure out the molecular change, especially the signaling pathway differentiation between the sub-group 258 

stratified by the risk score determined by selected microbial features in cox model, we performed the gene 259 

set enrichment analysis (GSEA). We used the GSEA function in the R package “clusterProfiler”30, and the 260 

KEGG, PID and REACTOME database were all included using R package “msigdbr”31. The p-values were 261 

corrected with the BH method.  262 

We took the mantel test to characterize the correlation between interest genera and interest molecular 263 

pathways. The mantel_test function in the R package “linkET”32 (ref) was used. We dichotomized the genera 264 

into two clusters labeled as risk genera and protect genera. To score the immune related function, the single-265 

sample gene set enrichment analysis (ssGSEA) method in the R package “GSVA”33 (ref) was used. The 266 

immune cell infiltration was assessed by the quantiseq method using deconvo_tme function in the R package 267 

“IOBR”34. As there were 15 patients who received the nivolumab immunotherapy and were recorded the 268 

objective response rate in the EGAD00001006029 (Cohort 2), we compared the differential genera between 269 

two groups, that were CB and NCB, using the Chi-Squared test. The prediction ability was adjudged by the 270 

area under curve (AUC).  271 

To macroscopically evaluate the association between tumor microbiome composition and host gene 272 

expression, we performed Procrustes analysis. BC dissimilarity was calculated and then the nonmetric 273 

multidimensional scaling (NMDS) was used for dimension reduction. The reduced two dimensions or axes 274 

was input for the rotations and statistical testing in Procrustes analysis. Furthermore, we took the sparse CCA 275 

to identify group level correlations between paired host gene expression and microbiome data using the CCA 276 

function in the R package “PMA”35. The parameters were set as default. We processed the data before the 277 

analysis. The genus whose relative abundance was higher than 0.001 in at least 10% samples were kept, and 278 

the data was transformed to the centered log ratio (CLR) format for downstream analysis. We kept the genes  279 

whose expression was greater than 0 in half of the samples and then filtered out genes with low variance, 280 

using 25% quantile of variance across samples in each disease cohort as cut-off. These filtering resulted in 281 

a unique microbiome abundance matrix and host gene expression matrix per cohort for downstream analysis, 282 

including 12477 gene × 54 taxa in the EGAD00001000597 cohort, 11817 gene × 28 taxa in the 283 

EGAD00001006029 cohort, 12633 gene × 26 taxa in the GSE126964 cohort, 11406 gene × 26 taxa in the 284 

GSE151419 cohort,  and 11492 gene × 60 taxa in the Renji cohort. As the number of  tumor samples in 285 
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GSE102101 was small, we didn’t performed sparse CCA in this cohort. After the sparse CCA, we got paired 286 

genus and genes clusters with significant correlation, and they were classified into a component. The genes 287 

in each component were implemented with pathway enrichment analysis. The significance was determined 288 

by Fisher's exact test and BH method used for adjustment.  289 

Statistical analysis 290 

All data analyses were conducted via RStudio software unless otherwise specified. Visualizations were 291 

performed using ggplot2 R package. Two group comparisons were done using Wilcoxon rank-sum test. 292 

Spearman’s correlations were calculated using cor.test function. The heatmap was created using Heatmap in 293 

“ComplexHeatmap” R package. In this paper, we used the following notation to indicate the significance 294 

levels of P-values: NS (P > 0.05), *0.05 < P < 0.01, **0.01 < P < 0.001, and *** P <  0.001. 295 

Transmission Electron Microscopy (EM) 296 

    A total of 20 ccRCC tissue blocks were subject to EM. Fresh tissues were carefully handled immediately 297 

after surgical removal. Blocks sliced 1mm³ in size were placed in a culture dish containing an electron 298 

microscope fixation solution. Samples were rinsed in 0.1M phosphate buffer (PB, pH 7.4). Samples were 299 

then placed at room temperature for 2 hours using 1% osmium tetroxide prepared in 0.1M phosphate buffer 300 

(PB, pH 7.4). Gradual dehydration was applied, and infiltration was conducted in a mixture of propylene 301 

oxide and Epon 812 resin (1:1) at 37°C overnight. Samples were inserted into an embedding mold filled with 302 

pure Epon 812 resin. The embedding mold underwent polymerization in a 60°C oven for 48 hours. Ultrathin 303 

sections (70nm) were cut from resin blocks using an ultramicrotome and placed on 200 mesh Formvar-304 

coated copper grids. Copper grids with sections were stained in a 2% uranyl acetate-saturated alcoholic 305 

solution for 15 minutes. Following three rinses with ultrapure water, sections were stained with a lead citrate 306 

solution for 10 minutes. Copper grid sections were air-dried at room temperature overnight in a copper grid 307 

box. The grids were observed under a transmission electron microscope (HITACHI, HT7800). 308 

16S rRNA staining 309 

   We performed 16S rRNA staining in 178 samples mounted on a tissue microarray (TMA) chip from the 310 

Huashan cohort with an established protocol reported by our group previously19. Briefly, thorough 311 

sterilization of hood, blades, and relevant instruments was carried out. Deparaffinized sections were 312 

dehydrated, and protease K was applied at room temperature. 100 μM of EUB338‐cy5 probes (sequence: 5′–313 

GCTGCCTCCCGTAGGAGT–3′) diluted in 1 μM working solution were applied and samples were 314 
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finalized with DAPI (1:500) staining.  315 

 316 

  317 
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RESULTS 318 

ccRCC has low-biomass and most ITB are contaminants 319 

As most cohorts in this study were sequenced by bulk RNA-seq, we applied a tailored 320 

decontamination algorithm (Fig 2A). Analysis of these datasets revealed diverse bacteria 321 

present in ccRCC samples (Fig S1). Raw ITB reads took up ~(1/2.00E-06) of total sequencing 322 

reads (Fig S2A) and showed a positive correlation with total reads (Fig S2B). 327 out of 545 323 

genera survived after decontamination (Fig S2C). Our passes not only managed to filter out 324 

nonhuman reads (Fig S2D) but also showed an increase in proportion of common contaminants 325 

after decontamination, indicating that some bacteria, previously accepted as contaminants 326 

could be indwelling in ccRCC (Fig S2E). Relative abundance of non-human associated 327 

bacteria dropped consistently in all cohorts following our decontamination (Fig S2F). Common 328 

genera across cohorts after decontamination remained comparable either grouped by dataset or 329 

by sample (Fig S3A-D), whereas similar trend for bacterial read drop was noticed in cancer 330 

and normal tissue, respectively, further authenticating the remaining reads were true ITB in 331 

ccRCC (Fig S3E-F). Compositional atlas demonstrated by relative abundance, as expected, 332 

varied drastically across cohorts (Figure S4A-D). Despite so, two phyla, Proteobacteria and 333 

Firmicutes were present in all bulk-sequenced cohorts (Fig S4) and in scRNA-sequenced 334 

samples (Fig S5, Table S1). They were putatively present in diverse cells such as tumor cells 335 

(Fig S5). Furthermore, we then applied 16S rRNA-targeted FISH probe and EM imaging to 20 336 

ccRCC tissue blocks, validating ITB existence in ccRCC (Fig 2B-C). We also attempted to 337 

culture 5 tissue blocks in aerobic and anaerobic conditions, but no bacterial growth was noted, 338 

supporting low biomass feature of ccRCC (data not shown). We then cross-referenced top-20 339 

abundant genera in all cohorts and found 11 genera were present in ≥ 5 cohorts (Fig 2D, Fig 340 

S5B, Table S2). Interestingly, three genera including Cutibacterium were also present in 341 

TCGA cohort processed by both approaches (Fig S5C). Here, we concluded ccRCC harbored 342 
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a low biomass of ITB and identified presence and composition of ITB which was possibly 343 

extracellular in ccRCC.  344 

ITB does not differ between adjacent normal and cancer tissue in ccRCC 345 

Using decontaminated reads (Table S3), we next probed clinical associations of ITB in three 346 

profiles: putative ITB load, ITB signature and individual ITB feature(s). Putative ITB load did 347 

not differ between paired normal and cancer tissue in all cohorts (Fig 2E, Fig S6A). Whereas 348 

cohorts that underwent RNA-seq could not be processed for alpha-diversity, we did not observe 349 

a difference in alpha-diversity in the Huashan cohort (Fig 2F, Fig S6B-C). Surprisingly, no 350 

differences in beta-diversity between normal and cancer tissue were observed in all cohorts 351 

(Fig 2G, Fig S6D). The only exception was TCGA_P cohort, which was challenged for its 352 

overinflated ITB reads (Fig S6E) and the alleged corrected version, TCGA_S cohort, again 353 

showed no difference (Fig S6F). We thus pursued whether individual ITB feature(s) was 354 

differentially distributed and was reproducible. Consistent with barren result of comparison 355 

between tumor and normal samples using Wilcoxon Test (Fig S7A-C), although the Random 356 

Forest identified 10 candidate differential ITB, this machine learning failed to validate those 357 

features with satisfactory predicting efficacy across the cohorts (Fig S7D-E). Again, the 10 358 

features showed inconsistent trends in TCGA_P cohort and none was significantly different in 359 

TCGA_S cohort (Fig S8A-B). Here we show astonishingly that, contrary to most studies, 360 

differential ITB between adjacent normal and cancer tissue could very well be not present in 361 

ccRCC. Our findings highly suggested that most ITB in ccRCC could be inherent intra-tissue 362 

bacteria residing in kidney and only individual ITB features altered in abundance in cancer 363 

environment, supporting a passenger role of ITB in tumorigenesis stage of the disease.  364 

Putative ITB load and risk score predict survival in ccRCC 365 

As expected, ccRCC could not be subtyped by ITB signature based on survival (Fig S9A-366 

B). Indeed, ITB signature on the whole was not associated with any major clinicopathological 367 
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parameters across cohorts (Fig S10). However, higher putative loads were associated with 368 

better overall survival (OS) in three cohorts available with OS profile (Fig 3A). In TCGA_S 369 

cohort that encompassed a small sample size, higher loads conferred a numerical better survival 370 

whereas TCGA_P cohort showed no difference, further questioning data processing in 371 

TCGA_P cohort (Fig S11A). Higher putative loads were solely associated with a better 372 

progression-free survival (PFS) in two cohorts, not reproducible in one of our original cohorts 373 

(cohort 6, Renji) and played a marginally protective role in TCGA_S cohort (Fig S11B-C). We 374 

then identified the compositional differences between patients with long and short survival, 375 

and the genera that coexisted and possessed consistent risk in univariate cox across three 376 

cohorts was used as input for LASSO and Cox model constructing (Fig S12A-B). The model 377 

identified a 7-genera ITB risk score predictive of OS in all three cohorts (Fig 3B, Fig S12C-D, 378 

Table S4) but not in either TCGA cohort (Fig S12E, Table S5). Specifically, Actinomyces and 379 

Bifidobacterium were protective ITB in ccRCC (Fig S13). Similar methodology was applied 380 

to PFS probing and a 13-genera risk score was generated (Fig S14, Table S6). Higher score 381 

predicted worsened PFS in all cohorts (Fig 3C) in which Exiguobacterium was a risk factor 382 

and Rothia was protective (Fig S15). Likewise, the results were not reproducible in either 383 

TCGA_P or TCGA_S cohort (Fig S16, Table S7). Whereas TCGA_P was problematic and 384 

TCGA_S consisted of only WGS samples, we here provided solid evidence that both ITB loads 385 

and features played a role in prognosis. This encouraged us to further investigate host 386 

interactions and treatment response. 387 

ITB is immune-related in ccRCC 388 

    Of exploratory interest, we investigated interactions between prognosis-related ITB (Fig 389 

S12D, Fig S14C) and found Actinomyces and Rothia being consistent hub ITB features across 390 

cohorts (Fig S17). When host interactions were incorporated, we found the immune response 391 

to be the sole consistently enriched program in ITB risk score-stratified patients across all 392 
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cohorts (Fig 4A, FigS18A-B, Table S8-11). In reminiscence of inter-ITB interactions, ITB 393 

genera were associated with antigen presenting cell functions (co-inhibition and co-394 

stimulation). (Fig 4B, Fig S18C-D). The risk score ITB showed in general negative correlation 395 

with pro-cancer immune infiltrates (Fig 4C). Specifically, absence of protective ITB 396 

Actinomyces, Rothia and Bifidobacterium were associated with M2 polarization of 397 

macrophages (Fig 4D, Fig S18E-G). Nonetheless, those three features were not associated with 398 

response to immune checkpoint inhibition and we identified Anaerococcus and 399 

Corynebacterium enriched in ccRCC with complete response (CR) to Nivolumab (Fig 4E-F). 400 

Lastly, we profiled host interaction using Sparce CCA and three out of five cohorts showed 401 

significant host gene-ITB interaction (Fig S19A). Besides immune, we also noted Ribosome 402 

signaling was associated with some microbiota  across  all cohorts (Fig S19B-G). Here, we 403 

showed ITB was associated with host immune response in particular protective ITB that were 404 

associated with decreased immune escape. 405 

  406 
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DISCUSSION  407 

Our study encompassed thus far the largest number of ccRCC cases subject to ITB detection. 408 

In comparison to previous smaller studies14-17, several ITB features appeared to be ubiquitously 409 

present at high relative abundance including Proteobacteria and Firmicutes at phylum level and 410 

Pseudomonas, Acinetobacter and Staphylococcus at genus level. Lack of difference in ITB 411 

loads, composition or diversity between normal and cancer tissue was one of our major findings. 412 

Though it was previously reported by Wang et al, we initially considered it to be a result of 413 

lack of any decontamination in their study16. Given that ITB features associated with prognosis 414 

were not amongst the top abundant ones, we speculate that ITB could be sporadic and 415 

commensal, not just in ccRCC but also in kidney.  416 

Though our 7-genera panel appeared to perform consistently in all cohorts, we are yet to 417 

conclude a pathogenic mechanism regarding a single ITB. Like in genetic association studies, 418 

prognostic panel composed of multiple genes serves as a biomarker simply because none of 419 

the individual gene is statistically powerful enough to generate a reproducible survival 420 

difference and any attribution of a single element should be supported by mechanistic analyses 421 

by cell or animal modeling. Likewise, our ITB panel solely represents the prognostication of 422 

the microbial community. Moreover, our ITB panel was only aggregated at genus rather than 423 

species level, further against overinterpretation.  424 

The causation between ITB and renal tumorigenesis remains unknown36. Whether those 425 

prognostic ITB are still commensal or, playing driving roles alongside tumor progression 426 

depends on human microbiota-associated murine models (HMAMMs) and microbe-phenotype 427 

triangulation (MPT)36. Unfortunately, there are currently no transgenic murine models for 428 

ccRCC37 and culturomics from animal models is therefore inapplicable38. It was surprising that 429 

most prognosis-associated ITB features were protective and so were high putative loads, 430 

contrary to many oncobiome studies. We did not evaluate absolute ITB loads in our own 431 
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cohorts as loading could not be accurately calculated in transcriptome datasets. However, given 432 

that recent study points out that absolute, rather than relative abundance plays more important 433 

role in microbiome study39, and that load is prognostic in nasopharyngeal cancer (NPC)40, we 434 

are now setting up a new line to evaluate association between absolute ITB loads and prognosis.  435 

We did not put much effort into imaging ITB. For low-biomass cancer, both LPS and FISH 436 

staining could harbor magnified signals from extra-tumor bacterial contamination41. We 437 

consider multiple sequencing platforms together with FISH signaling adequate to prove the 438 

existence of ITB. Of note, we did not identify any intracellular bacteria either by EM or scRNA-439 

seq. This could either be inherent biology of ccRCC or be a result of extreme low biomass of 440 

kidney as we successfully identified ITB in all 10 samples of bladder cancer undergoing 441 

scRNA-seq in another companion project (data not shown).  442 

Recent debate over the landmark cancer microbiome study by Poore et al1 has drawn much 443 

attention in the oncobiome community. In their recent report25, Salzberg’s team reasoned two 444 

major points that Poore’s data should be interpreted with caution, including contamination of 445 

human reads into microbial signaling and overinflation of microbial reads by machine learning. 446 

We owe great thanks to the Salzberg team for providing us KIRC WGS data processed with 447 

their protocol for reproduction and validation of our own findings. Even with the very limited 448 

sample size, our model showed a numerical OS prediction. The reason Salzberg’s team did not 449 

process RNA-seq samples was that they considered poly(A)-based transcriptomes could not 450 

capture microbial signals. However, half of our cohorts were poly(A)-based transcriptomic 451 

datasets and we were able to retrieve effective reads therein. In fact, most ITB studies using 452 

scRNA-seq were also able to capture effective reads given the very few cells compared with 453 

bulk sequencing. The “poly(A)” problem in the intratumor microbiome has also been 454 

thoroughly discussed42,43 and our findings undoubtedly further supported the notion. 455 

Last but importantly, we show that certain ITB feature is associated with cancer immunity 456 
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and response to Nivolumab in ccRCC, in reminiscence of recent trial modulation gut 457 

microbiome in metastatic ccRCC patients receiving Nivolumab plus ipilimumab therapy44. The 458 

protective ITB in our findings are closely related to decreased immune escape, e.g., inhibition 459 

of antigen presentation and decreased M2 polarization, both showing pro-inflammatory effects. 460 

Interestingly, ITB with different clinical associations seldom overlap and we have not 461 

identified such an “omnipotent” ITB in ccRCC. Despite so, Corynebacterium is of interest as 462 

its abundance ranks top 20 in most cohorts and is associated with Nivolumab response. 463 

Bifidobacterium supplement has been shown in trial that augments ICI response in metastatic 464 

ccRCC patients and our findings that intratumor Bifidobacterium was protective shed light on 465 

the thus far elusive mechanism of this gut-tumor asix44. We did not analyze ITB in ccRCC 466 

patients treated with angiogenesis-targeting therapy though there are a handful of datasets 467 

available, as angiogenesis was not amongst the MAMPs we identified (Fig S19B). Given that 468 

combination therapy has become the mainstay of metastatic ccRCC treatment, we are now 469 

setting up an ITB analysis in such samples. 470 

 471 

CONCLUSION 472 

    ITB exists in ccRCC. High ITB loads predicted better survival. We also developed a robust 473 

ITB score predictive of prognosis regardless of sequencing tech, sample processing or racial 474 

disparity. Those parameters and panels serve as novel biomarkers for ccRCC.  475 

 476 

  477 
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Figure legends 606 

Figure 1. Study Design 607 

Figure 2. The presence of intratumor bacteria in ccRCC 608 

(A) Flowchart illustrating the process of analyzing bulk RNA-seq data to identify intratumor 609 

bacteria. The analysis involves using bulk RNA-seq data from normal and tumor tissues. To 610 

track potential microbial sources, source annotations from bacterial genomes in databases such 611 

as NCBI, IMG/M, GOLD, and BV-BRC, as well as literature search, are retrieved. Bacteria 612 

associated with the human host are retained for constructing the intratumor bacteria matrix. (B) 613 

Representative images of fluorescence in situ hybridization (FISH) staining of 16S rRNA in 614 

tumor tissues of ccRCC. (C) Representative images of the presence of bacteria in the tumor 615 

tissues captured by transmission electron microscopy based on a total of 20 ccRCC tissue 616 

blocks. The red arrow indicates the object. (D) Stacked bar plot showing the proportion of 617 

genera present in at least five cohorts among the seven cohorts. Box plot showing the difference 618 

of (E) putative load (bacterial counts per million reads) and (F) Shannon index between 24 619 

tumor and paired normal samples for comparison in Huashan cohort. The statistically 620 

significant difference was given by paired Wilcoxon rank-sum test. (G) Principal coordinate 621 

analysis (PCoA) for 24 paired tumor and normal samples in Huashan cohort, based on the 622 

Bray–Curtis dissimilarity. The P values were tested by Permutational multivariate analysis of 623 

variance (PERMANOVA).  624 

Figure 3.  Putative ITB loads and risk score predict survival in ccRCC 625 

Kaplan–Meier curves showing the overall survival probability for Huashan, Cohort 1, and 626 

Cohort 2 stratified by (A) putative loads and (B) risk score. (C) Kaplan–Meier curves showing 627 

the progression-free survival probability for Huashan, Cohort 2, and Cohort 6 stratified by risk 628 

score. P values were calculated using an unadjusted Log-Rank test. 629 

Figure 4. ITB is immune-related in ccRCC 630 
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(A) The density curves represent the distribution of the immune-related pathways that were 631 

significantly enriched between the two stratified groups using gene set enrichment analysis. 632 

The horizontal axis indicated the NES of the GSEA result. The stratification was the same as 633 

the previous result, that is the overall survival-related risk group in Cohort 1 and 2, and 634 

progression-free survival-related risk group in Cohort 2 and 6 from top to bottom. (B) The 635 

result of the Mantel test showing the interaction between genera community and potential 636 

immune function and the Spearman method was used. The thickness of the curve indicated the 637 

absolute value of the spearman rho, and the significant connection was yellow colored. Each 638 

block represented the correlation among the immune functions, and a redder color meant a 639 

greater rho. (C) Heatmap showing the correlation between specific genus and infiltration scores 640 

of immune cells in Cohort 1, Cohort 2, and Cohort 6. (D) Box plot exhibiting the level of M2 641 

macrophage polarization in the presence or absence of Actinomyces, Rothia, Bifidobacterium 642 

from left to right in Cohort 6. The Wilcoxon Test was used for comparing the relative 643 

abundance between tumor and normal. (E) The heatmap at left showed the relative abundance 644 

of the differential genera in abundance in the patients with clinical benefit (CB) and non-645 

clinical benefit (NCB) using Chi-Squared Test. The heatmap at the right indicated the mRNA 646 

expression of genes PDCD1, CD274, and CTLA4. (F) The ability of the abundance of 647 

Anaerococcus and Corynebacterium to predict the clinical benefit was visualized by the 648 

receiver operating characteristic curve and measured using the area under the curve (AUC). 649 
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